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Iterative resolution estimation in least-squares Kirchhoff migration
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ABSTRACT

We apply iterative resolution estimation to least-squares Kirchhoff migration.

Reviewing the theory of iterative optimization uncovers the common origin of

different optimization methods. This allows us to reformulate the pseudo-inverse,

model resolution and data resolution operators in terms of effective iterative esti-

mates. When applied to Kirchhoff migration, plots of the diagonal of the model

resolution matrix reveal low illumination areas on seismic images and provide

information about image uncertainties. Synthetic and real data examples illustrate

the proposed technique and confirm the theoretical expectations.

INTRODUCTION

Kirchhoff prestack depth migration remains the most widely
used method for seismic imaging in complex areas. The
method is especially attractive for 3D imaging because of
its ability to handle naturally irregular acquisition geom-
etries. The negative effect of irregular sampling on seismic
images can be additionally balanced by applying the least-
squares migration approach (Cole and Karrenbach 1992),
which has recently attracted a lot of attention in the geophys-
ical literature (Chavent and Plessix 1999; Duquet and
Marfurt 1999; Nemeth, Wu and Schuster 1999).

According to the least-squares approach, the migration op-
erator is constructed as a least-squares inverse of forward
Kirchhoff modelling (Tarantola 1987). The inverse operator
can be effectively approximated through an application of an
iterative optimization scheme. The conventional migration is
then considered as the adjoint of the modelling operator or, in
other words, the first step of an iterative optimization process
(Claerbout 1992). A more accurate representation (i.e. add-
itional steps) can compensate for irregularities and artefacts of
irregular acquisition (Nemeth 1996; Nemeth et al. 1999).

A blind least-squares approach cannot, however, compen-

sate for lack of information in the input data. For example, if
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a particular area in the subsurface is not illuminated by
reflected waves, a proper image of that area cannot be re-
solved by least-squares migration alone. In this case, part of
the image will belong to the null space of the least-squares
inverse problem. Spotting low-illumination areas is import-
ant both for making acquisition decisions and for evaluating
the uncertainty of the existing images. Duquet, Marfurt and
Dellinger (1998) proposed using the inverse diagonal of the
Hessian matrix as a measure of illumination in Kirchhoff
imaging. Although this measure does provide useful infor-
mation about the problem’s well-posedness, a more rigorous
approach to the solution uncertainty would be to estimate
the corresponding model resolution operator (Jackson 1972).
The least-squares approach to resolution estimation is an
alternative to the commonly used ray-tracing method for
illumination analysis (Bear et al. 1999; Muerdter and
Ratcliff 2000; Laurain and Vinje 2001).

In this paper, we show how to obtain a resolution estimate
using iterative methods of linear unconstrained optimization,
such as the method of conjugate gradients (Lanczos 1950;
Hestenes and Stiefel 1952) and LSQR (Paige and Saunders
1982). For a given forward modelling operator, predicting
the existing data from an unknown model, iterations ap-
proach the model, which minimizes the squared residual
error of prediction. In linear problems, the global minimum
does exist. However, finding it requires, in general, the
number of iterative steps to be equal to the number of

unknown model parameters. In large-scale problems, typical
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in geophysical applications, the computational cost makes
complete solution practically infeasible. Nevertheless, itera-
tive methods allow us to get a reasonable estimate of the
solution in a small number of iterations.

When the exact solution of an inverse problem is replaced
by an estimate of the solution, the inversion theory needs to
be reformulated. Methods and formulations, designed for the
complete solutions, are no longer applicable in the case of
iterative estimates. This conclusion applies to such objects as
a pseudo-inverse operator, model resolution and data reso-
lution. These objects are conventionally associated with sin-
gular value decomposition (SVD), which becomes infeasible
in large-scale problems. Berryman (2000a) reviewed different
methods of iterative optimization, primarily the method of
conjugate directions and the LSQR method. He proved that
these methods have a common origin in the general principle
of the iterative residual minimization. The general princ-
iple leads to remarkable orthogonalization properties for
particular sets of vectors in the model and data subspaces.

Following the results of Berryman (2000b), we show how
to define the effective pseudo-inverse operator, model and
data resolution for iterative methods. Since the exact solution
is not available, these definitions apply to effective iterative
estimates of the corresponding operators, which were strictly
defined in the inversion theory. The iterative estimates are
constructed from the vectors, already appearing in the conju-
gate-gradient iteration. Therefore, they require minimal add-
itional computation with respect to an iterative least-squares
inversion. The diagonal of the resolution matrix can serve
as a rough direct estimate of the model uncertainty (Wang
and Pratt 1997). A similar, although less efficient, approach
was proposed by Minkoff (1996) and Yao, Roberts and
Tryggvason (1999), who applied it in conjunction with the
LSQR method (Paige and Saunders 1982).

Finally, we apply the iterative technique for resolution
estimation in Kirchhoff imaging. Synthetic and real data
tests show that a resolution estimate can indeed provide
valuable information about the uncertainty of Kirchhoff
images and reveal image areas with illumination problems.

Here, we have not found any use for the data resolution
estimates. In other applications, the data resolution matrix

can serve for assessing inconsistencies in the data.

RESOLUTION OPERATORS FOR BOTH
MODEL AND DATA

Following the theoretical discussion of Berryman (2000b)

and the known properties of the iterative optimization

method, summarized in the Appendix, we formulate the
iterative estimates for the pseudo-inverse model resolution
and data resolution operators. We use a notation in which
the linear inversion problem to be solved takes the form

Mx =d, (1)

where we assume that the data vector d and the linear
forward modelling operator M are given and that the
model vector x is being sought.

In the case of least-squares migration, x corresponds to the
reflectivity model, d is the observed data and M is the Kirchhoff
modelling operator (the adjoint of migration). We generally
assume that the problem is overdetermined so that the number

of data values exceeds the dimension of the model space.

Linear iteration

We want to solve the problem (1) in an iterative fashion, so
we assume that the updates to the solution take the general
form,

Xy = Xp—1 + 0P, 1, (2)

where x,_ is the preceding estimate of x, x, is the new
estimate of x, p,_; is some direction to be specified in
the model space and «, is an optimization parameter (or
direction weight factor). Defining the residual data error as
r, =d—Mx,, we find the general relation

ry =1,_1 — 0,Mp,_;. (3)

Pseudo-inverse estimate

From (2), it follows easily that the model estimate at the nth
iteration must be of the form,

n—1
Xy = Z Oit+1P;s (4)
i=1

where we assume for simplicity that x; =0. Then substituting
(A2) from the Appendix — or more directly the first ratio
in (A12) — for the o’s shows that the nth iterate is given
explicitly by

n— T n— T
X, = Zlipf'p" g = Zlipf'p" M'd 5)
=1 (p,-,MTMp/) ' =1 (p]-,MTMp/-)

for this scheme. The resulting approximate inverse operator
is therefore

(M™M)'~ i%, 6)
=1 (P,wM MP;')
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which form we now want to study. We use the dagger nota-
tion to indicate that the expression in (6) approximates a
pseudo-inverse, because it may happen that the normal
matrix is singular, in which case the standard inverse does
not exist.

Although (6) might appear to be in the form of a singular
value decomposition, it definitely is not. The p,’s are not
orthogonal and the denominators of these terms are
not eigenvalues. If we define the matrix composed of direc-
tion vectors at the nth iteration as

Po=(p1 P2 - P )
then the approximate inverse operator can be rewritten as
(M™)'~ P,Dp'P], )

where the matrix Dp is a diagonal matrix whose diagonal
elements are given by D= (p;, MTMp,-). In fact the entire
matrix is given directly by

Dp = PIM™MP,, 9)
because of the conjugacy of the p’s composing P,,. Now (A19)
shows that

P,B, = G, (10)
where

Gi=(g & - &) (11)

and the matrix B,, is bidiagonal with units along the main
diagonal and p’s along the upper diagonal:

1 gV 0 0
o 1 pY .. .
B.=|0o o ... .. 0o |- (12)
o1 ﬁiﬂ*l)
0 0 0 1

Multiplying (10) on the right by the inverse of B,, and then
substituting in (8), we find that

(M™)'~ G,B;'Dp ' (BY) "G (13)
Thus, the approximate inverse is seen to have the general
form,

(M™)'~ G,T,'GI, (14)

where T, is the tridiagonal matrix,
T, =B, DpB,. (15)

This result highlights the similarities between the conjugate-

gradient method and other iterative methods such as that of
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Lanczos (1950) and LSQR (Paige and Saunders 1982), which
also produce tridiagonal representations of the matrix to be
inverted.

Model resolution estimate

Although the tridiagonal form found in (15) is interesting in
its own right, the more important result contained in (14) is
the fact that this analysis has resulted in a decomposition in
terms of orthogonal (rather than merely conjugate) vectors.
This result allows us to obtain the resolution matrix quickly
for the model space from this form. In particular, if we define
the diagonal matrix,

D¢ = G'G,, (16)
we see that
M™ =~ G,D¢ ' T, D¢ 'G!, (17)

and therefore, since

Rimodel = (MTM) M™M = MTM(M™M)", (18)

we find easily that

Rumodel = GuDG 'G! = iﬁ. (19)
? P (8i,8i)

Data resolution estimate

The data resolution is known to be related to the operator,

Raaa = M(MTM) M. (20)

Substituting (6) for the pseudo-inverse and then defining

q; = Mp;, (21)

we find that the resolution operator for the data space is

n

Rq ;
e =1 (qi7qi)

a form completely analogous to that in (19).

APPLICATION TO KIRCHHOFF IMAGING

When attempting to image complex subsurfaces with Kirchh-
off methods, many difficulties may arise. In particular, amp-
litude behaviour of the imaged reflectors could be caused by
any of several totally different physical phenomenon. Fading
and disappearance of a reflector may have several causes,
including a real change in reflectivity, an error in the velocity

model or an illumination problem. All of these provide
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valuable information, but it is important to know which one
is causing the effect. By estimating the model resolution it is
possible to identify areas of low illumination.

To test the resolution matrix estimation, we inverted for a
single output offset (225 m) made from three data offsets
(200,225 and 250 m). The Kirchhoff operator was a simple
2D modelling operator and its adjoint using second-order,
first-arrival eikonal traveltimes. For the synthetic case a
smoothed version of the correct velocity model was used.
The real data example uses a smoothed version of the
sequential migration aided reflection tomography (SMART)
(Jacobs et al. 1992; Ehinger and Lailly 1995) velocity model
provided by EIf Aquitaine.

Synthetic test

We began our experiments on the synthetic Elf North Sea
data set. This data set was created by Elf, IFP and CGG and
inspired by the real data set recorded in the North Sea (block
L7d). The synthetic data correspond to a regular 2D acquisi-
tion pattern with a source spacing of 50 m, receiver spacing
of 25 m and offsets covering a range from 190 to 3340 m.

Figure 1 shows the result of conjugate gradient estimation
after 20 iterations. The deepest reflector seems to disappear
as it passes under the edge of the salt body. This behaviour is
known to be caused by poor illumination.

Figures 2—5 show the estimated resolution for the synthetic
data set with an increasing number of iterations. After only
five iterations, there is high resolution along the major re-
flectors (black indicates high resolution, white indicates low
resolution). Note that the area of poor illumination has low
resolution. As the number of iterations increases, the areas of
low reflectivity between the major reflectors become better
resolved. This tells us that the conjugate gradient algorithm is
expending most of its effort at low iterations resolving model
components around the major reflectors. It moves on to the
areas of lower reflectivity only at higher iterations.

This behaviour is not surprising, since most of the energy
in the model space is found around the major reflectors so
that is what will be minimized first.

Real data test

After experimenting with the synthetic data set, we con-
ducted the same experiments on real data (Figs 6 and 7).
The data set was acquired by Elf Aquitaine in the North Sea.
For the testing purposes, we used one line from the regular-
ized 3D data set with the acquisition parameters similar to
those of the synthetic data. Note that the x-axis in the real
data set is reversed from that in the synthetic so that the salt
structure tilts to the left rather than to the right. Figures 8-11
show the results of increasing the iterations for estimating the
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Figure 1 Inversion result on synthetic data after 20 conjugate-gradient iterations.
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Figure 2 Resolution using the conjugate-gradient method after five iterations. Dark indicates higher resolution.
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Figure 3 As Fig. 2 after 10 iterations.

resolution. Once again, there are Kirchhoff-type artefacts in
all of the figures. Note that we again see resolution energy
beginning around the major reflectors, spreading to areas of

lower reflectivity at higher iterations.

We can see corresponding changes in our image. After five
iterations the image shows strong energy along the primaries
reflectors, but it is generally low frequency in Fig. 6. After 20
iterations (Fig. 7), we have an image with more noise, but
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Figure 4 As Fig. 2 after 15 iterations.
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Figure 5 As Fig. 2 after 20 iterations.
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Figure 6 Inversion result on real data after five conjugate-gradient iterations.
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Figure 7 Inversion result on real data after 20 conjugate-gradient iterations.
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Figure 8 Resolution using the conjugate-gradient method after five iterations of the real data. Dark indicates higher resolution.
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Figure 9 As Fig. 8 after 10 iterations.

1 ignificantly higher f i . The later iter-

also a significantly higher requency image. The ater iter CONCLUSIONS

ations resolved smaller eigenvalues of the model, which cor-

responded to higher-frequency, lower-amplitude portions of =~ We have developed a practical approach to resolution esti-

the model space. mation using iterative methods of least-squares optimization.
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Figure 10 As Fig. 8 after 15 iterations.
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Figure 11 As Fig. 8 after 20 iterations.

Analysing popular iterative methods such as the method Iterative estimation of resolution supplies useful informa-
of conjugate gradients, we have reformulated the pseudo- tion when performing Kirchhoff imaging. Areas of low
inverse, model resolution and data resolution operators in illumination are easily recognizable. In addition, the iterative
terms of effective iterative estimates. nature of the algorithm provides useful information on
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what portion of the image is resolvable at early iterations of
least-squares migration.
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APPENDIX
Review of conjugate directions and conjugate gradients

This Appendix contains a review of the most common methods
of iterative least-squares optimization. It explains the back-
ground for constructing the iterative resolution estimates.
One useful way to proceed from the iterative equations (2)
and (3) is to choose the optimization parameter a, so that the
residual vector is decreased and preferably minimized at each
step of the iteration scheme. Using the standard inner Apro-

duct notation (-,-) and considering
2 2 2
lIeal* = Il |* = 200 (ru1, Mp,,_y) + ;| [Mp, ||, (A1)

we find easily that the optimum choice of o, using this

criterion is
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_ (rn717 Mpn—l) .

. (A2)
IMp, |

This formula has the significance that, whenever the residual
r,_1 has a component along the direction Mp,_1, o, is
chosen to scale Mp,,_; so that this component exactly cancels
and therefore removes the contribution to r,, made by Mp,,_;.
This result implies therefore that, if (r,,_1, Mp,,_1) # 0, then
with this choice of «, we have

(ts,Mp, 1) = (M'r,,p, ) =0. (A3)

We used the adjoint property of the inner product in (A3) to
show that p,_; is orthogonal to the gradient vector
g,=MTr,, so-called because it is the gradient obtained by
taking the derivative with respect to x! of the squared re-
sidual error functional associated with (1).

Thus, at each step of this iterative sequence a vector pro-
portional to some vector p,, is added to the solution, while a
vector proportional to Mp,, is subtracted from the residual.
According to formulae (A1) and (A2), the squared norm of
the residual decreases at each iteration as

(I'n,l 5 Mpn—l )2

lleall® = llen-1]l* 2
IMp,,_ |

(A4)

The sequence of directions will be most efficient if the vectors
used in decimating the residual are orthogonal, i.e. if

(Mp,,Mp;) =0 for j=1,2,...,.n—1 (AS)

In this case, as follows by induction from formula (A3), the
residual vector is also orthogonal to all those vectors:

(r;,Mp;) =0 for j=1,2,...,n—1 (A6)

Using again the adjoint relation for the inner product, we
find that

(MTrmp,-):(gmp/-):O for j=1,2,...,n—1, (A7)
and
(p,,M'Mp;) =0 for j=12,...n-1, (A8)

which is a statement of conjugacy for the vectors p,. Con-
jugacy is just a generalization of orthogonality in which the
vectors are orthogonal relative to the non-standard inner
product (-,A-) — with A being a symmetric, positive semi-
definite matrix (operator) — instead of the standard inner
product given by (-,-) with A replaced by the identity.

We conclude that conjugacy is a desirable property of
the set of direction vectors p,,, SO our next necessary step in

order to obtain a definite iterative process is to construct a
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convenient sequence of vectors that have this property. One
set of model vectors that will be available in this iteration
sequence is the set of gradient vectors themselves, where
g,=M'r,. We show next why this set plays an important
role in constructing the desired sequence.

Conjugate directions

To construct a set of directions p,, which satisfy the conju-
gacy criterion (AS), we can start from an arbitrary set of
model-space vectors c,, and apply an orthogonalization pro-
cess to their projections in the data space. An iterative ortho-
gonalization is defined by recursion

n—1
j=1

where the following choice of the scalar coefficients £/
ensures condition (AS):

(MCVH Mp/)

Bl =
M

(A10)
Because the residual vector r, is orthogonal to all the previ-
ous steps in the data space (equation (A6)), the coefficient o,
simplifies to

_ (rn—laMcn—l)

oy = Al1
HMprlez ( )

Formulae (A9)—-(A11) define the method of conjugate direc-
tions also known as the preconditioned Krylov subspace
method (Kleinman and van den Berg 1991) and under several
other names.

A particular choice of the initial directions ¢, =g, =M,
transforms the method of conjugate directions into the
method of conjugate gradients and introduces remarkable
simplifications.

Conjugate gradients

First, we notice that the scaling coefficient o, simplifies with

the choice ¢, =g, to the form

_ (rn—l ) Mgn—l)
- 2
IMp,,_4]|

(MTrn—hgn—l) — Hgn—lHZ (A12)
IMp,_[[> [IMp,4]I°

and the residual decrease (A4) becomes

2
||2 _ ||gn—1||

. (A13)
IMp,,_4|I”

2
[lewl[* = Trn—1
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According to (A13), the residual norm is guaranteed to de-
crease monotonically at each iteration as long as the gradient
is different from zero.

Second, applying (A7), we notice the equality

j—1

(gmg/) = (gnap;) +Zﬂf(l)(gnpz) =0 for /: 1727---771 - 17

i=1

(A14)

which is precisely equivalent to the conjugacy of the residual
vectors. The conjugacy condition can be stated as

M'r,, M) = (r,, MM"r)) =0 for j=1,2,....,n— 1.
(A15)

Equation (A14) states that the residuals from successive
conjugate-gradient iterations form an orthogonal basis in the
space of the model x. This fact ensures that the global min-
imum in an n-dimensional space can be found, in precise
arithmetic, in exactly 7 iterations. We can see that the valid-
ity of this remarkable fact is based entirely upon the ortho-
gonality condition (A14).

With ¢, =g, we can rewrite (A10) in the form,

pY) = (Mg, Mp;) _ (Mg, 1j:1 — ;) _ (8811 — g,-).
[IMp;|* g [IMpI[* o My

(A16)

It follows immediately from (A16) and the orthogonality
condition that

B =0 for j=1,2,....n—-2, (A17)
and
2 2

2= 2"
% [IMp,_[I” {81l

The latter equality follows from (A12). Thus, the next direc-
tion of the conjugate-gradient iteration is completely defined
by a linear combination of the current gradient and the
previous direction:

(n—1)

P, =8, — B, (A19)

Pn-1-

Equations (A12), (A18) and (A19) provide a complete defin-
ition of the classic conjugate-gradient algorithm (Hestenes
and Stiefel 1952; Fletcher and Reeves 1964).

Summarizing our derivation, we conclude that the success
of the conjugate-direction method is supported by the
orthogonality condition (A5). The success of the conjugate-
gradient method requires, in addition, the conjugacy condi-
tion (A15), which can be expressed in the model space as the
orthogonality of the gradients (A14).
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