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Abstract

General effective-stress rules are derived for various physical properties of inhomogeneous porous rocks.
Some rigorous relations arising in the analysis show that the fluid (pore) pressure py is least effective at
counteracting the changes caused by confining pressure for the solid (grain) volume; py is more effective
for the total (solid plus pore) volume; py is still more effective for the pore volume; and py is most
effective at maintaining the fluid content of the pores. Although these results are expected intuitively,
this analysis provides the first rigorous demonstration. During analysis of coefficients, care is taken to
distinguish between rigorous inequalities (following from thermodynamics) and empirical inequalities
(commonly observed, but not required by thermodynamics). For microscopically homogeneous rocks
(the Gassmann limit), it is shown that the confining pressure is always at least as effective as the
fluid pressure at changing the fluid permeability; therefore, it is impossible to use any “equivalent
homogeneous rock” to explain experimental results of Zoback and Byerlee [1975] and others (wherein
it has been shown experimentally that the permeability sometimes is more strongly influenced by fluid
pressure than confining pressure). We show that the “equivalent homogeneous rock” paradigm may be
successfully replaced by the “two-constituent porous medium” paradigm. In principle, the new paradigm
can explain the data, but new measurements of pore compressibilities are required before quantitative
comparisons can be made.

1 Introduction

When two or more strain producing fields may be applied independently to the same material, an
important qualitative question often arises while analyzing experimental data: Which of the fields has
greatest effect on a given physical property? If the material property of interest is found to be a
linear function of each applied field, then another way of asking the same question is this: What linear
combination of the fields (if any) will produce no measurable change in a physical property even though
the strength of the fields themselves is changing? These questions lead naturally to the concept of
effective stress [Terzaghi, 1936; Skempton, 1960; Terzaghi and Peck, 1967; Robin, 1973; Carroll, 1980].

Effective-stress measurements have been made on various physical properties of porous rocks. The
most commonly measured feature is the compressional wave velocity [Brandt, 1955; Van der Knapp, 1959;
King, 1966; Todd and Simmons, 1972; Nur, Walls, Winkler, and DeVilbiss, 1980; Whiting, 1982; Coyner,
1984; Christensen and Wang, 1985; Coyner and Cheng, 1985; Han, Nur, and Morgan, 1986]. Some data
on shear wave velocities is also available [Gardner, Wyllie, and Droschak, 1965; Banthia, King, and Fatt,
1965; King, 1966; Nur, Walls, Winkler, and DeVIlbiss, 1980; Christensen and Wang, 1985; Coyner and
Cheng, 1985]. Effective-stress coefficients for bulk and pore compressibilities were measured by Fatt
[1959], Van der Knapp [1959], and Zimmerman, Somerton, and King [1986]. Experimental studies of
electrical conductivity g or formation factor F' have been performed as a function of confining pressure
at fixed fluid pressure [Wyble, 1958; Dobrynin, 1962; Brace, Orange, and Madden, 1965; Brace and
Orange, 1968a,b; Brace, 1972; Trimmer, Bonner, Heard, and Duba, 1980; Daily and Lin, 1984; Walsh
and Brace, 1984; Longeron, Argaud, and Feraud, 1986], but little work seems to have been performed
to determine the pertinent effective stress for this property [Dey, 1986]. A few studies of the effective
stress for fluid permeability k are available [Brace, Walsh, and Frangos, 1968; Zoback, 1975; Zoback
and Byerlee, 1975; Nur, Walls, Winkler, and DeVilbiss, 1980; Coyner, 1984; Bernabé, 1986; Dey, 1986;
Bernabé, 1987], while many others are available for the behavior of k£ as a function of the confining
pressure for fixed fluid pressure [Fatt and Davis, 1952; Fatt, 1953; McLatchie, Hemstock, and Young,
1958; Wyble, 1958; Ferrell, Felsenthal, and Wolfe, 1962; Knutson and Bohor, 1963; Vairogs, Hearn,
Dareing, and Rhoades, 1971; Vairogs and Rhoades, 1973; Walsh and Brace, 1984]. Brace and Martin
[1968] analyzed effective stress for fracture strength of brittle rocks. Related work on thermoelastic
response of porous materials has been performed by Palciauskas and Domenico [1982], McTigue [1986],
and Palciauskas and Domenico [1989].



Virtually all previous theoretical analyses of effective-stress relations for rocks [Nur and Byerlee,
1971; Carroll, 1980; Walsh, 1981; Zimmerman, Somerton, and King, 1986] have used the same restric-
tive assumption used by Gassmann [1951], postulating a microscopically homogeneous solid frame. Since
natural rocks are often quite heterogeneous and therefore obviously do not satisfy the homogeneity condi-
tion, the validity of such analyses is founded on an implicit assumption that an “equivalent homogeneous
rock” can be constructed and that the analysis of this fictitious homogeneous rock will satisfactorily ex-
plain all available data. However, we give a rigorous demonstration that effective-stress data on fluid
transport through porous rocks cannot be explained in terms of any “equivalent homogeneous rock.”
This counterexample to common wisdom of composite science shows clearly that more sophisticated
methods are required to explain the behavior of porous media.

We base our analysis not on specific models of porous media, but rather on very general scaling
rules that such media must obey. For example, an insulating porous rock saturated with a conducting
brine solution is known to have the conductivity g = gs/F', where g is the conductivity of the brine
and F' is called the formation factor. Neglecting some small internal surface conduction effects, the
formation factor is a bulk property depending only on the twisted shape of the internal pore space of the
rock. Furthermore, F' is a scale invariant property of the rock; if the rock and its pore space could be
uniformly expanded or contracted everywhere, then neither the porosity ¢ nor the formation factor F'
would change. Although, in general, a change of confining pressure and fluid pressure in a rock does not
produce uniform swelling or shrinking, there is one set of circumstances where this happens: Consider
a microhomogeneous rock (one containing a single type of solid grain) with no change in differential
(confining minus fluid) pressure. Then, it is well-known [Carroll, 1980] that this ideal rock does undergo
a uniform expansion or contraction (implying constant ¢ and F'), and therefore the formation factor of
such a rock can only be a function of the change in differential pressure. Corresponding arguments for
the bulk and shear moduli (both of which are also scale invariant properties) show that they must just
be functions of the differential pressure, assuming only that the material bulk and shear constants K,,
and p, for the grains do not change significantly as a function of the ambient pressure. We consider
some elementary examples of the special results available in the Gassmann limit as prototypes, and then
proceed to construct some more sophisticated examples for fluid permeability and porous mixtures using
the same type of general arguments.

To present the simplest version of the analysis, we limit the scope of the paper mostly to a discussion
of clean and clay-rich sandstones. This limitation is imposed by making a strong assumption of linearity
in the differentials. By this, we mean that the coefficients of all differentials are assumed to change
very slowly compared to the differentials themselves. Thus, highly fractured rocks — wherein a small
change in applied pressure may produce a large change in the frame bulk modulus K — are excluded from
consideration. For such materials, the linear regime is reached only at very high confining pressures,
where all the fractures are essentially closed. Although the fundamental ideas presented here still apply
to highly fractured materials, the mathematical description is sufficiently different (made more difficult
by the nonlinearities) that we postpone their treatment to a later paper. A brief outline of the changes
required in the analysis is given in the discussion section.

We begin by presenting the general stress-strain relations that must hold, as shown by Brown and
Korringa [1975]. Then, we use arguments similar to those of Carroll [1980] to find the most general
forms of the effective stress principles for porous materials. Next, we use a rigorous inequality derived
by Berryman and Milton [1991] and Berryman [1992] to show that the more common effective-stress
coeflicients for volume properties satisfy a general set of inequalities among themselves. Then, we recon-
sider the homogeneous frame limit and determine the effective-stress coefficient for fluid permeability.
This coefficient is proven always to be less than unity in the Gassmann limit, showing that experimen-
tal data such as that of Zoback and Byerlee [1975] with effective-stress coefficient greater than unity
cannot be explained using any “equivalent homogeneous rock.” Finally, using some exact results from
Berryman and Milton [1991], we generalize the present analysis to materials composed of two types of
porous components (for example, a clay and sand mixture) and derive effective-stress coeflicients for
both the formation factor and the fluid permeability. We show that Coyner’s [1984] data on the jacketed



and unjacketed frame moduli as a function of pressure can be understood in terms of an equivalent
two-component porous rock. The paper concludes with a section discussing the results.

2 Stress-Strain Relations

Three bulk moduli characteristic of the porous frame are defined by Brown and Korringa [1975] using
the expressions:
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where V is the total sample volume, V; = ¢V is the pore volume, p, = —3+Tr(7) = —3(Toq + Tyy + T22)
is the confining (external) pressure, py is the fluid (pore) pressure, and pg = p. — py is the differential
pressure.

The first constant K is just the bulk modulus of the drained porous frame, a commonly measured
quantity [Fatt, 1959; Van der Knapp, 1959; Brace, 1965; Nur and Byerlee, 1971; Coyner, 1984] sometimes
called the “jacketed modulus.” The second constant K (sometimes called the “unjacketed modulus”)
is also relatively easily measured [Fatt, 1959; Van der Knapp, 1959; Nur and Byerlee, 1971; Coyner,
1984], since it requires an observation of the change in total volume while the confining pressure and
fluid pressure are incremented equally. If the frame is homogeneous (i.e., composed of only one solid
material), then this constant is equal to the bulk modulus K,, of its single constituent, so

K, =K, (4)

If the frame is inhomogeneous (i.e., composed of two or more solids), then the constant K is certainly
some average of the bulk moduli of the constituents. What that average should be is generally not
known, but the Voigt-Reuss-Hill average [Hill, 1952] has often been employed in this context to provide
estimates [Brace, 1965]. For a porous medium with just two distinct porous constituents having material
moduli Kr(,%), Kr(r%) and frame moduli K, K(*) Berryman and Milton [1991] have shown that the correct
average is
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Since elementary bounds on the bulk modulus K show it must lie between the moduli K*) and K®,
it follows that the weights (Y, 2(2) are both nonnegative and lie in the range [0,1]. Thus, K is truly
a weighted average of the material moduli, albeit an unusual one. The third constant Ky is more
difficult to measure than the other two, since it involves determining the change in the pore volume



while the confining pressure and fluid pressure are incremented equally. A few attempts at measuring
K4 have been made by Hall [1953], Greenwald [1980], and Green and Wang [1986]; however, all of
these reported results are subject to criticism. (See Zimmerman [1984] and Zimmerman, Somerton, and
King [1986] for a discussion and for an example of experimental apparatus that might be used for this
measurement. Also, see the review by Knutson and Bohor [1963].) If the frame is homogeneous, then
the constant Ky = K,,, due to the fact that porosity remains constant — in this very special case — if
pq = constant. However, if the frame is inhomogeneous, then Ky has a complicated dependence on the
material properties. Berryman and Milton [1991] again find an exact expression for K4 when only two
porous constituents are present. We will discuss this poorly understood constant in greater detail later
in the paper.
A fourth constant may be defined by
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but reciprocity [Brown and Korringa, 1975; Berryman and Milton, 1991] shows that K, is not indepen-
dent of the other three constants. It is known in general that

b4
Defining a new constant
a=1-K/K,, (9)
we can rewrite (8) as
K, =¢K/a. (10)

Since K, ¢, and a are all nonnegative quantities, K, is also a nonnegative quantity. Measurements of
K, may be found in Geertsma [1957], Fatt [1958], Van der Knapp [1959], Knutson and Bohor [1963], and
Zimmerman, Somerton, and King [1986]. However, it is important to note that, although a measurement
of K, may be used to find K, if K and ¢ are known, knowledge of this modulus does not help us to find
the other pore modulus Ky.

Using these definitions, the isotropic-stress/volume-strain relations become
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for the total volume strain and
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for the pore volume strain.

3 Effective Stress Principles

In this section, the analysis being presented is very similar to an analysis presented by Carroll [1980].
The main difference is that we treat the general problem for inhomogeneous porous materials. Carroll’s
results may be recovered by replacing K; and Ky everywhere by the material bulk modulus K,,, when
only one solid constituent is present. We derive the exact effective stress that follows from the general
stress-strain relations (11) and (12).

In the next section, we analyze the resulting coefficients and establish relationships among them
using elementary bounding arguments. It is important to keep in mind that all the results of the next
two sections depend on only the porosity ¢, the three frame moduli K, K,, Ky, and the fluid modulus
K.



3.1 Total volume

The effective-stress principle for total volume follows immediately from the general stress-strain relation
(11), giving
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where the coefficient @ = 1 — K/K, was defined previously in (9). This coefficient is often measured
[Van der Knapp, 1959; Nur and Byerlee, 1971; Coyner, 1984]. For example, using the measured on data
on the jacketed and unjacketed bulk moduli as shown in Figures 1-4, we can compute o as shown in
Table 1. The usual range of values for a is ¢ < a < 1, which is completely consistent with the data in
Figures 1-4 and Table 1.

3.2 Pore volume

The effective-stress principle for pore volume follows immediately from the general stress-strain relation
(12), giving
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where the coefficient is
f=1- KP/K¢. (15)

This coefficient has seldom been measured directly (but see Fatt [1958]). Note that, if Ky = K (which
is true in the Gassmann limit), then 8 = 1 — ¢(1/a — 1). Although K, is a nonnegative quantity, the
theory shows that in some exceptional circumstances Ky may be negative; thus, while the usual range
of values for B is ¢ < B <1, it is possible that § > 1.

3.3 Fluid content

Let N be the number of fluid molecules in a volume V. The number density within the fluid volume is
given by gy = N/V}, while the number density within the total volume is py = N/V = ¢p¢. If the initial

number of fluid molecules in the volume is Ny when v = V;O), then the number after an applied stress
is N = NoVy/Vs. The increment in fluid content 6¢ in the volume V is defined by Biot [1962; 1973]
as the fluid mass injected into a unit element of unit initial volume divided by the initial fluid density,
which is equivalent to the definition
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Then, if the fluid bulk modulus is Ky, the relative change in the number of fluid molecules in the volume
is given by
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where the effective-stress coefficient is
7Eﬂ+Kp/Kf. (18)

The constant v is just the inverse of Skempton’s constant B [Skempton, 1954], which has also often been
measured [Lambe and Whitman, 1969; Palciauskas and Domenico, 1982; Green and Wang, 1986].



Clearly, 8 < « in all cases, since 0 < Ky, K;,. For well-consolidated porous materials, it will also
normally be true that 1 < -, since the fluid bulk modulus (say for water or air) is generally much smaller
than the frame bulk modulus so 1 < K,,/Ky. However, if the frame is exceptionally weak so that K — 0,
then v — 8 — a — 1; thus, in this limit (common in soils [Lambe and Whitman, 1969]), all three of
these effective stresses reduce to pq.

Equation (18) shows that the pore volume effective-stress coeflicient 8 may be computed if measure-
ments have been made of o, 7, ¢, K¢, and K.

3.4 Porosity

Next we consider variations in porosity ¢ = V,/V. Since
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Some measurements of the coefficient (& — ¢)/¢K may be inferred from data of Fatt [1953] and Brandt
[1955]. The experiments consistently show that an increase in confining pressure results in a decrease in
porosity, so this coefficient is positive. It follows that ¢ < a is an empirical result.

Note that, when only one solid constituent is present, K, = Ky = K,,, so x = 1; thus, in the
Gassmann limit, the effective pressure for porosity is just the differential pressure pg, as expected.
Furthermore, the coeflicient x equals unity only when K, = K¢ or when K = 0. If the moduli satisfy
K, > K4 > 0, then x < 1; however, if K4 > K, orif K4 <0, then x > 1. If 8 > 1, then we must have
K4 < 0 and therefore x > 1. Finally, since the last identity in (21) may be solved for § and gives

B=x-¢(x/a-1), (22)
measurements of y may be used in conjunction with measurements of ¢ and a to find .

3.5 Solid volume

The solid volume is related to the total volume and the porosity by Vs = (1 — ¢)V. Since
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where we used (22) in the last step to eliminate 8. This coefficient is no easier to measure than j.
However, in the Gassmann limit, (25) simplifies since K4 — K, and x — 1 so 0 — ¢ [Carroll, 1980].
(Note also that, if 8 > 1, then o < 0.) A physical argument for the deviation of o from ¢ follows from
the observation that, during the deformation, the porosity generally does not remain constant unless
K4 = K,. The effective-stress coefficient o accounts correctly for the changing value of porosity during
a typical deformation process.

3.6 Undrained response

The undrained response of the saturated porous medium to a change in the confining pressure ép, is
found by setting

Ve _ Vs _ 0ps

— = = , (26)
Vg Vi Ky
where Ky is the fluid bulk modulus and the undrained bulk modulus K, is defined by
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Substituting (12) into (26) yields
6p.
— =0+ K,/K; =4, (28)
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showing that the change in fluid pressure during a confining measurement is épy = 6p./y. The pore
pressure buildup coeflicient for the undrained response is therefore B = 1/ [Skempton, 1954; Palciauskas
and Domenico, 1982; Green and Wang, 1986]. Substituting (11) into (27) yields
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showing that the undrained bulk modulus is simply related to the drained modulus K and the effective-
stress coeflicients oo and 7, for total volume and fluid content respectively.

The formula (29) is equivalent to the generalized Gassmann’s equation derived by Brown and Kor-
ringa [1975]

Ku= K +a oKy + $(1/K; — 1/Kg)] ™. (30)

If there is only one solid constituent so K; = K4 = K,,, it is not hard to show that (29) and (30)
reduce correctly to Gassmann’s equation [Gassmann, 1951]. Gassmann’s result has also been rederived
by various other authors, including Biot and Willis [1957], Geertsma [1957], Nagumo [1965a], and Nur
and Byerlee [1971]. Rice and Cleary [1976] obtained general results essentially equivalent to those of
Brown and Korringa [1975].

4 General Relations Among Effective Stress Coefficients

Berryman and Milton [1991] and Berryman [1992] give a thermodynamic stability argument to show, in
general (not just for one or two constituent porous media), it must be true that
o ¢

— - >0. 31
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The derivation of (31) requires the assumption that the moduli K; and Ky are independent of the pore
fluid modulus K¢. Multiplying (31) by K /o, we find

(1-a)=K/K, > K;/Ky = (1= p), (32)
so in general we have
c<a<pB<y. (33)

The first inequality follows from the definition (25) of ¢ without restriction when o < 3, which we have
just shown follows from (31). The final inequality follows from nonnegativity of the ratio K,/ K. Since

a<pf=x-¢(x/a—1) (34)
follows from (22) and (33), we can multiply (34) by « and rearrange terms to obtain the rigorous result
0< (a=¢)(x - a), (35)

which also follows from (25) and o < a. If in addition we know (as is observed) that ¢ < «, then (35)
implies @ < x and therefore that ¢ < a < 8= x — ¢(x/a — 1) < x. However, the empirical inequality
¢ < a is not known to be rigorous in all circumstances at present.

The relations in (33) are some of the main results of this paper. To summarize the significance of
the general inequalities contained in (33), we see that the fluid (pore) pressure py is least effective at
counteracting the changes caused by the confining pressure for the solid volume; ps is more effective for
the total volume; py is still more effective for the pore volume; and py is most effective at maintaining
the fluid content of the pores.

To make further progress on understanding effective stress for transport properties, we will need to
be more specific about the nature of the porous materials considered. The two examples we study are
(a) the homogeneous frame or Gassmann limit and (b) the inhomgeneous frame composed of two porous
constituents.

5 Gassmann Limit: Homogeneous Solid Frame

It is instructive to consider the relations among the various effective-stress coefficients in the Gassmann
limit, when there is only one solid constituent so Ky, = K4 = K,,,. Then, it is known [Voigt, 1928; Hill,
1952; Hill, 1963; Watt, Davies, and O’Connell, 1976] that the Voigt average (1 — ¢)K,, > K, providing
a rigorous upper bound on the frame modulus K. Rearranging the formula for the Voigt bound shows
that

$<1-K/Kp,=a<]l, (36)

where the final inequality follows from the nonnegativity of both K and K, (as required for thermody-
namic stability of the frame and grain material respectively). Using (8) and (36), we find that

¢K <K, <K, (37)
so that
0<p<as<p<l-¢+¢asl (38)
Then, it follows from the positivity of K, and Ky that

p<a<pB<y, (39)



so (29) shows the undrained modulus K, is always greater than or equal to K. It also follows easily

from (21), (25), and (38) that
0<o=¢<a<f=1-¢(lja—1)<x=1 (40)

Most of the results derived so far in this section have been obtained previously by Zimmerman [1984]
and Zimmerman, Somerton, and King [1986]. In some cases, they were also reported by Berryman and
Thigpen [1985] and Berryman [1986].

We emphasize that the results in this section are special to the Gassmann limit. Some remarkably
different results may apply when the solid frame is inhomogeneous.

Fatt [1958] used results of Brandt [1955] to show that x ~ 0.85 in some sandstone reservoir rocks
(also see Ferrell, Felsenthal, and Wolfe [1962], Knutson and Bohor [1963], Nagumo [1965a,b], Wagner
and Voigt [1971], and Schopper [1982]). Since x = 1 is required for all homogeneous solid frames, this
result is our first indication that no equivalent homogeneous rock or set of rocks can be used to explain
available effective-stress data. This particular result is not definitive, however, since the error bars on the
measured values of x are quite large (Fatt says this coeflicient probably varies in the range 0.75 < x < 1
for various rocks and pressures). Another set of measurements to be discussed shortly does not suffer
from this possible criticism.

5.1 Electrical conductivity

Electrical conductivity for inhomogeneous media is a scale invariant material property: If the medium
undergoes an expansion or contraction without change of shape, then the electrical conductivity remains
constant — assuming only that the properties of the constituents are also independent of strain. So, if
we take the grains in a porous rock as insulators and inject a conducting fluid into the pores, we expect
that the overall conductivity of the saturated medium will be of the form

9= gsG, (41)

where g; is the conductivity of the pore fluid (g5 may be a function of the fluid pressure [Daily and
Lin, 1985]), and - for the present application — G < 1 is a real function depending only on the relative
geometry of the pore space — not on the absolute scale. In general, G may have a complicated dependence
on the confining and fluid pressures, and there may not be any combination of p. and py that leaves
G invariant. However, considering the Gassmann limit, we see that relative positioning is dependent
only on the differential pressure so G is a function only of pg = p. — py. The function G is therefore
rigorously scale invariant (whereas the pressure dependence of g¢ must be factored out of g to make it
scale invariant for realistic experiments). The porosity ¢ is another rigorously scale invariant property
of the porous material, so in general we might suppose that G could be expressed as a function of the
porosity.

Archie’s law [Archie, 1942; Sen, Scala, and Cohen, 1981] for the electrical conductivity g of a brine
saturated porous medium is

9= gff =g5¢"™, (42)
where g¢ is the electrical conductivity of the saturating fluid, F = g5/g is the formation factor, ¢ is
the porosity of the porous formation, and m is Archie’s cementation exponent (generally in the range
1 < m < 2, but occasionally m as high as 2.3 has been observed). An additional constant factor is
sometimes included in (42), but its presence would make no difference to the arguments that follow. We
see that in the Gassmann limit
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and therefore

% ~ m% - (a¢;{¢) 5pa. (44)

These results are special to the Gassmann limit, because only for homogeneous frames is it true that the
pore space swells or shrinks at the same rate as the bulk volume.

Neglecting the pressure dependence of g5 (see Daily and Lin [1985]), we see that the effective pressure
for g (or equivalently for the formation factor) is just the differential pressure. So the effective stress
for the electrical conductivity is ép. — €6ps = 6pgq, where the value of the effective-stress coeflicient € is
therefore always € = x = 1 for homogeneous frames.

5.2 Fluid permeability

Fluid permeability for porous media is not a scale invariant material property: Darcy’s constant £ has
the dimensions of length squared, so a uniform swelling or shrinking of the isotropic porous medium
changes the value of the permeability proportional to V23 (since V has dimensions of length cubed).
The dependence of the permeability on geometry may therefore be expressed in general as

k = const x H X VZ/S, (45)

where H depends only on the relative positioning of the grains and is therefore rigorously scale invariant.
Like G, the factor H will generally be a complicated function of the confining and fluid pressures with
no combination leaving it invariant. However, also like GG, the pore space swells or shrinks at the same
rate as the grains in the Gassmann limit so H is rigorously seen to be a function only of the differential
pressure. In analogy with the arguments leading to (44), we suppose that

% ~ n% =-n <a¢;(¢) 6pa. (46)

The constant n may be related approximately to Archie’s cementation exponent m through the Kozeny-
Carman relation [Paterson, 1983; Walsh and Brace, 1984]
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k ~
2s2F’

(47)

where s is a measure of the specific surface area (for an equivalent smooth-walled pore) and therefore
572 = constx V2/3, (Avellaneda and Torquato [1991] provide a different insight into the role of formation
factor in estimates of permeability.) Thus, H ~ ¢?>/F = ¢?>T™ and n ~ 2 + m. Recalling that m ~ 2,
we find this estimate is in good agreement with empirical results of Adler, Jacquin, and Quiblier [1990]
who found the permeability correlated well with the relation k oc ¢™ where n ~ 4.15. Bourbié, Coussy
and Zinszner [1987] find n ~ 7 for ¢ < 0.05, 4 < n < 5 for 0.10 < ¢ < 0.25, and n ~ 3 for sintered glass
and some sandstones with porosities in the range 0.15 < ¢ < 0.30. A nominal value of n ~ 4 is therefore
reasonable, based on experimental evidence.
To find the effective stress for the permeability, we combine (13), (45), and (46). We then find

6k  6H ,6V — 2

where the effective-stress coefficient for permeability is

26(1 - )
" 3n(a- @)+ 26 st (49)

The inequality follows from the facts that ¢ < @ < 1 for the homogeneous frame and that the denomi-
nator is always positive as long as ¢ > 0.

K =

10



The bound (49) has great practical and conceptual significance for analysis of rocks. If we suppose
that any porous rock can be well approximated by an “equivalent homogeneous rock,” then (49) makes
a definite prediction that the effective-stress coefficient k must be less than unity for microhomogeneous
porous materials. Considering Table 2, we see that this prediction is verified by the data on two AlyO3
samples with no clay content. However, (49) is in direct conflict with all the other experimental results in
Table 2, showing that the effective-stress coefficient x for fluid permeability can be significantly greater
than unity for a variety of rocks containing multiple constituents [Zoback, 1975; Zoback and Byerlee,
1975; Nur, Walls, Winkler, and DeVilbiss, 1980; Coyner, 1984]. Thus, we have found that it is actually
impossible to explain this aspect of the behavior of these clay-bearing porous rocks under stress in terms
of an equivalent homogeneous frame. This result does not imply that it is never appropriate to use “an
equivalent homogeneous frame” postulate to analyze such rock data, but it does show that circumstances
can arise in very inhomogeneous rocks that invalidate such a postulate.

This negative result provides a strong motivation (based on existing experimental evidence) to at-
tempt a more rigorous analysis of porous media containing at least two constituents.

6 Two Porous Constituents

Suppose the solid frame is composed of two distinct porous constituents (say, type-1 and type-2), each
of which obeys a volume stress-strain relation analogous to (11) so that, microscopically, we have

sV spll)  opy

_ - , (50)
Vo T KO T M
and
sv® 6  6p?
Pa_  “Ps (51)

Ve T E® T o

For two constituents, Berryman and Milton [1991] have shown that there exists a ratio of the macroscopic
pressure increments 6p./6ps = 6 such that the relative change in the volumes of each constituent (and
therefore of the composite) is the same. Thus, the composite porous medium undergoes a uniform
swelling or shrinking so the shapes and relative positions of all the porous constituents remain fixed
while the overall size increases or decreases. Furthermore, the microscopic pressure changes equal the
macroscopic ones, so 6pg = 5p£11) = 5}7512) and épy = 6p§¢1) = (5pffz). In terms of the total volume effective
stresses, we find

1
E(épc — abpy)

1
= % (6pe — aVépy)
1
= W(épc - a(z)épf)a (52)

showing that

e _ oW /KW — o /@)
éps  1/KM —1/K®
aM /KW —a/K
/KD - 1/K
a/K —a® K®
T 1/K-1/K®
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The result (53) shows how the volume effective-stress coefficient a for the composite depends on the
various constants of its constituents. It is not difficult to rearrange (53) to recover the version (5) quoted
earlier.

An elementary result for the frame bulk modulus

min(K, K?) < K < max(K™W, K®), (54)
when combined with (53) and the results of the preceding section, shows that
min(¢™?, ) < min(a™,a?) < a < max(aP,a?) < 1. (55)

These estimates are all elementary but rigorous.
Berryman and Milton [1991] have also shown that, for two component composite porous media, the
remaining independent constant Ky is given by

6 _a  a(x)-ox) o — a2
KK\ K )TN gxooxe) (56)
where (-) is the volume average of the quantity in brackets. Multiplying (56) by K/, we find that

@) e o ()] e

where we used (53) [or equivalently see (59) in the next subsection] to simplify the expression. Equation
(57) may be substituted into the general expression (21) to show that

o (g w0 ()]

6.1 Effective stress for uniform contraction or expansion

One important point to emphasize here is that the analysis just presented clearly demonstrates the
existence of yet another effective-stress principle. For the two component medium, relative positions of
the porous constituents remain unchanged if the quantity ép. — 06py = const, so changes in geometry
depend on this new effective stress. Then, either (52) or (53) may be rearranged to show that the
effective-stress coefficient # satisfies

a—-0 aP -0 ao® -9 at) — o

K = KO ~ K@ T KOL_EK®°

(59)

where the final equality in (59) follows easily from the others. This result shows that either § >
max(aM, a?) or § < min(a,a®). Thus, using (55), @ is generally bounded away from a. In the
Gassmann limit, it is straightforward to show that § = xy = 1, so # > « in this special case. Conversely, if
0 =1, then KiY) = K2 = K, follows directly from (59), showing in general that 8 # 1 if K\ # K2 If
one of the constituents (say the second one) is nonporous and essentially incompressible, then K® - o0
and 0 = a = o'V follows directly from (59).

Now, if we suppose that the drained bulk modulus K could be varied without changing the properties
of the two constituents (for example, by changing the volume fractions), then it is easy to see that (59)
implies

[ze% aV — o

6K KO —K®° (60)

12



Substituting (60) back into (59) shows that Kéa /6K = o — 0 and therefore that

ba
f=a—-K—. 61
“T ek (61
Similarly, using the definition of a;, we find
ba 1 16(1/K;
1, 180Ky 62)

6K~ K, K1/K)’
Substituting into (61) gives

p=1- SU/E) (63)
6(1/K)

These two rules can be used to compute 8 from experimental data on K and K as a function of confining
pressure [Coyner, 1984] to the extent that both properties are in fact changing due to variations in the
volume fractions of the constituents. We have found that (63) is more robust than (61) for estimating
6 from real data on K and K,. For this approach to be valid, it is necessary (but not sufficient) to
find that the value of 8§ computed this way remains constant over some finite range of variation § K, or
equivalently that 1/K; is a linear function of 1/K. (Experimental constancy of 8 could be accidental
and, therefore, is not sufficient to establish validity of all these assumptions.) It is normally observed
that 6Ks/6K > 0 and, therefore, that §(1/K;)/6(1/K) > 0. By substituting these rules into (61) and

(63), we obtain the empirical result a < 0 < 1.
To clarify these issues further, a more general and more rigorous derivation of the relation determining
# is obtained by considering the integrability conditions required to guarantee reversibility, i.e., so that
the total volume is a function V' = V(p.,py) independent of the particular stress-strain path used to
achieve the final pressures p. and ps. The present argument is similar to one given by Zimmerman [1984]
for the equations in the Gassmann limit. The Euler conditions for integrability following from (11) are

621nV_ 3] 1y 0 1 1 (64)
op.Opy Ops \K) Op. \Ks K)
Assuming that the bulk modulus of the drained porous frame has the functional dependence K =
K (p. — 0py) with @ constant, then

any (i) = 22 (i) *

Substituting (65) into (64) and solving for #, we find

0 0

=1 o (1/Ks) /apc (1/K). (66)

This rigorous result (with assumed constancy of #) should be compared with the result obtained in (63),

based on the two-component model. The most important feature of this second derivation is that it

requires none of the assumptions contained in the two-component model. It also shows clearly that

stress-strain data such as Coyner’s data on K and K as a function of p. may be used to compute the
effective-stress coefficient  for real materials.

To check whether these ideas agree with experiment, we have replotted some of Coyner’s [1984] data
on K, and K (see Figure 5) for various rocks to illustrate the linear dependence of 1/K; on 1/K for
confining pressures less than 30 MPa. We have purposely excluded data on all the materials for higher
pressures since these rocks may not be expected to satisfy the simple linear model presented here at the
higher pressures. To validate the “homogeneous equivalent rock” paradigm, these curves should all be
constant. To validate the “two-constituent porous rock” paradigm, the curves only need to be linear over
some small range of pressures. Although some of the curves are apparently constant (Berea sandstone,
Bedford limestone), all the curves are observed to be nearly linear over this range of pressures. Table 1
summarizes the results for 6.
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6.2 Volume fraction changes

For later developments, it will be important to know the behavior of the regional volume fractions

17483 V(2

vg = — and vp = — 67
A % B vV ’ ( )
as functions of applied pressure. (See Figure 6.) Note that, by assumption, v4 + v = 1 initially, but
in general v4 + vp < 1, since cracks and other voids may open up between the constituents when an

effective stress 6p. — 06ps # 0 is applied to the composite. The overall porosity is determined by
1—¢=’UA(1—¢1)+’UB(1—¢2). (68)

Because of the new effective-stress principle for uniform swelling and shrinking, we know that both
volume fractions can only be functions of the effective pressure p. — py in the linear regime. Using (13)
and (50), we find crudely that

1 1
bvg vy E ((5pc — a&pf) — 7 (6]75:1) — a(l)épf):l ) (69)

where we have assumed that the microscopic and macroscopic fluid pressures have equilibrated. Except

1) .

when ép. = 06py, the microscopic confining pressure §p, ' is unknown and need not equal ép. (in fact,
the local confining stress fluctuates and will generally not even be scalar). We will ignore these difficulties

1)

here and suppose that ép. * = ép. or equivalently that, in compression,
1 1
bva = — (6p. — 06pyf) and bvp = — (6p. — O6py), (70)
K4 Kp
where
1 1 1 1 1 1
K_Asz (?—W) and K—Bﬁ’vB <?—W), (71)

to a reasonable approximation.

Equations (70) and (71) are somewhat oversimplified. In fact, we know that v4 and vp are functions

of the pressures only through the combination §p. — #6pys; however, the actual functions could also be

dependent on the geometrical arrangement of the components, as well as the constituents’ moduli and

the bulk modulus. The dependence of these functions on the effective stress could also be at least weakly
nonlinear. To see this, note that

1 1 1 VA B

T I 2
Ki Ky SK KO K@ S0 (72)

where the inequality follows from the fact that the harmonic mean of K(*) and K® is a lower bound on
K [Hill, 1952; Hill, 1963; Watt, Davies, and O’Connell, 1976]. Inequality (72) shows that in compression
évyg + 6vp < 0, so that new cracks or voids must open when ép. — 86py > 0. However, in tension or
when existing compression is released, the same result shows that év4 + évp > 0, which implies the
whole volume (= 1) is less than the sum of its parts (14 6va + dvp > 1). This clearly unphysical result
means that our initial assumption of linearity in (70) may need to be reexamined [Garg and Nur, 1973;
Zimmerman, Somerton, and King, 1986]. In particular, we might expect to find that K, K4, and/or Kp
take different values in compression and tension as has often been observed in rocks [Jaeger and Cook,
1976]. For example, if the materials in the sample are poorly cemented (as in a soil), the modulus in
tension may be vitually zero, while the modulus in compression may be indistinguishable from that of
a well-cemented sample. We wish to emphasize that, while (70) holds rigorously in compression, (71) is
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merely an approximation we need when making comparisons with experiment. Ideally, K4 and Kp can
be measured directly, but little information about these coefficients is available at present.

The unphysical results noted here may also be eliminated by considering a two-solid-component
model that includes cracks or voids in the unstressed state. Then, v4 4+ vp < 1 initially and either sign
of the change vy + §vp is allowed. Berryman and Milton [1992] have recently shown how to obtain
exact results for such models.

6.3 Clayey sandstone

Now we consider a special case that we will call the “clayey-sandstone model.” (See Figure 7.) One

of the constituents of this model has no porosity, so K® = K,(»,%) and of® = ¢(2) = 0. The other
constituent has a very soft frame modulus, so K — 0 and o/ — 1. Substituting these limits into

(59), we find that

K
Ky
and
0 —aV) - 1. (74)
So we have K ~ Kg) and
1 1 1 1 1
K, " kD T om (Kﬁr%) - Kﬁ,})) ' (79)

Note that the magnitude of Kﬁs) compared to that of KT(,P has not yet been specified in the clayey-
sandstone model and may be considered arbitrary. Thus, K4 can take a wide range of values. Then, we

find that
vg — ¢ 1 1
X_1+<0¢—¢)<K(1)_K(2))K (76)
and that
1 1
’UAKA z_I((l), (77)
while
1 1o
’UBKB - E (78)

The porosity is given by ¢ = v4¢V) initially.
We will use these results in the next section when we need to evaluate formulas for the effective-stress
coefficients of electrical conductivity and fluid permeability.

7 Transport Properties

In this section, we use the results of the last section to analyze electrical conductivity and fluid perme-
ability in a two-constituent porous medium.
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7.1 Electrical conductivity

The Bergman-Milton [Bergman, 1980; Milton, 1980; Bergman, 1981; Milton, 1981; Bergman, 1982;
Korringa and LaTorraca, 1986; Milton, 1986; Stroud, Milton, and De, 1986] analytical approach to
understanding the effective electrical conductivity g of two component inhomogeneous media shows that

>~ d
9= Glon,3) = 0:6(1,0) +0:60,)+ [ FH, (79)
s

91 92

where G(1,0) and G(0,1) are constants depending only on the geometry and G(z) > 0 is a resonance
density also depending only on the geometry. The integral in (79) is known as a Stieltjes integral [Baker,
1975]. Although the representation (79) has usually been employed to study the behavior of ¢ in the
complex plane when g; and g» are themselves complex (corresponding to mixtures of conductors and
dielectrics), we will restrict consideration here — as Bergman did in his earlier work [Bergman, 1978] -
to pure conductors so that g1, g2, and g are all real and nonnegative.

If one of the components is an insulator (say g2 = 0), then (79) reduces to

g=2- (80)

where Fy is the formation factor found by taking all of region A to be pore space and all of region B to
be insulator. A similar result follows by taking g; to be the insulator, so (79) may be rewritten as

g1 g2 * dz§(z)
=4+ =+ ; 81
Y= F, " Fp /0 _911 + - (81)

and the fact that G(1,1) = 1 leads to the sumrule

LI /oo daG(a) _ . (82)

Fy Fp 1+z

Because the electrical conductivity is a scale invariant quantity, the geometry dependent terms Fly,
Fp, and G(z) can depend only on the relative geometry. Since the relative geometry remains fixed when
0p. — 06py = const, we see that all these terms must be functions only of the effective stress p. — 0pjy.
As the terms F'4 and Fg are formation factors, we may use Archie’s law to show that

Fp~v,” and Fp~vg™?, (83)

where v4 and vp are precisely the volume fractions defined in (70) and the exponents approximately
satisfy 1 < m4,mp < 2. Little is known at present about the resonance density function G(z), so we
can only say for certain that it is some (probably very weak) function of the effective stress ép. — 06p;.

To make further progress, we must specialize. Consider a clayey sandstone, so one component is
impermeable sand and the other component is a permeable clay that essentially fills the void space
among the sand grains. Let go = 0 represent the conductivity of the insulating sand grains. Then, we
suppose the clay is composed of insulating particles of a single material so the porous clay by itself satisfies
Gassmann’s equation. If g¢ is the conductivity of the conducting fluid in the pores, the corresponding
effective conductivity of the saturated clay is

95
_9f 84
0 Fl ) ( )
where F} is the formation factor of the porous clay and satisfies F; = ¢; ™ with ¢; being the porosity
of the clay and m; is an appropriate Archie cementation exponent. Finally, we find that the effective
conductivity of the clayey sandstone should be given by

af m ma—ma

9= oy =R = gpg T, (85)
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recalling that the total porosity for this model is ¢ = ¢1v4. We see that (85) will show some deviations
from Archie’s law for the composite only if the exponents m; and m 4 differ significantly. Otherwise,
my ~my ~m will give

g~ grp™. (86)

Combining these results with (20), (69), and (70), we find from (85) that the stress rule for effective
conductivity is

6 _ —_
o () i o

where

(m1 —ma)pK(1—0)/vaKya

(m1 —ma)pK [vaKa

gy ™M@= 9) (x =)+ (m1 —ma)¢K (0 —a)/vaKa

s my(a— @)+ (m1 —ma)pK/vaKa ' (88)
)

Recall that (35) shows the product (o — ¢)(x — @) is always nonnegative.

In the Gassmann limit, 8 = x = 1 so € = 1 as expected. If m; = my4, then € = x and the value
of 8 does not affect the conductivity; the effective stress for conductivity is then the same as that for
porosity. If m; # my4, then the values of both § and K4 are important in determining €. At present,
little experimental evidence for the deviation of € from unity is available (see Dey [1986]), since most
effective-stress experiments on electrical conductivity known to the author have been performed on fairly
clean sandstones [Longeron, Argaud, and Feraud, 1986]. Thus, (88) is a definite new prediction of this
analysis and suggests that some new experiments should be performed to check its accuracy.

For the clayey-sandstone model, we find that if m; ~ m 4 then € ~ x, butif m; # m4 thene ~ 0 ~ 1.
Since we expect § < x for this model, the general conclusion is that

9 <e<y, (89)

but these bounds are only approximate. Evaluating the formulas for the clayey sandstone model, suppose
that my =2, m4 = 2.15, a = 0.85, (2 = 0.8, v4 = 0.25, ¢ = 0.2, and K/KV) = 10. Then, x > 0.99
(assuming only that Kf(ﬁ) < o) and € ~ 1.3x — 0.3, showing that the effective-stress coefficient for
electrical conductivity can be greater than unity if x > 1.

7.2 Fluid permeability

Dagan [1979] shows that the effective permeability of an inhomogeneous porous medium is determined
by the same equations as those for the effective conductivity of a similar inhomogeneous medium. Da-
gan’s argument is correct for two component porous media as long as both constituents have finite and
comparable permeabilities k; and k2. If one of the regions is impermeable (as it would be if composed of
solid grains), then the no-slip condition at the boundaries of these solid grains introduces a new physical
effect not found in the electrical conduction problem. Assuming that both k; and ks are bounded away
from both zero and infinity, the effective permeability of a two component composite porous medium is
therefore given quite accurately by

k ks = dzG(z
k:G(kl,k2)=F—:+é+/0 ?(_) (90)
k1 ko

where G and G are — not just analogous functions but — actually the same functions as in the electrical
conduction problem. When ki = ki, (82) shows that k& = k; as expected; thus, in the uniform frame
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limit, (90) reduces correctly to (45). The most important insight we gain from introducing (90) is the
observation that the terms F4, Fp, and G(z) are dependent only on the effective stress p. — 0py.

To make further progress we must specialize again. Considering the clayey-sandstone model once
more, we want to take ko = 0, indicating the sand grains are impermeable. However, this limit is precisely
the one for which the formula (90) is not strictly valid. Physically, we know that the introduction of the
no-slip boundary condition must reduce the rate of fluid transport and thus decrease the permeability.
Therefore, when we take the k2 — 0 limit of (90), we have found at best an upper bound on the
permeability rather than a direct estimate. So we have

kE<ET = LY (91)
Fyq
This bound is expected to be quite close to the value of the permeability k as long as the intrinsic
permeability of the clay k; is so low that the presence of the sand-grain boundaries has little influence
on the overall fluid transport.
Now we suppose that, as in (45) and (47),

2

kq =~ 23(211:11 = const X ¢7* X V12/3, (92)

where n; ~ 2 + my. Then, since V; = v4V, the effective-stress formula for the permeability bound is
given by

Sk w501 o (Boa OV bua 86 Bua 58V
k) g1 3

where ¢ = ¢p1v4, ¢ =n1 —my — %, and

_3m(e—-¢)(1-x)+2¢(1 —a) + 399K (1 - 0)/vaK4
3ni(a—¢)+2¢+3qpK/vaKa
_ 3ni(a—¢)(x —a)+39pK (0 — a)/vaKa
=t T (0= @) + 20 + 309K JuaKa (94)

k=1

Again recall that (35) shows (a — ¢)(x — @) is always nonnegative, while the empirical result for § is
a < 0. Rigorous bounds on k are made difficult to obtain by the fact that the terms in the denominator
of (94) do not always have the same sign. (For clayey sandstone, the last term is usually negative.)
When all terms are positive, we can show a < k, but the value of an upper bound on x depends on
whether ¥ < 1 or x > 1. In the homogeneous frame limit, since § = x =1, v4 = 1, and K4 — oo (since
K — KW), we obtain

. 2¢(1-a)
k=1 —3n1(a—¢)+2¢sl’ (95)

in agreement with (49).

In general, the total volume effective-stress coeflicient satisfies & < 1, but the porosity coefficient x
can have values either less than or greater than unity. For the general two component problem, K 4
will normally be negative, while @ is restricted by the empirical inequalities @ < ¢ < 1. Thus, we find
that the expression (94) can take a wide variety of values because of the variability of x and K4. For
the clayey-sandstone model, considering the poorly consolidated limit where K() — 0 we find that
k — 0 — 1, since then v4 K4 ~ — K — 0. However, if K(l)/K << 1 but remains finite, then we can
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get a magnification (or resonance) effect due to some cancellation in the denominator of (94). In the
case of most interest, the result for k is given approximately by

k~a+ M(x—9), (96)

where the magnification factor M ~ 40 if n; = 4, o = 0.85, v4 = 0.25, ¢ = 0.2, ¢ = 4/3, and
K/K® = 10. Evaluating (94) using x =~ 1.1, the result for the effective-stress coefficient is & =~ 5.
This estimate agrees reasonably well with the experimental result for the Berea sandstone considered
by Zoback and Byerlee [1975] and Coyner [1984]. Thus, if the effective grain modulus of the pore-filling
material Kg) is sufficiently smaller than that of the sand grains Ky(;‘:), we can easily find that both x > 1
and k > 1.

The theory shows that it is possible for the effective-stress coefficient k to be greater than unity as
observed by Zoback and Byerlee [1975], Nur, Walls, Winkler, and DeVilbiss [1980], and Coyner [1984].
To obtain better quantitative agreement between theory and experiment, we need to know values of
constants usually not measured, such as Ky, 3, or x.

8 Discussion

It has sometimes been speculated [Walsh, 1981] that the effective-stress coefficient for the variation of
permeability k¥ should be the same as that for the pore volume 3. For homogeneous frames, we can make
a direct comparison of these two coefficients, since

¢(1-a) 2¢(1 - a)
1-8= d 1-k= : 97
g a " " 3n(a—¢) + 24 (97)
Then, it is straightforward to show that, in this limit,
B<r<x=1, (98)

where the first inequality is true as long as % < n. Since the expected range of nis 3 < n < 4, < k will

generally be valid for homogeneous frames. Thus, although these coefficients should behave similarly,
we expect the fluid pressure to have a somewhat stronger effect on the permeability than on the pore
volume for the same value of confining pressure.

In both (43) and (46), we implicitly assume that Archie’s law (or its equivalent for H) is a good
approximation. To estimate how accurate this approximation is, we may consider the formula

G = ¢™P (99)

to be a defining equation for the exponent m as a function of ¢. Then, the variation of (99) shows that

6G ém| 6¢
— = Ing—| —. 100
= [mie)+ omolm] & (100)
Thus, by supposing Archie’s law holds, we are implicitly assuming that
ém
‘(f)ln ¢g << m(¢), (101)

or that the variation of m(¢$) with the respect to ¢ is negligible. A similar argument holds for H with
n replacing m in (101).

Another issue arises when the porosity is low and approaches the percolation threshold ¢.. Then,
(99) should be modified to G = (¢ — ¢.)™?) for ¢ > ¢.. This change results in only a minor modification
of the preceding analysis, but may nevertheless be required for some applications.
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The analysis presented here applies directly to porous materials such as clean sandstones and clay-rich
sandstones. Our explicit assumption of the existence of a linear regime precludes the direct application of
these results to highly fractured rocks, wherein a small change in confining pressure brings about a large
change in the bulk modulus K [Fatt and Davis, 1952; Walsh, 1965; Morlier, 1971; Snow, 1968; Gangi,
1978; Tsang and Witherspoon, 1981; Walsh, 1981]. For such media, the approach introduced here may
be generalized by treating differential ratios like §¢/6py as defining equations for curve tangents and
subsequently integrating all the resulting equations simultaneously. In such applications, at least one
additional equation is needed for the behavior of the bulk modulus itself. One reasonable choice for this
equation in the Gassmann limit is K = (1— qﬁ)me, where b > 1. This choice is consistent with the Voigt
bound, and may also be consistent with the Hashin-Shtrikman bounds [Hashin and Shtrikman, 1961] if
b is large enough (b > 1+ 3K,,/4p). From the present point of view, the most important characteristic
of this choice is its consistency with the scale invariance property of K. Similarly, the analysis of elastic
moduli for two-component composite porous media can be pursued using the approach of Kantor and
Bergman [1984], just as we used the Bergman-Milton approach to analyze the electrical conductivity.
Combining the analysis of the elastic properties with that for the transport properties should yield a
rigorous treatment valid for fractured rock. We will leave this line of enquiry to be pursued at a later
time.

9 Conclusions

In this paper, we have established bounds on and general relations among effective-stress coefficients for
various physical properties. For example, the inequalities summarized in (33) show that the fluid pressure
py is least effective at counteracting the changes induced by confining pressure for the solid volume V;; ps
is more effective for the total volume V’; p; is still more effective for the pore volume Vy; and ps is most
effective at maintaining the fluid content { of the pores. Although these results seem reasonable based
on physical intuition, our analysis provides the first rigorous demonstration. During this analysis, care
was taken to distinguish between rigorous inequalities (following from thermodynamics) and empirical
inequalities (commonly observed, but not known to be required by thermodynamics).

For microscopically homogeneous rocks (the Gassmann limit), it was shown that the permeability
effective-stress coefficient x < 1, so the confining pressure is always at least as effective as the fluid
pressure at changing the fluid permeability. We concluded from this result that it is impossible to use
any “equivalent homogeneousrock” to explain experimental results of Zoback and Byerlee [1975] and Nur,
Walls, Winkler, and DeVilbiss [1980] showing that x > 1 for some clay-rich sandstones. The “equivalent
homogeneous rock” paradigm was then replaced by the “two-constituent porous medium” paradigm.
We have shown the new paradigm predicts, in some circumstances, that « > 1 will occur for clay-rich
sandstones, but these results at best establish plausibility of this explanation. New measurements of
pertinent pore compressibilities are required before definitive quantitative comparisons can be made.

One of the main conclusions to be drawn from this work is the need for measurements of the pore
bulk modulus K4 and the effective-stress coefficients 8 and x depending on this constant. Similarly,
measurements of the effective-stress coefficient € for electrical conductivity are presently lacking. Such
measurements are needed in order to turn some of the plausibility arguments presented here into definitive
predictions.
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TABLE 1. Values of ¢, K, K, and «a for two different confining pressures applied to various rocks
measured by Coyner [1984]. The value of the effective-stress coefficient  for expansion and contraction
is computed from the given values of K and K.

pe=0 pe = 10 MPa pe = 25 MPa
Rock Sample #(%) | Ks(GPa) | K(GPa) o K (GPa) | K(GPa) o 0
Weber Sandstone 9.5 37.0 4.0 0.89 38.0 10.0 0.74 | 0.995
Navajo Sandstone 11.8 34.0 13.0 0.62 34.5 16.5 0.52 | 0.974
Berea Sandstone 17.8 39.0 6.0 0.85 39.0 10.0 0.74 | 1.000
Bedford Limestone 11.9 66.0 23.0 0.65 66.0 27.0 0.59 | 1.000
Barre Granite 0.7 54.5 13.5 0.75 55.5 21.5 0.61 | 0.988
Westerly Granite (red) 0.8 53.0 24.0 0.55 54.0 34.0 0.37 | 0.971
Chelmsford Granite 1.1 54.5 8.0 0.85 55.5 17.0 0.69 | 0.995
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TABLE 2. Sample properties from Zoback and Byerlee [1975] and Nur et al [1980].

Porous Clay

Sample &(%) | Content(%) | ko(md) | &
Al,O3(A) 26 0 817 0.43
Al,03(B) 29 0 50 0.86
St. Peter 20 0.5 944 1.2
Berea 350 22 6.0 382 2.2
Brownstone 21 4.5 624 2.4
Berea 350 22 6.0 261 2.9
Berea 500 21 4.3 470 3.2
Berea 200 22 6.3 363 3.2
Massilon 23 5.0 737 3.2
Berea 100 20 8.6 52 3.3
Massilon 24 6 995 3.5
Berea 19 8 42 4.0
Berea 500 21 4.3 617 4.6
Bandera 16 20.0 04|71
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Figure Captions

Figure 1: Jacketed bulk modulus K, unjacketed bulk modulus K, and porosity ¢ as a function
of hydrostatic confining pressure for Navajo sandstone. Data from Coyner [1984] with the author’s
permission.

Figure 2: Same as Figure 1 for Weber sandstone. Bars represent probable error. Data from
Coyner [1984] with the author’s permission.

Figure 3: Same as Figure 1 for Berea sandstone. Data from Coyner [1984] with the author’s
permission.

Figure 4: Same as Figure 1 for Westerly granite. Bars represent probable error. Data from
Coyner [1984] with the author’s permission.

Figure 5: The unjacketed compressibility 1/ K as a function of the jacketed compressibility 1/ K
for six of Coyner’s [1984] suite of seven rocks. (Barre granite is not shown since its curve is close
to that for Chelmsford granite.) Pressure variation is illustrated on the curve for Navajo sandstone,
showing that the high end corresponds to lower confining pressure (10 MPa) and the low end to
the higher pressures (25 MPa). In fact, Coyner’s measurements continue to 100 MPa and almost all
the curves begin to deviate from linearity for the higher pressures, but this behavior is beyond the
scope of the present study and therefore is not shown.

Figure 6: In a two-constituent mixture, regions A and B could be filled with solids, fluids, fluid-
saturated or unsaturated porous solids, or any pair of such materials. For example, in the Gassmann
limit, region B might be filled with a pure-grain solid, while region A is filled with a fluid.

Figure 7: In the clayey-sandstone model, region A from Figure 6 is filled with fluid-saturated
porous clay-like solid of type-1, while region B is filled with solid sand grains of type-2.
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List of Symbols

9f

3

Pe
Pd
by

VA,UB

overall electrical conductivity

pore-fluid electrical conductivity

fluid permeability

Archie’s cementation exponent for conductivity
exponent for fluid permeability

confining pressure

Pe — pf, the differential pressure

fluid pressure

a measure of specific surface area

regional volume fractions

formation factor

analytic conductivity function

scale invariant part of the fluid permeability
bulk modulus of drained porous frame (jacketed)
fluid bulk modulus

material (or grain) bulk modulus

$K/a, an effective pore bulk modulus

an effective solid bulk modulus (unjacketed)
bulk modulus of undrained porous frame

an effective pore bulk modulus

drained frame moduli of porous constituents
material moduli of solid constituents

total volume

(1 —¢)V, the solid volume

¢V, the pore volume

total volume effective-stress coefficient

pore volume effective-stress coefficient
inverse of Skempton’s constant B

electrical conductivity effective-stress coefficient
increment of fluid content

relative change effective-stress coeflicient

for two-component porous medium

fluid permeability effective-stress coefficient
shear modulus of drained porous frame
material (or grain) shear modulus

solid volume effective-stress coefficient
porosity

porosity effective-stress coefficient




