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For the purpose of understanding the acoustic attenuation of double-porosity composites,
the key macroscopic equations are those controlling the fluid transport. Two types of fluid
transport are present in double-porosity dual-permeability materials: (1) a scalar transport
that occurs entirely within each averaging volume and that accounts for the rate at which fluid
is exchanged between porous phase 1 and porous phase 2 when there is a difference in the average
fluid pressure between the two phases; and (2) a vector transport that accounts for fluid flux
across an averaging region when there are macroscopic fluid-pressure gradients present. The
scalar transport that occurs between the two phases can produce large amounts of wave-induced
attenuation. The scalar transport equation is derived using volume-averaging arguments and
the frequency-dependence of the transport coefficient is obtained. The dual-permeability vector
Darcy law that is obtained allows for fluid flux across each phase individually and is shown to
have a symmetric permeability matrix. The nature of the cross-coupling between the flow in

each phase is also discussed.
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I. INTRODUCTION

This is the second of two papers dedicated to obtain-
ing macroscopic governing equations for double-porosity
dual-permeability composite materials. In the first paper
(Part I), the governing equations were derived. The fre-
quency dependence of the acoustic attenuation predicted
from these equations depends strongly on the internal
mesoscopic flow between the constituents. Thus, in this
second paper (Part II), the fluid transport laws govern-
ing wave-induced fluid flow are studied in greater detail.
The Biot theory of porous-media acoustics [1, 2] ignores
all wave-induced flow at mesoscopic scales. It is well-
known that Biot’s theory is not capable of explaining the
measured level of acoustic attenuation in porous rocks [3].
The theory developed in the present two papers provides
one approach for doing so.

In Part I [4], it was established in particular that the
macroscopic governing equations controlling the linear
response of isotropic double-porosity composites, when
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an e~ ¢ time dependence is assumed, take the form
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See Part I for the definition of the various fields. What
needs to be established further in the present paper is
the detailed nature of transport coefficients in Eqgs. (2)
and (4).

As demonstrated in Part I, only two aspects of the
macroscopic fluid pressure response are driving fluid
transport in this theory: (1) the difference between the
average fluid pressures in each phase py; — Py, is respon-

sible for the scalar transport (e internal to Q; and (2)
the average drop in fluid pressure from one side of a con-
stituent averaging region to the other Vp,, and Vpy, is
responsible for the vector transport q; across §2;. For the
isotropic composites being treated here, there is no cou-
pling between the tensorial orders of the flow [5]. Due



to the linearity of the physics, we choose to resolve the
fluid transport into a scalar part defined with ps; # 0
and Vp;; = 0, for i = 1,2, that defines the internal
transfer between the constituents, and into a vector part
in which py; = 0 and Vpy; # 0 that defines the macro-
scopic (Darcy) flow within each constituent. The sum
of these two contributions gives the total fluid transport
within (and across) each averaging volume .

Section II presents the analysis of the internal fluid
transport in the composite double-porosity medium. Sec-
tion IIT presents the macroscopic flow laws. Our conclu-
sions are summarized in the final section. A technical
appendix describes a specific model calculation used to
motivate some of the conclusions in Section III.

II. INTERNAL FLUID TRANSFER

In what follows, the internal fluid transfer éint is shown
to obey a transport law of the form

G = / T T Bt — 1) Pt — )], (6)
0

as has already been anticipated from the statement of the
energy-dissipation rate given in Eq. (42) of Part I. The
relaxation function I'(t) can be expressed as

M0 =5 [ don)e ™, (7)

so that in the frequency domain this transport law takes
the form [Eq. (71) of Part I

—iwGing(w) = Y(W)[Pf1 (W) = Pr2(@)], (8)

i.e., such internal transport occurs to the extent that the
average fluid pressures in each phase are different.

We determine the transport coefficient v (w) by treat-
ing the particular situation in which a sealed sample of
the composite is immersed in a reservoir whose pressure
may be controlled. Such an isolated sealed sample will
have no net macroscopic fluid flux across either phase
(q; = 0), which is equivalent to the desired macroscopic
conditions of Vp,, = 0. The approach taken to determine
~v(w) is essentially that of Johnson et al. [6]. The idea is
to determine the nature of éim in the limit of both low and
high frequencies and then to connect the frequency de-
pendence in these two limits by a simple postulated func-
tion of frequency satisfying causality constraints. John-
son [7] has also recently applied very similar ideas to the
problem of patchy saturation in porous media.

Assuming that a sealed sample € of the double-
porosity composite is immersed in a fluid reservoir whose
pressure varies in time as APe !, the local fluid pres-
sures py; in each phase ¢ = 1,2 are determined from the
following diffusion problem [obtained from Eqgs. (1)—(4)
of Part I with definitions of the various local fields as

given there]
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subject to the sealed-sample boundary condition
n-Vps =0 on 0%, (10)
and to the continuity conditions
[pr;] =0 and [kin-Vpg] =0 on 0. (11)

The square brackets in the continuity conditions mean
to evaluate the jump in the stated quantity across the
interface. As in Part I, the sample volume is being par-
titioned into phase 1 and phase 2 portions Q = Q1 + Q5
as is the external surface of the sample 002 = 9Q; + 09,.
The internal surface separating the two phases are again
denoted 0€2.

In general, when the two phases have arbitrary geom-
etry and elastic properties, the local confining pressure
changes p.; acting as the source term in Eq. (9) need
not be uniform throughout their respective regions. To
determine the p.;, the following equations are therefore
required

V- TiD = vpcz'a (12)
2
pei = —K;V-u; + QiPfiy (14)

subject to the boundary conditions

n- (‘rz-D —pc,-I) = —nAP on 99, (15)
[w;]=0 and [n-(r2 —puD)] =0 on 8Qy,. (16)

This set of differential equations [Egs. (9)—(16)] is what
controls the local internal fluid transfer.

A. Low-frequency limit

In the limit as w — 0, the above fields may be devel-
oped as perturbation expansions in —iw

pri = P —iwply +0w?), (17)
pei = P —iwpy) + O(w?), (18)

and equivalently for u; and 7,”. Note, however, that
the total confining pressure p, = V1P, + V2Dey = AP is
independent of frequency.

The zero-order fluid pressure response is governed by

v = o, (19)
n-Vpl) =0 on 89, (20)

7

[k,-n-Vpsg)] =0 and [ps] =0 on 9. (21)



This boundary-value problem has the unique solution
pgtol) = pgcoz) = B,AP (a uniform constant).

To determine B, (the zero-frequency or “single poros-
ity” Skempton’s coefficient [8] of the composite), the 2nd
and 3rd lines of Eq. (3) are added under sealed conditions

(V -q; =0) to obtain
0 = (a12 +a13)P. + (a22 + a23)Py + (a23 +ass3)Psa, (22)

where the a;; are given by Eqs. (64)—(69) of Part I. If
the perturbation expansions for the fluid pressures are
introduced and if terms are grouped by common factors
of —iw, one obtains

=(0)

Dy; a12 + a13
=B, = - J2Tas 23
AP ’ az2 + 2a23 + ass (23)
=(1)
p
= (29
Pyi ass + as3

However, Eq. (24) will not be needed in what follows.
The leading-order correction to uniform fluid pressure
is thus governed by the Poisson problem

ki 2 (1) [67] (0) Bo
2 )= |p.) — AP 25
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subject to the previously stated no-flow condition on 0€;
and continuity conditions on 9€15. The zero-order con-
fining pressure that acts as the source term is given by

P9 = —K:V-u” + a;B,AP. (26)

The displacement fields uz(.o) are now scaled as

1-— Oz,'Bo

0 () = ——5

APs;(r), (27)

where the s; are applied-pressure-independent displace-
ment fields satisfying the well-posed problem

1iV%s; + (1+ %) VV.s;=0in Q;,  (28)

subject to the boundary conditions on 0f;
r 2
win- { Vs; + Vs — gv-sl
+(1—-a;B,)V-sin=(1—-«;B,)n, (29)

and to the two continuity conditions across 02
i L2
win-{ Vs; +Vs; — EV-SI

+ (1—a;B,)V - -sin+ aiBon]= 0, (30)

(1 — ;B
=0

A dimensionless shear modulus y; = (1 — a;B,)G;/K;
has been introduced. Such scaling of the displacements
results in |V -s;| & O(1), as is seen in Egs. (28) and (29).
Having established these results, we can now address
the low-frequency behaviour of in¢. As w — 0, the def-
inition of (int [Eq. (27) of Part I] along with the fact
that Vpgg.) = 0, so that to leading order in —iw we have
n-qpe = iwkn - Vpscll) /n = iwkon - Vp%)/n on 98,,
defines the integral
jw k

_iwCint = E !

(1) 2
— n- Vp;/ dS + O(w?). 32
Vo ) meRas £ o). (32

This integral is obtained by integrating Eq. (25) over all
of Q; and applying the divergence theorem

ki1
nVv 8012

n-vp{) ds = = (ﬁg)

B,
Kl V1 - EAP) . (33)

If Eq. (55) of Part I is used for T)SP along with the facts
that p, = AP and 1_7;01) = ﬁ%) = B,AP, the exact low-
frequency limit is obtained as

—iwlint = —iw [a12 + Bo(asz + a3)] AP 4+ O(w?). (34)

It has been verified algebraically that this result is un-
changed if throughout Eq. (33), the index 1 is replaced
by 2 and n is replaced by —n.

The next step needed in order to define the transport
coefficient v(w) requires us to replace —iwAP by by —
Pya- An average of Eq. (17) gives

By =B = —ieo (B = Bj3 ) + Ow?).  (35)
Because Egs. (25)—(31) governing the response pgclz.) are
linear in AP, we can define a AP independent material
property T as
(1)
Pﬁq) - P&z)

T =
AP

(36)
Thus, in the transport law —iw(ny = '70[1_7f1 — I_sz] +
O(w?), we can identify the low-frequency transport coef-
ficient v, = lim,, ¢ y(w) as

Yo = [a12 + By(as2 + a23)]/ Y. (37)

However, for the theory to be useful, the material prop-
erty dependencies of Y need to be specified. To do so
analytically requires approximations to be invoked.

In practice, phase 2 is envisioned to be either small
pockets embedded within a larger body of phase 1 mate-
rial or to be in the form of thin through-going joints. In
the idealization that either the pockets can be modeled
as ellipsoids or that the joints are planar (and have inter-
section volumes that can be considered negligible), Egs.
(28)—(31) are solved exactly by the deformation tensor



Vs; = I/3, with V - s; = 1, which corresponds to uni-
form confining pressure throughout both phases. Using
this approximation, the equations governing pgcli) can be
written

k1 o (1) B,\ a1 .
= =(1-=2)=LAP in Q
7 Vopyq 1 I in Q, (38)

1

kice 1) _ k1 B, \ a; .
nV Pry = T 1 B, K2AP in Q2, (39)

with the boundary conditions

n-Vpgcli) =0 on 09, (40)
k

n-vply = k—;n-VpScll) on 0012, (41)

Pgell) = nglz) on 02, (42)

where the right-hand sides of Egs. (38) and (39) are now
spatially-uniform constants.

To simplify further, we now use the fact that the per-
meability ratio k; / k2 can be considered a small number in
almost any application where a dual-permeability model
is likely to be necessary. In the k;/ks — 0 limit, the
phase 2 response p%)(r) = 1_);12) becomes a spatial con-
stant. The phase 1 response can then be written

) _ 1 Bo\ «a
o =)~ (1= 5) Rarme, @)

where the potential ®;(r) has units of length squared and
satisfies the purely geometric problem

V2%, =—1 in Qq, (44)
n-V& =0 on 9094, (45)
(1)1 =0 on 6912. (46)

In analogy to Johnson’s treatment [7] of patchy satura-
tion, since ®; has units of length squared, a length L; is
introduced by defining

Vo, Ve dV.  (47)
Q1 Vi Q1

Multiplying both sides of Eq. (44) with ®; and then inte-
grating easily demonstrates the equality of the integrals
in Eq. (47). The length L; defines the average distance
over which the fluid-pressure gradient still exists in phase
1 in the final stages of equilibration. With these results,
T can be written

n B,\ a1 .
r=_T(1-2e)Yy 4
(1-32) gt (48)

to leading order in k; /ks.

The same geometric approximation V -s; = 1 that
yielded Eq. (48) for Y, also requires the composite’s
drained bulk modulus to be the harmonic mean 1/K =
v1/K1 + va /K> in which case Q1 = Q2 = 1. Because

of this, the numerator in v, = [ai;2 + By(ass + as3)]/T
can be further reduced allowing 7, to be expressed in the
final form

viky

70 = T}L2 . (49)
1

The dependence on the mesoscopic geometry of the two
phases enters through L;.

In the special case in which phase 2 is a small sphere of
radius r = a surrounded by a spherical shell of phase 1,
so that the composite sphere has a total radius of r = R
(i.e., phase 1 lies within a < 7 < R), we can determine
®; by integrating the Laplace equation Green function
over phase 1. The Green function ¢ satisfying V¢ =
—d0(r —r,) and the boundary conditions of d¢/dr = 0 on
r =R and ¢ = 0 on r = a can be built up exactly from
the infinite-space Green function ¥, = (47|t — r,|) 71
using a standard cascade of images of the source point r,.
Upon further averaging of the resulting ®; throughout
phase 1, we obtain to leading order in a/R (only the first
two images of the infinite sequence are retained to this
order)

9 7a
12— Rrl1_te 3/p%)| .
2 143[ ) (50)
This estimate of L; will be used in the numerical results
of the final section. Note that all reference to R may be

eliminated using the phase 2 volume fraction v2 = (a/R)3

or R= av;1/3. In this case,
9 , _
L= 1—4(121)2 2/3 [1 - gv;/B +0 (vg)] i (51)

B. High-frequency limit

If the applied confining pressure is changing at suffi-
ciently high frequencies, the fluid pressure from the con-
stituent with the higher average fluid pressure has time
to invade only a small distance into the lower-pressure
phase. In the limit w — oo, the fluid-pressure penetra-
tion can always be modeled as a locally one-dimensional
process in the vicinity of 0€12.

To study this limit, we employ a set of curvilinear co-
ordinates (z,y, #) having metrical coefficients hg, hy, h,
in which the surface z = 0 defines the interface 9215 and
where £ > 0 corresponds locally to phase 1. We assume
that as |z| — 0 from either side, the metrical coefficients
become independent of z; i.e., sufficiently close to z = 0,
the curvilinear coordinates become a set of “normal co-
ordinates” in which z/h, is a simple coordinate of linear
distance even though y and z remain curvilinear. As
w — 00, the solution of Eq. (9) takes the form (c.f., Ref.

[7)

pri(e,y,2) = pji'(2,y, 2) + Ci(y, 2)e’V i/ Pre/he - (52)
Py2 (z,y,2)= p(}gt (z,y,2)+ Ca(y, z)e_i iw/Dgw/hm, (53)



where the diffusivities D; are defined

. B. K
D; = &#, for

1=1,2, 54
n oo (54)

and where the outer fluid-pressure fields that hold ev-
erywhere except in a vanishingly small neighborhood
v/ D;/w of the interface 0y, are defined as the undrained
response p3it = B;p°Ft. The constants Cy and Cs will be
determme({ presently from the continuity conditions on
z=0.

Upon introducing p}j* = B;p%"* and the scaled dis-
placements u$°(r) = (1 — o;B;)APs{°(r)/K; into Eq.
(14), the outer confining pressures may be written

pi" = APV -sf7, (55)
p$i* = BiAPV -s}°. (56)

The applied-force-independent displacements s$° satisfy

PPV + (1 + %) VV-s®=0 (57

subject to the boundary condition on 0f);
2
*n- (Vs;’" + Vsl — gv - s8¢ I) +V-s°n =n, (58)
and to the continuity conditions on 9212

[ugon-(vsr+v5;?°T - gv -8 1)+v- sgon] =0,(59)

[’go s;?°] =0.(60)

The parameter p° = (1 — o;B;)G;/K; is the dimension-
less shear coefficient appropriate at high frequencies. As
at low-frequencies, even though each porous constituent
is uniform throughout the averaging volume, the local
frame dilatations V -s$° need not be uniform in general.

To determine the coefficients C(y, z) and Cs(y, z), we
employ the fluid-flow continuity conditions of Eq. (21) on
0o

owE |

) /2 . —

kihg i \/_ \/E C; 0, (61)
[P} +Ci] = 0. (62)

In the limit w — oo, the terms proportional to Op$}*/0z
are negligible so that

ko / \/_ [ out out]

C, = "% /vDs + ka/vDa Pr1 — P2 (63)
_ kl/\/_ out out
O = BB+ s P P08

where the outer pressure fields are being evaluated along
z = 0. Using the definition of (iny [Eq. (27) of Part I]

then gives that as w — oo

i3/2\/w (k1/v/D1) (k2 /v D)
77 k1/VDi + k2 /v/Da

[(P"“t) — (p2")s] (65)

_iwCint ~

where ( ), denotes an average over the interface region
012, and where S is the total area of 0212 contained
within the averaging region of volume V.

There is no reason, in general, why the surface average
(p$;*)s must be equal to the volume average p};* for small
volumes (but for large volumes it is expected that the two
values will converge). Thus, we use p°“t B;APV -s®
to define the dimensionless material property

g = B

66
ﬁ‘,’cﬁt o (©0)
_ 5 a1V s - BV sl

-1 1 .
Vi fQIBlv -s7°dV-V, fQ2B2V -sdV
With this definition, we again obtain the transport law
—iwGnt = Y(w)[Ps1 — Pyo) of interest but now with an
asymptotic frequency dependence given by

i3/2/Jw (ky//D1) (ks //Ds) §9 (68)

N ki//Di+ke//D2 V

as w — oo. Thus, the fluid volume (iny exchanged be-
tween the two phases tends to zero as 1/y/w in the limit
as w — 00.

For those special cases considered earlier in which the
strains V-s$° are uniform throughout the composite (e.g.,
when G; = G5 or for certain conformally-layered com-
posites including rectangular networks of thin joints) we
find that 8 = 1, and that 8 also approaches unity in gen-
eral when the volume becomes very large.

Y(w) ~

C. Full model for v(w)

To connect the low- and high-frequency behavior of
~(w), we use the simple function

1-iY, (69)

We

Y(W) =7
where the relaxation frequency w, is defined

o= o (V24 22) )

2
nB1K1 (V7 [ k1 By Ky

= 1 — | . (7

k1a1 (S 0) ( + kQBlKlaz (7 )

Equations (69) and (71), along with Eq. (49) for ~,, are

the results of interest here. As required for a causal
response, any zeros or singularities of either y(w) or

(70)




1/74(w) must lie in the lower half of the complex-w plane
when there is an assumed e~ ™! time dependence; i.e.,
both y(w) and 1/v(w) must be analytic everywhere in
the upper-half w plane including the entire real w axis.
The above model for v(w) satisfies these important con-
straints since the only singularity is a branch point at w =
—iw.. Finally, since the inverse transform of v(w) must
be the real function I'(t), we must have y(w)* = y(—w?*),
which is also seen to be satisfied by formula (69).

In practice, the square-root term in Eq. (71) can be ne-
glected relative to unity in any situation where a double-
porosity theory is likely to be necessary (both k; /k; and
K>/K,; are small). We will normally assume that § ~ 1
as well, with v, given by (49).

III. MACROSCOPIC FLOW LAWS

A. Problem statement

We imagine an averaging volume in the form of a cir-
cular disk with sealed boundary conditions on the outer
circumferential face and fluid-pressure boundary condi-
tions applied to the two flat faces. The axis of this disk
is defined as the z direction so that the two flat faces
reside at z = —H and z = H.

We consider two applied forcing states, the sum of
which gives the total flux. In the first state, denoted with
a superscript a, a pressure drop is applied across phase
1, while maintaining no pressure drop across phase 2:

o AP, =z=H @ 0, 2z=H
Pfl(r): —AP,, z2=-H ; pfz(r): 0, 2=—H.
(72)

In the second state, denoted with a superscript b, the
pressure drop is applied to phase 2:

b _ 0, z=H . b _ APQ, z2=H
pfl(r)— 0, 2=—H° pf2(r)— —AP,, z=-H.
(73)

In writing these conditions, we have taken p}‘l’l”z =0. As
is fairly straightforward to demonstrate (e.g., Ref. [9]),
the boundary conditions of Egs. (72) and (73) are equiv-
alent to the presence of uniform force densities in each
phase of the form (AP, 5/H)z. The frame of reference
for the relative flow is the framework of grains that, in
the presence of waves, is accelerating as v. Thus, in iden-
tifying the pressure drops A P;, the uniform inertial force
ps(v — g) must be included to give

Y U PR

As per the treatment of Pride and Flekkoy [9], the iden-
tification in Eq. (74) is independent of both the aver-
age fluid pressure in each phase py; and the presence of
volume-fraction gradients Vv;. The only requirement is

that the volume fractions v; be well approximated by the
area fractions determined on the two flat faces
Ai(z=+H)+ Ai(=—-H)

V; = 94 ) (75)

where A is the area of one of the two flat faces and where
A;(z = £H) is the area of each flat face that is occupied
by phase i. See Pride and Flekkoy [9] for a discussion of
the conditions required for Eq. (75) to be a good approx-
imation.

Further comment is in order when the applied pres-
sure drops are changing in time as e~*?!. For the prob-
lem of linear wave propagation through the composite,
the fluid pressure gradients are created by compression
of the framework of grains on time scales dictated by the
compressional-wave speed. So long as the wavelengths of
the compressional wave remain large relative to H, the
identification of Eq. (74) remains valid (i.e., the macro-
scopic fluid pressure gradients are created essentially in-
stantaneously relative to the time 1/w). Other than for
the overall pressure drop AP; across each phase asso-
ciated with the wavelength-scale variations of the fluid
pressure, our modeling of (¢ has already accounted for
all aspects of the heterogeneous fluid pressure response in
the composite. Thus, the local Darcy flow induced by the
wave may properly be taken to be solenoidal (V-Q; = 0)
in the present section.

However, if laboratory measurements are performed by
applying time harmonic pressures to fluid reservoirs that
connect to the faces z = £H, then to use the present
description for interpreting the measurements, the time
(2H)?/ D; required to establish the macroscopic pressure
gradient [where D; is the fluid-pressure diffusivity defined
in Eq. (54)] must be much smaller than 27 /w. If 2H
is taken to be the smallest length that contains within
it the pertinent mesoscopic variation of the two con-
stituents, then the maximum applied frequency f that
can be treated is fmax = Di/(87H?).

The governing equations that complement the above
boundary conditions on the external surface are thus

V2p} =0in Q;, (76)
p;’lb = p‘}’; on 084, (77)
n - Vpjy = en- Vp} on 0, (78)

where e(w) = ki (w)/ka(w) is the ratio of the intrinsic
permeabilities. The frequency dependence in the intrinsic
permeabilities is again that due to the development of
viscous boundary layers in the pores (a proper model
having been given previously by Johnson et al. [6]). The
elliptic problem presented by Egs. (76)—(78) exhibits no
frequency relaxation other than whatever is contained
within e(w).

Our averaging disk has a total volume of V' = 2AH.
The definition of the macroscopic flux q?’b [Eq. (22) of



Part I] that corresponds to the above problem is then

a,b__ k2 Z

2 A i a,b a,b
e 4 [t o g o
ab__ k2€ Z

Z a,b
a0’ =— 772A[ Vp dS+/z Vo dS] (80)

From the linearity of the physics as well as the assumed
isotropy of the double-porosity composite, we can imme-
diately write the macroscopic Darcy law as

aQ qf +qf

— 81

[Q2 ] [q‘é + q%] (81)
-1 [511 512] [Vpﬂ +ps(v—8) (82)
n | k21 ko2 || VPpa +pr(V—8) "

In terms of our above statement of the boundary-value
problem, the four permeability coefficients are defined by

fu _ |2-af] ki _ |24
n APl/H’ n APQ/H’

B. Reciprocity

Using all of these results, the reciprocity condition
K12 = K91 will now be proven. We first form the products

pqu [V2p?1] and p% [Vngq] ) (84)

both of which vanish from Eq. (76). Equivalent expres-
sions (replace 1 with 2) hold for phase 2. Taking the
difference of these expressions gives

V- [p?qVP% _P%Vpl}l] =0, (85)

which upon integrating over €, dividing by V = 24AH,
and appealing to the divergence theorem and the bound-
ary conditions of Eqgs. (72) and (73) yields

AP 1 . b . b
'l ﬂ[/z:f—vafl ds +/ZZEHfo1 dS]
1
=7y [pf1fo1 p?1VPI}1] dS. (86)

Using Eq. (80) for the definition of the macroscopic flux
along with the above definition of k12, allows us to write

APlAPQ n € b a a b
TH BTV o [P VPh = 951 VP] dS.
(87)

Identical manipulations for phase 2 gives

AP AP.
%k% 21 = V/ Pl}zvlﬁz] ds.
(88)

If these two equations are subtracted and the continuity
conditions of Egs. (77) and (78) employed, one indeed
finds that k12 = k21. Such a simple proof of the reci-
procity is not forthcoming if the volume-averaged flow
fields v;Q; are used in place of the mean fluxes q;.

pf2va2

C. Permeability matrix

In order to obtain a model for the ;; that has sepa-
rable contributions from the mesoscopic geometry of the
constituents and from the underlying material properties
[which are here entirely contained in e(w), as defined af-
ter Eq. (78)], it is assumed that in practice, € is a small
number. The need to use a double-porosity theory is
apparent precisely when € is a small number.

We are now able to develop the fluid pressures as

P4 = [pf +en? +0(€)] AP /H, (89)
Pl = [pl +enl + O(*)] APy /H, (90)

where the applied-force-independent potentials cp;”b and

wf’b have units of length, and are dependent only on
the mesoscopic geometry of the two porous constituents.
Because the local Darcy flow in phase 1 goes as Q1 =
—ekaVpy1 /1, the leading-order flow in € is independent
of the potentials 7} * The leading-order potentials are all
solutions of Laplace’s equation in their respective phases
and from Egs. (76)—(78) satisfy the boundary conditions:

0, 2=H
n-Ves =0 on 0Q2; <p[2‘={0 i:-]ﬁ

¢t = 0 on 9hy; w‘f={_H’

H
n - V) =0 on 901»; 9032{_[;- j:—H;
a,b_{O, z2=H
@b —

0, z=H
@b = @b on ONya; 9011):{0, » = —H.

n-Va2? =n- Ve on 80y;

Since ¢ satisfies homogeneous boundary conditions, it
has the unique solution that ¢§ = 0 everywhere, and this
is why ¢f = ¢§ = 0 on 0.

Thus, using these potentials in the definitions of Eqs.
(79), (80), and (83), it is a straightforward excercise (in-
tegrate, use the divergence theorem, appeal to the bound-
ary conditions) to write the «;; in the following forms to
leading order

k11/ka = e (Vo1 - Vi), (92)
k12/ka = €(Voi - Vi), (93)
Koo fksy = (V- Voh) + (VB - Vrl),  (94)

where the brackets indicate a volume average over the en-
tire averaging volume. These averages are dimensionless
order-unity functions of the mesoscopic geometry of the
constituents. In the second term of k22, the potential <I>g
is a solution to Laplace’s equation in phase 2 satisfying
®5 =0on 02 and ®5 = +H on z = +H.

Even for the simple “plane-parallel-joint” geometry de-
picted in Fig. 1 for the case of forcing-state a, the dimen-
sionless field V¢ is not just the unit vector z. Indeed,
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FIG. 1: An idealized unsealed double-porosity sample has
the same average fluid pressure in both phases, but there is
a macroscopic pressure gradient in the vertical direction Z
across phase 1 driving a flow in phase 1 (the large arrows)
while we impose the boundary condition that no pressure
gradient can develop across phase 2. Nonetheless, there is in-
duced in phase 2 secondary local flow including flow across the
internal surface 012 as indicated by the small arrows. The
analytically determined fluid pressure distribution for this sit-
uation is shown in Fig. 2.

rather non-trivial flow develops as indicated qualitatively
by the arrows. Because there is a macroscopic pressure
gradient across phase 1 and none across phase 2, there
are fluid-pressure variations in the z direction that drive
flow laterally either into or out of phase 2 as shown. The
only trivial potential in this geometry is 5, which does
correspond to Vb = 2.

To understand this flow better, we solve in the Ap-
pendix the asymptotic (leading order in €) flow problem
corresponding to forcing state a, i.e., we determine the
pressure fields P = ¥ and D}y = €Ty that contribute
to the leading-order Darcy flow. The results are plotted
in Fig. 2. We see indeed that there is considerable cross
flow between the phases (which averages to zero through-
out the entire sample so that éint = 0 always). At the
entrance of the sample (taken as z = 4 in the figure), we
see that fluid is flowing out of phase 2 while at the exit
(z = 0), fluid is flowing into phase 2; i.e., such flow is in
the opposite direction to the average phase 1 flow.

The permeability matrix is finally written in a slightly
different form. The phase-1 potential ¢, that satisfies
Dirichlet conditions on 934, is rewritten as ¢§ = 9§ +
0p§, where ¢f satisfies the Neumann condition n-V§ =
0 on 02 and ¢ = £H on z = +£H and where the
difference potential d¢§ therefore satisfies dp§ = —f on
02 and dpf = 0 on z = £H. Similarly, the phase-
2 potential ®} satisfying Dirichlet conditions on 95 is
rewritten ®5 = o} + d¢b so that the difference potential
satisfies 6% = —p5 on 902 and 6 = 0 on 2z = +H.
Using these potentials in Egs. (92)—(94), the permeability
matrix takes the form

€(1/Fi + x11) —exaz (95)
—€X12 ’

Kij = k2 ]./F2 + €X22

FIG. 2: A plot of the normalized fluid pressure p for the
geometry depicted in Fig. 1 in whichd =1,a =4, and H = 2.
The interface 912 between the two phases is located at z = 0
(and at = 4), while the plane x = —1 is at the mid-point of
the joint phase and the plane = = 2 is at the mid-point of the
matrix phase. The permeability ratio € has been taken to be
0.1. The pressure gradient has a singularity in the x direction
at the points (z =0,z =0) and (z =0,z = 2H =4).

where the F; are the formation factors of each phase de-
fined using the Neumann potentials as

1/F1 = (Vi - Vof) and 1/Fp = (Ve - Vi) (96)

and where the parameters x;; are defined

x11 = (Vi - Vopt), (97)
—x12 = (Vég§ - Vb)), (98)
X22 = (Vb - Vab). (99)

One of the principal reasons for writing the permeability
matrix in this form is that in any plane-parallel joint
model, the two Neumann potentials are equal along the
internal interface, i.e., ¢ = ¢} on 9Q;5. Using this
fact, it is straightforward to use the boundary conditions
on 00, along with Egs. (97)— (99) to show that x11 =
X12 = X22 = X for such models.

Flow in plane-parallel joint models thus has the inter-
esting property that the total flow q; + q- is unaffected
by the cross-coupling coefficient x. However, the energy-
dissipation rate o due to the Darcy flow

e(1/FL +x)—_ _ 2ex _
o= 7( [F )fol -Vpp — TVPﬁ'foz

L(/F+ex)
n

VD2 - VDys (100)

is seen to be affected by x when Vp;; # Vp;,. In oth-
erwords, the extra influx and outflux of fluid as seen in



Figs. 1 and 2 at the entrance and exit faces is dissipating
energy even if it is not contributing to the total flow.

Using the results from the Appendix for flow in the 2D
geometry of Fig. 1, and taking a square of material in
which 2H = a + 2d, we find Eq. (95) with 1/F; = v; and
with x11 = x12 = X22 = (2/7) Yoo, tanh(nzv;)/n. Un-
fortunately, this series is logarlthmlcally divergent which
can be seen in the limit n — oo, where it becomes the
harmonic series ), 1/n which is well-known to diverge.
This divergence is entirely due to those points where the
internal surface 915 and the two flat faces » = +H
meet (e.g., the points z =0, z=0and z =0, z = 4
in Fig. 2). At such points, there is a discontinuous jump
in the fluid-pressure boundary conditions resulting in lo-
cally divergent flow. This non-physical artifact can be
removed by requiring the potentials on the boundaries
to vary smoothly at those points where the internal sur-
face intersects the flat faces. The smoothing distance can
be made arbitarily small relative to the joint thickness d
but, so long as it remains finite, the permeability matrix
retains the form of Eq. (95) and has a finite x. Elabora-
tion of this rather involved demonstration is left to the
interested reader.

IV. CONCLUSIONS

The main result of the present paper is the frequency
and material-property dependencies of the internal trans-
port coefficient v(w), as expressed in (69)-(71). The co-
efficient y(w) controls the mesoscopic fluid-pressure equi-
libration between the two porous constituent phases. We
have also established that the dual-permeability Darcy
law is symmetric. The cross coupling in the Darcy law
was shown to be due to the existence of local fluid-
pressure gradients that drive flow from one porous phase
to the other.
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APPENDIX: 2D FLOW THROUGH A PLANAR
SLAB GEOMETRY

We now obtain the fluid pressure distribution for the
simple 2D flow geometry presented in Fig. 1. The pres-

sures are obtained to leading order in € = ky /ky as

Ph = (¢f +enf)AP/H,
Py = emy AP /H,

pl;q = (¢} +em})APy/H,
pl}z = (z + end)AP,/H.

Since the pressure gradient in phase 1 gets multiplied by
another factor of € when determining the flow, we need
only determine the four potentials ¢¢, 7$, %, and 75
if our interest is to understand the pressure field giving
rise to the leading-order flow. These potentials are all
solutions of Laplace’s equation and satisfy the bound-
ary conditions given in Eq. (91). Phase 1 is taken to lie
between 0 < z < a and phase 2 between —2d < z < 0.

The solution of the Laplace equation in 2D is the sum
of products of the form [sin az, cos bz] x [sinh ¢z, cosh dz].
For example, ¢{ has a solution of the form

Z A, sin (an)

y {smh[

ot (z, 2)

n(z + H)/a] + sinh[rn(z — H)/a]}
sinh[rn2H/a] ’

satisfying the required Dirichlet conditions at z = 0 and
z = a. The constants A,, are selected so that the non-
homogeneous conditions at z = +H are satisfied and this
is done in the usual manner by exploiting the complete-
ness relation for the sine basis functions. We find (c.f.,
Morse and Feshbach [10], p. 708).

Y= — — sin
g nodd n
9 {sinh [rn(z + H)/a] + sinh [rn(z

sinh[7n2H /a]

4H 1,
@ 1 (m;x)

B} 4,
The other potentials are similarly found to be

o —2H = (-1)™ . rmnz ™ma
m= X e () e ()
{cosh [mn(x + 2d)/H] + cosh [rnx/H]}
sinh[7n2d/H]

I IWES
9 {smh [7m(a - m)/H] + sinh [rnz/H]}
sinh[rna/H)|

, (A2)

,» (A3)

and

—2H & (-1)” ™mz
me X ()
(1 — cosh[rna/H])
sinh[rna/H]
{cosh [mn(z + 2d)/H] + cosh [rnz/H]}
sinh[rn2d/ H] '

(A4)



These potentials are the ones contributing to the pressure
distribution in Fig. 2.

The quantities needed for estimating the permeabilities
are the integrals of the z derivatives of these potentials
on the external surface. One finds that

¢ Ot
= A
/0 dx 5 ~ ¢ +x (A 5)
0 a 0 b a b
om om Op
dr =2 = — dr —2 = / de 2+ = —
9 0z * 0z o e X
(A 6)
where the parameter x is defined as
4H X1 ™ma
x=m ek (). @A)

This series is logarithmically divergent for reasons dis-
cussed in the text, but finite results are obtained by in-
troducing a physically motivated smoothing distance.
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