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The equations governing the linear acoustics of composites with two isotropic porous con-
stituents are derived from first principles using volume-averaging arguments. The theory is
designed for modeling acoustic propagation through heterogeneous porous structures. The only
restriction placed on the geometry of the two porous phases is that the overall composite re-
mains isotropic. The theory determines the macroscopic fluid response in each porous phase in
addition to the combined bulk response of the grains and fluid in the composite. The complex
frequency-dependent macroscopic compressibility laws that are obtained allow for fluid transfer
between the porous constituents. Such mesoscopic fluid transport between constituents within
each averaging volume provides a distinct attenuation mechanism from the losses associated
with the net Darcy flux within individual constituents as is quantified in the examples.
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I. INTRODUCTION

Most natural porous materials such as rocks and sed-
iments in the earth have heterogeneity in the porous-
continuum properties at nearly all scales greater than
grain scales (i.e., scales > 1 mm). Seismic wavelengths
used for oil and gas exploration purposes are typically in
the range from 1 to 100 m. Seismic forward modeling
is therefore performed by discretizing the earth into ele-
ments that have linear dimensions ranging from tens of
centimeters to tens of meters and typically only the aver-
age response in such elements is measured and modeled.
When seismic waves stress an averaging element con-
taining mesoscopic heterogeneity (heterogeneity at scales
greater than grain sizes but less than wavelengths), pore
fluids in different porosity types respond with different
changes in their fluid pressures. An internal equilibra-
tion then takes place with fluid flowing from the more
compliant high-pressure regions to the relatively stiff low-
pressure regions. Such mesoscopic flow attenuates signif-
icant amounts of wave energy. For purposes of atten-
uating unwanted noise, one could, for example, design
sound-absorbing materials containing mesoscopic hetero-
geneity capable of reducing vibrations within a given fre-
quency band.

However, no general theory has yet been developed
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for wave propagation through materials containing meso-
scopic heterogeneity. Our approach here is to make the
idealization that the mesoscopic structure can be mean-
ingfully reduced to a mixture of just two porous con-
tinua. We make such a “double-porosity” idealization so
that analytical results may be obtained for the nature
of the differential equations and coefficients controlling
the macroscopic response. No restrictions are placed on
the mesoscopic geometry of the two porosity constituents
other than the composite as a whole is assumed to be
isotropic.

This is the first of two papers dedicated to obtain-
ing the macroscopic governing equations for such double-
porosity dual-permeability composite materials. In this
first paper (Part I), the governing equations are derived
and the sources of acoustic attenuation in such materials
is clarified. An essential part of the analysis is to model
properly the frequency dependence of the internal meso-
scopic flow between the two constituents. Thus, in the
second paper (Part IT), the fluid transport laws governing
the wave-induced fluid flow will be developed in greater
detail. The Biot theory of porous-media acoustics [1, 2]
ignores all wave-induced flow at mesoscopic scales. It is
well-known that Biot’s theory is not capable of simultane-
ously explaining both the velocity and attenuation data
measured on porous rocks [3]. The theory presented in
these two papers provides one method for doing so.

Double-porosity models were originally developed for
modeling the fluid flow during pumping of earth reser-
voirs. Early models of Barenblatt and Zheltov [4] and
Warren and Root [5] assumed the pumping did not af-



fect the state of the geological material; however, for the
continued pumping of interest to the oil and gas indus-
try, it is necessary to account for the pore-space reduc-
tion. Thus, more sophisticated models were developed
[6-28] allowing for the coupling between rock deforma-
tion and fluid flow. At very slow rates of applied-stress
variation, the fluid pressure has enough time to equili-
brate internally between the two porous phases and such
double-porosity models must then reduce to the usual
single-porosity mechanics established by Biot [1, 2].

In addition to such double-porosity modeling, there
has been considerable work focusing on flow between the
layers of a plane-stratified material due to compressional
waves propagating normal to the layering [29-32]. The
present study seeks to model the flow for arbitrary meso-
scopic geometry, albeit under the restriction to only two
porous phases mixed together in each averaging volume.

In Sec. II, the porous-continuum laws that control
the local response of each isotropic porous material are
stated. In Sec. III, the general form of the macroscopic
constitutive equations are obtained from the macroscopic
statement of the energy balance. The local laws are then
integrated over an averaging element of the composite
in the sections that follow. In Sec. IV, the macroscopic
statement of the conservation of linear momentum is ob-
tained while in Sec. V, the detailed nature of the co-
efficients in the macroscopic compressibility laws are ob-
tained and in Sec. VII, the macroscopic shear constitutive
law is discussed. In Sec. VIII, we summarize the entire
set of macroscopic laws, and in Sec. IX reduce the double-
porosity theory to an effective single-porosity Biot theory.
Finally, we give examples of the P-wave attenuation and
then summarize our conclusions. Part II [33] analyzes
the fluid transport laws governing the wave-induced fluid
flow.

II. GOVERNING EQUATIONS FOR THE
LOCAL RESPONSE

Within each macroscopic averaging volume €2, we as-
sume there is a welded composite (i.e., material points
initially in contact remain in contact) of two isotropic
porous materials. To produce useful results, such averag-
ing regions must have linear dimensions H smaller than
the wavelengths A of the applied stress field but larger
than a characteristic dimension a of the phases within
the composite. These length relations are schematically
depicted in Fig. 1. In the present study, a single fluid is
assumed to saturate both porous phases, but with minor
modifications the same formalism applies to partial and
patchy saturation as well. We now define the boundary-
value problem controlling such local response in ).

Using an index ¢ to denote the two phases (i = 1 or 2),
the differential equations controlling the local response
in each material are taken to be Biot’s equations [1, 2],
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FIG. 1: The length scale relations A > H > a where A is the
wavelength of the acoustic pulse, H is the linear dimension of
the averaging volume (2 being employed, and a is a character-
istic dimension of the mesoscopic-scale heterogeneity. Both
phases 1 and 2 are taken to be isotropic porous continua.

written in the form
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The response fields here are themselves volume averages
taken over a scale larger than the grain sizes but smaller
than the mesoscopic extent a of either phase. The re-
sponse fields are: wu;, the average displacement of the
framework of grains; Q;, the local Darcy filtration ve-
locity; pyi, the fluid pressure; p.;, the confining pressure
acting on the porous continuum (total average pressure);
and 7, the deviatoric (or shear) stress tensor acting on
the porous continuum. In the linear theory being devel-
oped here, the overdots on these fields denote a partial
time derivative. The acceleration g represents gravity
in the case of a consolidation problem; however, in the
present context of waves, it is taken as the proxy for a
concentrated seismic source. In the Darcy law [Eq. (2)],
7 is the fluid viscosity and the permeability k; is a linear
time-convolution operator defined so that a term such as
kiVpy; implies

1 o0 o0 . 7
kiVps = %/0 dt'/ dwe ™V k(W) Vpypi(r,t —t'),
(5)



where the complex “dynamic” permeability of each phase
ki(w) has been explicitly and properly modeled in Ref.
[34] to allow for the development of viscous boundary
layers in the pores of phase i. In the bulk-force balance
[Eq. (3)], p is the bulk density (volume average of solid
and fluid within ), while py is just the fluid density.

In Eq. (1), K; is the drained bulk modulus of phase 4,
B, is Skempton’s coeflicient [35] of phase ¢ (fluid pressure
change divided by confining pressure change for a sealed
sample), and «; is the Biot-Willis coefficient [36] of phase
i defined as

where K is Gassmann’s [37] undrained bulk modulus
(confining pressure change divided by sample dilatation
for a sealed sample). In the present work, no restrictions
to single-mineral isotropic grains will be made. Finally,
in the deviatoric constitutive law [Eq. (4)], G is the shear
modulus of the framework of grains. All of these mate-
rial properties are taken to be uniform throughout their
respective phases.

We finally state the boundary conditions to be speci-
fied on the surface 012 surrounding the averaging volume.
Either of n- 7 or 1, and either of py or n - Q must be
specified at each point of 90 if a unique local response
is to be obtained [38-40]. Here, n is the outward normal
to the averaging-volume external surface. The specific
values we adopt for these boundary fields is presented in
the following section.

Finally, the continuity conditions (at the welded con-
tacts) on the internal interface 02 separating the two
phases within each averaging volume are n- 1 = n- 7,
Pf1 = Py2, U1 = Uy, and n-q; = n-qz. Such continu-
ity conditions are what couple the averaged response in
phase 1 to the averaged response in phase 2.

III. MACROSCOPIC FORM OF THE
CONSTITUTIVE EQUATIONS

To determine the macroscopic form that the constitu-
tive equations must take, we focus here on the rate E
at which the energy in an averaging volume is changing
(as normalized by the volume V of the averaging region).
Such changes in the energy density are entirely due to
the rate at which a wave is doing work on an averaging
volume and are thus given by
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where the exterior surface of the averaging volume is
being partitioned into phase 1 and phase 2 portions as
0N = 00y + 905. In this section, we first express F in
terms of macroscopic field variables and then use the re-
sult to write down the form of the constitutive equations.

The boundary values on 92 are the source terms for
the local response within Q and are directly related to

the macroscopic forcing provided by a passing wave. The
local particle velocities 1; have boundary values that may
be written

w(x) =v+x-Vv+om(x) on 00, (8)

where x = r’' — r represents distance to 9 as measured
from the center point r of each averaging volume, and
where v is the average velocity of the solid phase through-
out the entire averaging volume
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and is thus a constant vector on 0. The gradient of the
average is given in this case by (c.f., Ref. [40])

Vv =— [/ ni; dS +/ nu, dS:| . (10)
Vv o021 0Qa

The first term of Eq. (8) represents a rigid-body trans-
lation induced by the wave, the second term represents
the smooth wave-induced deformation, while the third
term d1; represents any left over higher-order modes of
“bumpiness” that develop due to local heterogeneity. By
substituting the boundary values of Eq. (8) into Eq. (10),
it can be verified that the perturbations éu; due to het-
erogeneity do not contribute to the macroscopic defor-
mation rate Vv (i.e., fBQi ndu; dS =0).

Formally, one can express the left-over Ju; using
higher-order modes (tensorial orders) of the macroscopic
response; e.g., the next boundary term is §u;(x) = xx :
VVv/2 on 0%;, while additional terms would involve
still higher-order gradients of the macroscopic response.
Such terms are important only if there is simultaneously
present an equivalent spatial distribution in stress so that
non-negligible contributions to Eq. (7) are made. For
example, in a laboratory experiment, where a uniform
stress tensor is applied to the surface of a heterogeneous
sample, the heterogeneity will necessarily produce the
higher-order terms d1;(x) in addition to the smooth re-
sponse x - Vv; however, there will be no net strain energy
stored in such higher-order deformation, as Eq. (7) makes
clear.

Obtaining precise conditions for the neglect of these
higher-order work terms is rather involved since they de-
pend on details of the long range correlation of the het-
erogeneity (over scales necessarily larger than the size H
of the averaging volume). Retaining such higher-order
terms causes gradients of strain (i.e., third and higher-
order tensors) to be explicitly present in the macroscopic
laws along with their associated stress-moment tensors
(also third and higher-order tensors). However, if analy-
sis is limited to macroscopically isotropic double-porosity
composites, such higher-order response exactly decou-
ples from the smooth homogenized response of interest
because these responses are of different tensorial order
(a result known as “Pierre Curie’s principle” [41]). The
analysis of the present theory is thus restricted to such
macroscopically isotropic composites.



For the fluid boundary conditions, the dual-
permeability nature of the materials being studied re-
quires us to consider separately (and independently) the
average fluid response in both phases 1 and 2

B 1
Py = vi/g_pﬁ dv, (11)

where V; is the volume of phase ¢ in the averaging volume.
As a wave compresses each averaging volume, it changes
Py; in each phase while simultaneously producing wave-
length scale (macroscopic) gradients in the averaged fluid
pressure Vp;;. These gradients along with the apparent
macroscopic force terms ps(g—v) produce a Darcy flow in
each phase. Because such macroscopic forces themselves
vary over a wavelength, fluid accumulates (or depletes) in
each phase of each averaging volume. Allowing for these
fluid accumulations is a key part of the present analysis.
The boundary conditions for such flows are the fluid
pressure conditions
pri(x) =Dy +x- £ +dppi(x) on 0%, (12)
where the vector f; represents the macroscopic forces

driving relative fluid-solid flow in each phase and is given
by

fi = —Vp; +ps(g - V). (13)

The perturbations dpy;(x) are again due to the local het-
erogeneity and will again be neglected in Eq. (7) [i.e.,
contributions such as dpy;(x) = xx : Vf;, and so on, cor-
respond to higher-order tensorial orders of the response
that are decoupled from the smooth response being al-
lowed for when the composite is isotropic].

Thus, the closure conditions of our theory (i.e., those
conditions that permit a closed set of macroscopic equa-
tions to be obtained which are capable of uniquely deter-
mining a finite number of macroscopic response fields)
are the boundary conditions

du;(x) =0 and dpsi(x) =0 on 09Q;. (14)
Such perturbations from the smoothed response are only
taken to be zero on the boundary of each averaging vol-
ume. They are necessarily non-zero throughout the inte-
rior of 2 in order to satisfy the local Biot equations there.
As stated above, these closure conditions lead to the
proper governing equations for the smoothed response
whenever the material is macroscopically isotropic.

The boundary conditions of Egs. (8), (12) and (14)
are now inserted into the surface integrals of Eq. (7) to
obtain
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where & = [Vv+(Vv)T]/2 is the macroscopic strain-rate
tensor. The four integrals of the local fields here are now
identified as macroscopic field variables.

For an arbitrary local field 9; in phase 4, the definition
of the gradient of a volume-averaged field is (e.g., Ref.
[40])

V(Uz@i) l

= ; dS, 16

V Joo, ™ 1o
where v; = V;/V is the volume fraction of phase i present
in an averaging volume. Thus, we find immediately that

1
V- (viTi) = v ‘/39 n-T7; dS. (17)

The identity V- (1;x) = (V- 7;)x + 7 is now integrated
over (2; and the divergence theorem applied to obtain

2 2
1 1
— n-m;xdS =7+ —/V-Tide 18
2V LS TR
=T[1+O(H/N)]. (19)
Here, the volume average expression
T =viT1 + vaT2 (20)

represents the average total stess tensor in each averag-
ing volume, while H is a characteristic dimension of the
averaging volume, and A the macroscopic wavelength. A
fundamental condition for the averaging is that H/\ < 1.
That the volume integral in Eq. (18) is H/\ times smaller
than the average stress tensor (and, therefore, negligible)
follows because the only spatial variations of (V - 7;)x
that do not integrate to zero over the volume are the
wavelength-scale variations. The surface integrals over
the internal surface 0215 that arise when the divergence
theorem is applied have exactly vanished from Eq. (18)
due to stress continuity on 9215 once the sum over i is
performed [note that the total closed surface around each
phase is 9Q; + 0Q12].
Again from Eq. (16), we have

V(@) = &

= n-Q;ds, 21
V Joa (21)

while we introduce the definition of macroscopic fluid flux
q; through each phase as

1
Q= — n-Q;xdS. (22)
V' Jaa;
We now demonstrate that
lim V-q;=V-(©Q,). (23)

H/X—0

To do so, consider the definition of the directional deriva-
tive of q;

ds - Vq;(r) = q;(r + ds) — q;(r), (24)



valid as |ds| — 0. A normal projection of the integrand
of Eq. (22) from the surface 0Q;(r + ds) to the surface
00Q;(r) yields

1
ds-Vaq;(r) = -

=7 ds-n(nQ; - n—n-VQ;-nx)dS

Qi (r)

+0(|ds?). (25)
Because the second term of the integrand is again
O(H/\) relative to the first (and, therefore, negligible),
we find that since the direction of ds is arbitrary

nnQ; -ndS[1+ O (H/N).
8%

1
;= 2
Vq; = (26)

Taking the trace of this equation gives exactly Eq. (21),
thus proving that V- q; = V - (v;Q;) whenever H < .

Last, we define the rate C}nt at which fluid volume is
flowing from phase 1 into phase 2 (i.e., (¢ is the incre-
ment in fluid content for fluid in phase 2 due to internal
diffusion across 9912)

: 1
Cint = 17

n-Q;ds,
14 Q12 !

(27)

where the normal n is directed from phase 1 toward phase
2. Thus, V - qi + (ing is the total rate at which fluid is
being depleted from phase 1, while V-qa — (i is the rate
at which fluid is depleting from phase 2.

With all these definitions in hand, we finally can
rewrite Eq. (15) in the instructive form

B=v (V-7 + 5[V + (V)7

(Va1 + éint)ﬁfl - (Va2 — éint.)pf2

+Cint (I_7f1 _ﬁfz) +qi-fi +qz-f5. (28)

To exploit this result, the various contributions are
grouped and identified.

The first term v - (V - 7) is the rate at which kinetic
energy is changing, since the conservation of linear mo-
mentum requires V - T to be equal to the total inertial
acceleration (as demonstrated in the following section).

To consider the next terms, we first write T in terms
of isotropic and deviatoric contributions

7=-p.I1+77, (29)
where p, = —tr{T}/3 is the total confining pressure act-
ing on Q. We further separate the deviatoric stress into
elastic and viscous contributions

P =70 +7). (30)
As is discussed in Sec. VII, the sudden application of a
shear deformation can result in localized pressure gra-
dients within Q that then equilibrate. Such a transient
viscoelastic effect is represented by 7. The strain-rate

tensor is also written in terms of isotropic and deviatoric
contributions as

1
é= gv-vI+éD, (31)

el = % VV+(Vv)T—§V-vI ) (32)

With these identifications, the rate R at which energy is
being reversibly stored as strain energy may be written

R=7P:eP —p.V-v
=P (Va1 + Gint) =PV a2 - Gine)- (33)

This statement allows us to deduce that R has the func-
tional dependence

R=R(e”, V-0,V Wi+ (nt, V- W2 — (int),  (34)
where the displacements u and w; are defined from v = u
and q; = w;. Upon taking the total derivative of this R
and comparing to the derived statement of Eq. (33), we
have

e &ﬁa (35)
__ dR
=P = ma (36)
_ OR
_pfl - 6(V Wy +Cint)7 (37)
OR
—Djr = (38)

6(V tWo — Cint)’

which are thus the state functions of the theory.

Since our treatment is limited to isotropic macroscopic
laws, the various tensorial orders of the response are de-
coupled [41]. Thus, upon taking the time derivative of
Egs. (35)—(38), we obtain isotropic stress-strain relations
for the double-porosity composite in the form

. 2

7 = G |Vv + (V)T — 3VovI (39)
};OC C11 €12 €13 V-v.
DPpr| = — | 12 €22 €23 V-a +C_int . (40)
Do €13 €23 €33 | | V- q2 — Gin

The coefficients in these laws are the second partial
derivatives of R with respect to the appropriate strain.
For this reason, we also have the Maxwell relations
cij = cj;. Detailed expressions for these coefficients in
terms of the underlying material properties are obtained
in Sec. V.

We next denote

0 = Gin (Bp1 —DPpa) t a1 -fi+ - B +7) : €7 (41)

as the rate at which energy is being dissipated (¢ > 0
and is not the derivative of a thermodynamic potential).
Upon appealing to isotropic macroscopic media and the



standard argument of irreversible thermodynamics, we
expect linear transport laws of the form

(e =T (Br1 —Dpa) 5 (42)

a]- ] ey w

D =F [Vv +(Vv)T — %V : vI] : (44)

All these transport coefficients can be understood as time
convolution operators. The transport laws and coeffi-
cients will be independently derived and analyzed in Part
IL.

The above constitutive equations along with the
macroscopic statement of the conservation of linear mo-
mentum to be derived in the following section provide
a closed set of equations for the determination of v, q,
and q».

IV. THE TOTAL-FORCE BALANCE

The macroscopic statement of the conservation of lin-
ear momentum is obtained by directly integrating Eq.
(3) over the averaging region Q. By combining Green’s
theorem for V - ; along with Eq. (16) for the gradient
of an average, we obtain the so-called averaging theorem
[40, 42]

l/V-TidV:V-(vﬁi)+l/ n-7;dS,
|4 Q 012

which allows the total conservation of linear momentum
to be expressed
v.7P - Vp, = p1v1T; + pavotly

+p5 (11161 + U262) — (p1v1 + p2v2)g,
where we have defined the volume-averaged total stress
variables

P = vt + 0Ty, (45)

Pe = V1Pc1 + V2Pc0- (46)
The terms involving the integral of stress over the inter-
nal surface 0Q;2 have vanished due to the continuity of

stress. From the fact that flow is. continupus across the
interface 012, we have that v1Q; + 12Q, = a1 + Q2

(even if v;Q; # q;). Furthermore, if
p=v1p1 +v2p2 (47)

is defined as the average density of the composite, then
the mass-averaged acceleration Vy,,¢s is defined by

PVmass = P1U1U + pavsls.

The difference between the mass-averaged acceleration
and the volume-averaged acceleration v is negligible in
the linear theory being developed. Thus, we obtain

V.70 — VP, = pv + psds + prd2 — pg, (48)

as our final statement of the conservation of linear mo-
mentum in the composite.

V. MACROSCOPIC COMPRESSIBILITY LAWS

We now obtain detailed expressions for the coefficients
appearing in the macroscopic compressibility laws [Eq.
(40)]. Upon averaging Eq. (1) over all of Q, we obtain

V -u; _ V; 1 —q 1_.)“,
Ui[V'Qi] __E[—Oéi Oéz'/Bi] [@i]’ (19)

where overbars again denote the average of a field
throughout the phase in which it is defined. From the
averaging theorem, we have

_ . 1
vV = V- () + V/ n-u;dS, (50)
Q12
_ . 1
v2V . 1:12 =V- (’Uzﬁg) — V / n- fll dS, (51)
Q12

where continuity of 11; on 9€;2 has been used. Upon
adding Egs. (50) and (51) and using the definition v =
vy + velUs, we obtain the exact statement

U1 - V2 - V109 - V202 -
V-v= K, P T g, Pe + K, Pn + K, PP (52)

for the total rate of change of dilatation for the double-
porosity composite.

Next, similar averages are taken over the Darcy-flow
accumulations to obtain

= V107 - V101 - ;

V- (n1Qy) = R, P T R B P T Gnt,  (53)
— Vo - Vo - ;

V- (12Qy) = ;{—;Pﬂ - ﬁpf2 + Gint- (54)

As seen previously, we can justify making the identifica-
tion V-q; = V- (1;Q;). In all of Egs. (52)—(54), the
dependence of p,; and p,, on the macroscopic deforma-
tion variables must be obtained.

Upon making a formal Legendre transformation, a free
energy may be obtained from R that has as indepen-
dent variables not the macroscopic dilatations, but the
pressure variables D., D;; and py,. Although the aver-
age confining pressures p,; cannot be written as partial
derivatives of the free energy with respect to p., ps; and
Dyo, they nevertheless must depend on these indepen-
dent variables. Thus, upon taking the time derivative of
Dei = Pei(Pe» D1, Py2), We obtain linear response laws of
the form

Do = Qb + Slli_)fl + 5121;7]027 (55)
502 = QZI_'% + S21ﬁf1 + 522ﬁf27 (56)



where the six constants (); and S;; must be found. Ex-
act expressions were obtained recently [28] for these con-
stants, so only a sketch of the derivation is given here.
The demonstration amounts to inserting Eqgs. (55) and
(56) into Egs. (52), (53), and (54) to obtain linear re-
sponse laws of the form obtained earlier [c.f., Eq. (40)]

V.v a1 12 a13 };)c 0
Vear | == [a2x a2 a3 | | Dy [+ | —Gne |- (57)
V-q a1 a3z a3z | | Pyy Gint

The Maxwell relations a;; = aj; provide three equations
for determining the @; and S;;. Upon inserting Egs. (55)
and (56) into p. = v1P,; +v2P.o, one obtains 0 = (v1Q1 +
vaQa— ) + (v1511+v2521 )pfl +(v1 512 +U2522)pf2, and
since each coefﬁc1ent must vanish, three more equations
are obtained. One then finds that

v@1 = %, (58)
v2Q)y = %, (59)
S = o= (60)
Soy = m%, (61)
S12 = —azz—i%, (62)
e o A

where K is defined as the overall drained bulk modulus

of the two-phase composite [i.e., K = (p./V - V)i B ].
FLFf2

These results for the confining-pressure constants —
which, importantly, are independent of the fluid’s bulk
modulus — allow the a;; to be expressed

an = (64)
an = (Bil — %) (65)
azz = U;?; (B;Z - %) (66)
alp = _0}21 oy (67)
a3 = —U;f_? Q3 (68)
- 3R

All dependence of these constants on the geometry of
each phase and on the underlying shear moduli G; is
implicitly contained in K. All dependence on the fluid’s
bulk modulus is contained within the two Skempton’s
coefficients B; and B, and is thus restricted to ass and

+T

FIG. 2: A simple cartoon in which an ellipsoidal inclusion has
a far-field shear stress suddenly applied to it resulting in the
characteristic four-lobed zones of local fluid-pressure change
that will subsequently equilibrate.

as3. The various experiments needed to measure the a;;
had been the focus of an earlier publication [21].

We emphasize that in the long-time limit where Cint =
0 and, therefore, p;y = P;y = Py, the above double-
porosity laws reduce to the single-porosity laws (V- q =
V-q1+V-q)

Vevi aiy a12 + a3 P.
V-q a1z +ai3 az» +2a3 +asz | | by |

These single porosity results with the a;; as established
above are identical to the exact results of Berryman and
Milton [43, 44], who used different arguments.

VI. THE INTERNAL WAVE-INDUCED FLOW

From an attenuation perspective, the most important
law is the one controlling the internal fluid transfer (g
[Eq. (42)]. In the frequency domain, this law may be
written

—iw(ing (W) = 7(W)[Pf1 (W) = Pra(w)]- (71)

The frequency dependence of the transport coefficient
~(w) is shown in Part IT to be

1-i2, (72)

Y(w) = o

where the detailed nature of the relaxation frequency w,
and low-frequency limit ~, are derived in Part II.

VII. THE SHEAR RESPONSE

Upon applying a shear to an averaging element, it is
possible to create local changes of the confining pressure



and, therefore, fluid pressure (see, for example, Ref. [45]).
An illustration is given in Fig. 2, in which a pure shear
stress is applied to an averaging element containing an
isolated ellipsoidal inclusion of phase 2. Although there is
no confining-pressure change within the inclusion, there
will be confining-pressure changes to the surrounding ma-
trix phase 1. These lobes of enhanced and decreased fluid
pressure will then equilibrate. General models for such
shear-induced mesoscopic fluid flow apparently do not
exist in the literature.

Unlike the compressional problem, not all mesoscopic
geometries will result in shear-induced pressure gradients
and local flow. For example, if the drained shear mod-
ulus is the same in both phases or for certain concen-
tric geometries or models involving thin planar joints, no
such local fluid-pressure gradients will be created (except
possibly in the neighborhood of where the joints inter-
sect which is assumed to occupy negligible volume). In
general, the shear-induced flow problem is more difficult
than the compressional problem treated in Part II. Our
approach here is simply to acknowledge that such local
flow is possible, but not to model it. Such an involved
analysis must be left to a future study.

It is important to recognize that at least for isotropic
composites, the applied shear will not result in any net
change in the fluid pressure throughout either phase.
As such, the macroscopic shear law takes the form (ex-
pressed for convenience in the frequency domain)

_iwFP = [G(w) — iwF(W)] | Vv + (Vv)T — §V Vi,

(73)
with G(w) and wF'(w) both real functions that are Hilbert
transforms of each other. The low-frequency limit of
G(w) corresponds to the drained-shear modulus of the
composite while at high frequencies a larger unrelaxed
shear modulus holds.

VIII. SUMMARY

The complete set of macroscopic equations governing
the linear response of isotropic double-porosity compos-
ites with an assumed e~** time dependence is given by

V7P - Vp, = —iw(pv + prai + praz) — pg, (74)

ai| _ _1[ku k2| [ VDy — pr(iwv +g) (75)
q2 n | K12 K22 | | VP2 — prlivv +g) |’

1| Vv 011 G12 013 DP. 0
o Ve-ai | =|a12 a2 az3 || Ps1 |+ | Gne | {76)
V-q a13 a23 a33 | | Pyo —Cint
W) (o
Gint = " iw (pfl —pfz); (77)

_iwF? = [G — iwF] [VV + (V)T — gv v 1] . (78)

with y(w) = v54/1 — iw/w.. All the coefficients appear-
ing in these laws have been given definition earlier in the
paper with the exception of the real shear coefficients
G(w) and F(w). For wave problems, the acceleration of
gravity can either be dropped from the description or
used as a proxy for the seismic source. Berryman and
Wang [3] have analyzed the wave properties of equations
having this general form [though with Gnt = 0 in Eq.
(76)] and have demonstrated the existence of a second
slow wave associated with the response in phase 2.

IX. AN UP-SCALED BIOT THEORY

One important use of this double-porosity theory is
for constructing an effective, up-scaled, single-porosity
theory that allows for the mesoscopic flow loss but that
by its nature does not require analysis of a second slow-
wave in the second porous phase.

A simple way to construct such an up-scaled “Biot
theory” is to assume that phase 2 is entirely embedded
within phase 1 so that it does not intersect the external
surface of an averaging volume. In this case, V-qy =0
and it is straightforward to eliminate p;, from the above
equations. The macroscopic response of the composite is
then controlled by equations having exactly the form of
Egs. (1)—(4) but with an effective complex drained mod-
ulus Kp(w), undrained modulus Ky (w) and Skempton’s
coefficient B(w) given by

1 ais
K—D = a1 — m, (79)
_ —aiz(ass — v/iw) + ai3(azs + 7/iw) (80)
(a2 — v/iw)(azs — v/iw) — (a3 + /iw)?’
1 1 _ 013((123 + ’7/1:&1))

- - _—- .B
Ky Kp * (a12 azs — v/iw

(81)

One then obtains the effective Biot-Willis constant using
the standard definition a = (1 — Kp/Ky)/B. The ef-
fective fluid permeability is defined by applying a single
fluid-pressure drop across a sample of the two-phase com-
posite. Various effective-medium approximations could
be invoked; however, a simple harmonic mean 1/k =
v1/k1 + vy / k2 is appropriate for the situation we are con-
sidering, where phase 2 is being modeled as embedded
entirely within phase 1.

X. EXAMPLES OF ACOUSTIC ATTENUATION

Some examples of P-wave attenuation in a double-
porosity composite are now given in which phase 2 is
modeled as a small sphere of radius a; embedded at the
center of each sphere of composite having radius R. We
fix R = 3ay in all examples so that v2 = (az/R)® =~ 0.037
and v;1 = 0.963. The volume to internal surface ratio
V'/S present in the relaxation frequency w, as defined in
Part II is given by V/S = R?/(3a3) = 9 as.
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FIG. 3: The P wave attenuation of a double porosity compos-
ite having properties discussed in the text. The three curves
correspond to viscosities of 7 = 1072 Pa s (solid curve repre-
senting ambient water), 2x10™* Pa s (dashed curve represent-
ing hot water), and 5 x 1072 Pa s (dotted curve representing
oil).

We take the composite’s drained modulus 1/a;; to be a
harmonic average of the two constituent drained moduli
that are in turn determined from the effective medium
formula K; = (1—¢;)K;/(14c¢;$;) where the parameters
¢; may be called “consolidation” parameters. We take
the low-frequency fluid-pressure gradient length in phase
1 [that is present in the expression for v, and is defined
in (37) of Part II] to be Ly = a21/99/28 ~ 1.9a; when
R = 3(12.

The embedded phase 2 is assumed to represent small
pockets where the grains are less-well consolidated. Ac-
cordingly, we model it with numbers corresponding to a
poorly-consolidated sandstone ¢ = 0.30, ks = 107'2 m?,
and ¢y = 200. For the matrix phase 1, we take the values
appropriate to a consolidated shaly sandstone ¢1 = 0.10,
ky = 107 m?2, and ¢; = 10. In the following examples,
we assume that the composite’s shear modulus is given
by G = (1 - ¢)Gs/(1 + cad), where ¢ = vy + vagp2 and
where ¢g = 10. We take the permeability to be given by
1/k = Ul/kl .

In the first example given in Fig. 3, we fix a = 1 cm
and vary the fluid viscosity to show how the two peaks
in the attenuation Q~! vary [note that Q~! represents
the fraction of energy irreversibly lost to heat in each
wave period]. The peak to the left for each curve corre-
sponds to the frequency when the mesoscopic structure
just has time to equilibrate in one cycle while the peak to
the right corresponds to the Biot-loss maximum, which
occurs when the entire wavelength of fluid pressure vari-
ation just equilibrates in a cycle. Note that the effect
of viscosity is to shift the peaks differently. Since the
mesoscopic heterogeneity has some characteristic length
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FIG. 4: The P wave attenuation of a double-porosity compos-
ite when the radius a2 of the spherical inclusion of phase 2
varies at fixed ratio R = 3as (i.e., at constant volume fraction
va = 3.7%). The three curves correspond to three different
values of a2 as shown. It is not possible to consider smaller
spheres than 1 mm because the notion of a porous continuum
requires at least a few tens of grains to be present in each
phase.

Lieso & az, it will equilibrate when the frequency is at
fmeso = D/L2 ., and since the pore-pressure diffusivity
D is inversely proportional to viscosity, the mesoscopic
peaks shift downward with increasing viscosity. For the
Biot loss, the distance Lpjot over which the pressure equi-
librates is the wavelength A, so that Lgio, = vp/f where
vp is the P-wave velocity and thus, equilibration will just
occur when fpiot = Dfg;o/v2 or in otherwords when
[Biot = ’Uf, /D, which has just the opposite dependence on
the fluid viscosity and permeability than does the meso-
scopic flow.

In the second example given in Fig. 4, we keep the
porous continuum properties the same (with ambient wa-
ter in the pores) but change the size as of the embed-
ded sphere while keeping the volume fractions the same
(R = 3@2).

XI. CONCLUSIONS

To conclude this part of our analysis, we emphasize
that the so-called “Biot loss” is the pressure equilibra-
tion occurring between the peaks and troughs of a com-
pressional wave when the porous material is taken to
be uniform over the wavelength. When a compressional
wave squeezes an element of material containing meso-
scopic heterogeneity, there is induced a heterogeneous
fluid-pressure response within the element that then equi-
librates. As has been demonstrated here using a double-
porosity model of such mesoscopic heterogeneity, con-



siderable low-frequency attenuation can be generated by
this equilibration. The peak value of @~! in the double-
porosity mechanism is controlled principally by the con-
trast of the drained bulk modulus between the two phases
and is independent of the permeability of the materials.
However, the relaxation frequency at which Q! peaks is
directly proportional to the permeability ki of the host
phase 1. Furthermore, at frequencies less than the relax-
ation frequency, Q! increases in proportion to wn/k;.
This is exactly inverse to the dependence on 7/k found
in the Biot wavelength-scale mechanism.

Three natural extensions of the present two-porosity
theory include allowing for anisotropic composites, gen-
eralizing to N-porosity composites, and introducing the
proper fluid-dependent shear response.
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