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Abstract

Three single-scattering approximations for coefficients in Biot’s equations of poroelasticity are
considered: the average T-matrix approximation (ATA), the coherent potential approximation
(CPA), and the differential effective medium (DEM). The scattering coefficients used here are
exact results obtained previously for scattering from a spherical inclusion of one Biot material
imbedded in another otherwise homogeneous Biot material. The CPA has been shown pre-
viously to guarantee that, if the coeflicients for the scattering materials satisfy Gassmann’s
equation, then the effective coefficients for the composite medium satisfly Brown and Korringa’s
generalization of Gassmann’s equation. A collection of similar results is obtained here showing
that the coefficients derived from ATA, CPA, or DEM all satisfy the required conditions for
consistency. It is also shown that Gassmann’s equation will result from any of these single-
scattering approximations if the collection of scatterers includes only spheres of fluid and of a
single type of elastic solid.

PACS numbers: 43.20Bi, 43.20Fn, 43.20Hq, 43.30Ma

1 Introduction

The equations for elastic wave propagation through fluid-saturated porous media were first
derived by Biot (1956). The main limitation to the use of these equations of poroelasticity
for studying elastic waves in rocks is that relationships between the material properties of the
constituents of the rock and coefficients appearing in the equations are still not well under-
stood. The fundamental result of Gassmann (1951) shows how the coefficients depend on the
compressibility of the saturating pore fluid. But Gassmann’s result is actually of rather limited
applicability, since its derivation assumes that the frame of the porous medium is composed of
only one type of solid constituent. This situation virtually never applies to real materials like
rocks, but does have limited use in explaining the behavior of artificial materials like sintered-
glass-bead packs. Brown and Korringa (1975) have generalized Gassmann’s result to show how
the coefficients must depend on the fluid compressibility in general, but their result contains
two new compressibilities that are unknown and have unknown dependence on the constituent’s
properties. Thus, the difficulty has been moved but not removed.

One reasonable way to attack this problem is to try to generalize methods that have been
developed for estimating the material constants of elastic composites. The author made such
an attempt some years ago (Berryman, 1986) using a method we call the coherent potential
approximation (CPA). The present effort generalizes the earlier ideas so we now study three
different approximations for the coefficients. First, we review the history of these methods in
the context of random elastic composites.

Foldy (1945) developed a procedure for studying multiple scattering effects in inhomoge-
neous, isotropic, elastic media, and showed how the effective index of a medium could be related
to the averaged forward scattering amplitudes. The theory is valid for strong scattering, but
limited to low concentrations of scatterers. Laz (1951) generalized Foldy’s method in a variety
of ways, and introduced self-consistency so the approach was no longer limited to low concen-
trations. The average T-matrix approximation (ATA) was introduced for multiple scattering
in quantum-mechanical systems by Watson (1957) and for electrical conduction in disordered
alloys by Korringa (1958). The coherent potential approximation (CPA) was introduced into



solid state physics by Soven (1967) and Taylor (1967). Based on Lax’s multiple-scattering the-
ory, the CPA provides a self-consistent means of computing the quantum mechanical densities of
states for electrons and phonons in random alloys. Velicky, Kirkpatrick, and Ehrenreich (1968)
showed that the CPA neglects statistical correlations due to short range order and to multiple-
scattering effects. However, in applications of interest, short range order is normally eliminated
by hypothesis, while effects of multiple scattering, though always present, are effectively min-
imized by the self-consistent approach. The CPA is a single-scattering approximation, since
it neglects these multiple-scattering contributions. Perturbation theory has shown that the
CPA is exact for strong scattering with low concentrations of inclusions, or for weak scattering
at arbitrary concentrations of inclusions. As an interpolation scheme for estimating effective
properties of alloys, the CPA is very successful. A review of the extensive progress made on
applications of the CPA to a variety of problems was presented by FElliott, Krumhansl, and
Leath (1974). Gubernatis and Krumhansl (1975) showed how to apply the CPA to estimate
the material properties of randomly polycrystalline rock.

For classical percolation and conduction problems, an effective medium theory equivalent to
the CPA was developed by Bruggeman (1935) and Landauer (1951). A review of this approach
was presented by Kirkpatrick (1973). Bruggeman (1935) and Roscoe (1952) also developed
another approach to the estimation problem which is now called the differential effective medium
(DEM) method. In this approach, the approximation is found by successively computing the
change in the effective constants after infinitesimal amounts of the inclusion phase are added
to a homogeneous material whose effective constants are the same as those computed for the
composite up to the current volume fraction. Whereas the CPA (for spherical inclusions) always
gives formulas symmetric in the constituents, the DEM is necessarily asymmetric because the
medium used to start the imbedding process (called the host) is always continuous (Yonezawa
and Cohen, 1983). This fundamental difference between the two approximations has advantages
in some circumstances (Sen, Scala, and Cohen, 1981; Sheng and Callegari, 1984; Sheng, 1990;
Sheng, 1991). Cleary, Chen, and Lee (1980) review the earlier work on elastic DEM theory.

Berryman (1980; 1982) showed that the CPA for isotropic elastic composites produces esti-
mates of the elastic constants that are always consistent with known rigorous bounds, including
both the Hashin-Shtrikman (1962; 1963) and more restrictive bounds. Milton (1985) subse-
quently showed the CPA is actually a realizable model, and therefore it is guaranteed that the
estimates of constants obtained this way always satisfy the rigorous bounds. McLaughlin (1977)
showed that the DEM satisfies the Hashin-Shtrikman bounds. Milton (1984), Norris (1985),
Norris, Sheng, and Callegari (1985), and Avellaneda (1987) have shown that the DEM is also
a realizable model.

The calculations presented here use single-scattering results for spherical inhomogeneities
in a fluid-saturated porous medium (Berryman, 1985) to construct three different approxima-
tions for coefficients in Biot’s equations of poroelasticity (Biot, 1956) describing elastic wave
propagation through fluid-saturated porous media. Certain facts due to Gassmann (1951) and
to Brown and Korringa (1975) are known about the general dependence of these coefficients
on the properties of the saturating pore fluid. These relations may be used as stringent tests of
the approximations. Until recently, neither rigorous results (such as formulas or bounds) nor
approximation hierarchies were available for these coefficients. Berryman and Milton (1991)
have obtained exact results for these coefficients when the composite has only two porous con-
stituents. The results of all approximation schemes derived here have been compared to these



exact formulas and are found to agree; they also give correct values when exact results are
known for all the parameters.

Section 2 reviews single-scattering approximations for the bulk and shear moduli (Berryman,
1980). Thought experiments used to justify these approximations are described and relevant
details of the approximations are presented. It is also demonstrated that all three of these
approximations are the same when the shear modulus is constant throughout the composite,
and shown that they agree with the exact result for the bulk modulus derived for this limit by
Hill (1963). Section 3 introduces Biot’s equations of poroelasticity and shows how the saturating
fluid bulk modulus enters the coeflicients. Gassmann’s equation and the equations of Brown
and Korringa are presented. Section 4 presents the exact results for the scattering coeflicients
of spherical scatterers imbedded in Biot material. Section 5 presents suflicient conditions for
the various approximations to agree with either Gassmann’s equation or Brown and Korringa’s
equations.

The main results of the paper are three single-scattering approximations for the coefficients
in Biot’s equations derived in Section 6. We find that all three of the approximations consid-
ered give estimates of coeflicients that are in agreement with the general results of Brown and
Korringa (1975) when the scatterers are spheres of Biot material satisfying Gassmann’s (1951)
equation. These results generalize and extend results published earlier by Berryman (1986)
for the CPA. Section 7 shows when it is possible to derive estimates of coefficients consistent
with Gassmann’s equation starting with spherical scatterers that are either purely elastic or
purely fluid. Section 8 concentrates on analytical comparisons among various approximations
and values of the constituents’ moduli. Rigorous bounds on results of these approximations are
obtained. In addition, a rigorous bound on the actual effective constants is obtained and shown
to provide a useful check on the consistency of experimental data. An analytical solution to
the equations of DEM is found in a special case, and compared to the corresponding analytical
solution for CPA in Section 9. Section 10 presents numerical comparisons among the approxi-
mations. Various examples are considered including clayey sandstone. Section 11 summarizes
the conclusions of the paper. A brief mathematical appendix shows how the equations obtained
using the differential effective medium may generally be analyzed to provide useful inequalities.

2 Approximations for K* and u*

The three single-scattering approximations we will study in this paper are: the average T-
matrix approximation (ATA), the coherent potential approximation (CPA), and the differential
effedctive medium (DEM). To provide a simple review of the nature of these approximations and
to compare and contrast these methods, we will start by deriving results for elastic scattering
from spherical inclusions of radius @. The host medium has bulk modulus K and shear modulus
i. The spherical inclusion has bulk modulus K’ and shear modulus p'.

If an incident compressional wave has the form

u = 2(Ag/ik)expi(kz — wt), (1)

where k is the wavenumber, w is the angular frequency, and Ag is the amplitude of the dilatation
(V - u), then the radial component of the scattered wave field is

u, = (ik)"'exp i(kr — wt) [By — By cos — By(3 cos 20 + 1)/4]. (2)



These scattering coefficients have been computed by Ying and Truell (1956) and by Yamakawa
(1962). The first scattering coefficient is

kBa®Ag K' — K
3 K'+3p

BO - (3)

The third coefficient is

B — ka®Aq  10u  p —p
T3 3(KA42u)p + F

(4)
where

F = (u/6)(9K +8)/(K +2p). (5)

The coefficient By depends on material densities. Based on this coefficient, the methods used
here always show that the effective density is just the average density [Berryman, 1980].

We will use the convention that effective constants are distinguished by the * superscript
(e.g., K* and p*). The results obtained in this section are valid for composites constructed
either from solid grains or from porous (drained) grains.

2.1 Average T-matrix approximation

The average T-matrix approximation is justified by the following thought experiment (see Fig.
1): If the host medium is type-1, then the scattering coefficient for a spherical inclusion of radius
a of the composite composed of type-1 and type-2 with volume fractions v(*) and v(?) = 1 —»(1)
is porportional to

s K*— KM

B _—.

0 e T (6)
If the composite is actually composed of n spherical inclusions of type-2 of radii a; for j =
1,...,n imbedded within the sphere of radius @, then (including only the single-scattering

effects) the scattering coefficient must also satisfy

"o K@ - g
By ) o) —=—F—, (7)
= KO+ 50
which is correct to O(k?®). Higher order O(k®) terms due to the offset of the small scatterers
from the origin may be properly neglected in this approximation. Equating (6) and (7) and
noting that the volume fraction v(?) is given by
ng3
o) = 2= (8)

a3

the resulting expression for the average T-matrix approximation for the bulk modulus K% 4 is

Kipa — K@) 0 K@) _ @)
Kira + 300 K@) 4+ 2u0)°

(9)



It is not hard to see that (9) can be generalized for multiple types of inclusions to

Ky, — KW < K(x)— K1) >

gy + 5p0) T\Ex)+ su

(10)

since the volume average (-) over the spatial coordinate x produces the same weighting as in (9),
while there is no contribution to (10) from regions where K(x) = K). Since the right hand
side of (10) is just the average of the scattering coefficient, we see now why this approximation
is called the “average T-matrix approximation.” Equation (10) can be rearranged into the
convenient form

1 B 1 (11)
Kapa+ 500 \K(x)+ 520 /7

A similar computation based on By gives the ATA for the shear modulus

1 _< 1 > (12)
wara + FO - \p(x) + FO /7

where F'is defined in (5). The formulas (11) and (12) are not coupled and therefore give explicit
equations for the effective constants.

Note that the ATA is not one approximation, but many — one for each constituent of the
composite. If the composite has multiple constituents, there is a distinct ATA obtained by
treating each component in turn as the host. Furthermore, this approximation in the form
(10) or (11) can be generalized again by replacing the host medium by any material — not
necessarily one of the constituent materials. To make such a generalization useful, we suppose
that the host medium (distinguished by a {) has properties satisfying K, < KT < K,,,, and
Lmin < ;ﬁ < Hmaz- Then, the generalized ATA takes the form

L < ! > (13)
Kipa+gut \E(x)+3pt/

together with a corresponding generalization of (12). It will become clear that the CPA is just
a self-consistent generalized ATA.

An example of the use of the ATA for elastic constants was presented by Kuster and Tokséz
(1974). Tt should also be noted that, when the shear modulus of the host u(!) is the smallest
(largest), the ATA produces the same value of the bulk modulus as the Hashin-Shtrikman upper
(lower) bound (Hashin and Shirikman, 1962; 1963).

2.2 Coherent potential approximation

The coherent potential approximation is justified by a slightly different thought experiment (see
Fig. 2): If the host medium is the composite itself (i.e., type-*), then the scattering coefficient
for scattering from a spherical inclusion of type-¢z material is just

5 KO — K~

B X, —~——F -

(14)



The value of the composite bulk modulus may be found by treating K* as a tunable quantity.
We average the single-scattering contributions at infinity and adjust K™ until the sum vanishes:

m

LK@ g
> =, (15)
o KA suipa

assuming m constituents whose volume fractions satisfy Y7, »() = 1. This equation can also
be rearranged and written in terms of volume averages

1 1
- 1 x = < - 1 > : (16)
K&pat 3hcpa K(x)+ 5p5pa
Notice that this formula also depends on knowledge of the effective value of the shear modulus

ptp4- This value is determined self-consistently using the analogous computation based on Bj
as described by Berryman.! The result is

1 1
pepa + Fépa <M(X) + FCPA>

where F' is defined in (5). Note that (16) and (17) are coupled and therefore provide only
implicit formulas for the effective constants. Normally these equations are solved by iteration.

The CPA produces a single formula in which all components are treated equally. Such a
symmetric formula is appropriate when there is no one constituent acting as host to all the
others. Other approximations of this type may be obtained by using the single scattering co-
efficients for non-spherical (often ellipsoidal) scatterers. The self-consistent approach of Hill
(1965) and Budiansky (1965) for K* and p* with spherical inclusions produces formulas iden-
tical to (16) and (17), but for other shapes of inclusions their approach is known to produce
results different from the CPA. Since Milton (1985) has shown that the CPA is realizable (i.e.,
in principle a model can be found that has the same value of the effective constants as that
computed from the CPA), in many circumstances it is the CPA that is the preferred method
of generating estimates.

2.3 Differential effective medium

The differential effective medium is constructed using another gedanken experiment (see Fig.
3): If there are only two constituents whose volume fractions are z = vWandy = o@D =1—12,
then suppose we know the value of the effective bulk modulus K7 ;;,(y) at one value of y.
Treating K7 5a,(y) as the host medium and K7)5,,(y 4+ dy) as the effective constant after a
small proportion dy/(1 — y) of the host has been replaced by spherical inclusions of type-2, we
find

Kppm(y+dy) = Kppu(y) _ _dy E® — Kppul(y) ‘
ey +dy) + 5upen(y) (1= 9) K@ 4+ 55 50(y)
Since the host contains the volume fraction & of type-1 and y of type-2, on average a fraction

dy/(1 — y) of the host must be replaced by type-2 in order to change the overall fraction of
type-2 to y + dy. Taking the limit dy — 0 gives the result

K® - Kpeu(y)
K@ 4+ 2uhpar(y)

(18)

(1= )5 K] = Kpion(9)+ subuu(v)] (19)



where the initial host is pure type-1 so K5p(0) = K1), The corresponding formula for the
shear modulus is
d (2) _ *

(1= )3 Wi (0] = AP () + Fipns (1) (20)
where F is given by (5). Note that (19) and (20) are coupled and must therefore be integrated
simultaneously.

Like the ATA, the DEM formulas are not symmetrical in the constituents. Equations (19)
and (20) have been derived assuming the host is of type-1 and the inclusion of type-2. A second
distinct DEM is found by interchanging the roles of type-1 and type-2. The imbedding process
guarantees that the host material remains connected in ths composite.

If the composite of interest contains more than two constituents (as is likely to be the case
for most rocks), it is more difficult to include the additional components in the DEM than in
ATA or CPA. The essential difference is that the result for the DEM depends on the path taken,
i.e., the order in which the constituents are added to the composite. Norris (1985) presented
one method of generalizing (19) to multiple constituents. Another recent and relevant example
was presented in Sheng (1990) and Sheng (1991). Sheng’s approach to modeling fluid-saturated
rocks is first to compute the DEM for a fluid/cement mixture with the fluid as the host and
the cement as the inclusion. Then, he computes the DEM for fluid/cement/grain with the
fluid/cement composite as host and the grain as the inclusion. The point of this exercise is
to construct a model where the fluid forms a connected phase and the frame is composed of
cemented solid particles. We do something similar in Section 10.3, where we model a clayey
sandstone. The main difference in philosophy is that we use formulas that are proven to have
the correct dependence on the fluid bulk modulus, so we may effectively eliminate the fluid from
further consideration and concentrate our efforts on the more difficult problem of evaluating
the various moduli of the composite porous frame.

2.4 Comparison to Hill’s exact formula

Hill (1963) has derived an exact formula for the effective bulk modulus of a composite when
the shear modulus of all constituents is the same p) = ... = p(™ = u*. His result is

1 B 1 (21)
K* + %,u* N K(x)+ %,u* '
It is easy to see (by inspection) that the ATA (11)-(12) and the CPA (16)-(17) reduce correctly
to (21) when the ps are all equal.

When the shear moduli are constant, (20) shows that p*(y) = p* is constant for the DEM.
Thus, (19) may be rewritten in this limit as

d

1 1 1
1—y)—
( y)dy

lfi’BEM(y) + %u*] KO g Kppy(y)+ e
To check the agreement of the DEM (22) with Hill’s result, take the y derivative of (21) in the
case of only two constituents. Then, we find

< : = — : (23)
dy |[K(9)+ 3507 ] KO +gu KO+ 50

(22)




whereas substituting (21) into the right hand side of (22) (i.e., K* — K7 p5a,) produces exactly
the same expression as (23). Norris (1985) has also established the agreement of DEM with
Hill’s result. (Also see Appendix A of the present paper for another proof.) So we conclude that
all three approximations become exact when the shear modulus of the composite is constant
throughout.

An alternative formulation of the estimation problem can be based directly on Hill’s formula
(21). The goal of this new procedure is to arrive at an effective shear modulus p* for the
composite by some means, and then use (21) as if the constituents are imbedded in a (composite)
medium with homogeneous shear modulus p(x) = p*. In its simplest form, this approach is just
another way of deriving the generalized ATA. Adding a self-consistency condition, it reproduces
the CPA. An approximation similar to the DEM could also be obtained this way, but results
would differ slightly since simultaneous integration for K*(y) and p*(y) is not required; in fact,
treating (21) as a formula for K*(y), only a single integration is performed to find p*(y). This
procedure produces a hybrid approximation, closer to the CPA than the usual DEM.

This discussion highlights the major difference between DEM and CPA. The DEM takes the
fluctuations in the shear modulus into account approximately when calculating the estimate
K*, while ATA and CPA ignore effects due to fluctuations.

3 Equations of Poroelasticity

Consider a porous medium whose connected pore space is saturated with a single-phase viscous
fluid. The fraction of the total volume occupied by the fluid is the porosity ¢, which is assumed
to be uniform on some appropriate length scale. The bulk modulus and density of the fluid
are Ky and py, respectively. The bulk and shear moduli of the drained porous frame are K
and p. For simplicity, we assume the frame is composed of a single constituent whose bulk
and shear moduli and density are K, t,,, and p,,. The frame moduli may be measured on
drained samples, or they may be estimated using one of a variety of methods from the theory
of composites.

For long wavelength disturbances (A >> h where h is a typical pore size) propagating
through such a porous medium, we define average values of the local displacements in the solid
and also in the saturating fluid. The average displacement vector in the solid frame is u, while
that in the pore fluid is uy. A more useful way of quantifying the fluid displacement is to
introduce the average displacement of the fluid relative to the frame which is w = ¢(uy — u).
For small strains, the frame dilatation is

e=V-u (24)
Similarly, the average fluid dilatation is
ef =V -uy, (25)

which includes fluid flow terms as well as dilatation. The increment of fluid content is defined

by

(=-V-w=0¢(e—ey). (26)



With these definitions, Biot (1956) introduces a quadratic strain-energy functional of the inde-
pendent variables e and ( for an isotropic, linear porous medium

28 = He? —2CeC + M(? — 4ul,, (27)

where [ is the second strain invariant (Berryman and Thigpen 1985). Elementary bounds on
coefficients in the equations of poroelasticity are presented by Thigpen and Berryman (1985).
Mechanical stability requires non-negativity of F, which implies that # > 0, M > 0, HM —
C? > 0,and g > 0. Two coupled equations of motion for small disturbances in the fluid-
saturated medium may be derived easily from this functional.

With time dependence of the form exp(—iwt), Biot’s equations of poroelasticity are, using
the notation of Biot (1962),

Vi 4 (H — p)Ve — CVC + w0 (pu+ prw) = 0, (28)
CVe— MV({+w*(psu+qw) =0, (29)
where
p=9ops+(1=0)pm (30)
and
q(w) = psla/o + iF(&)n/rw]. (31)

The tortuosity a@ > 1 is a pure number related to the frame inertia which has been measured
(Brown, 1980; Johnson et al., 1982) and can also be estimated theoretically (Berryman, 1983).
The kinematic viscosity of the saturating fluid is 7; the permeability of the porous frame is &;
the dynamic viscosity factor is given (for our choice of sign for the frequency dependence) by

F(§) = {HET(€)/ 1L+ 2T(8)/i) (32)
where
16 = oS ()
and
£ = (wh? /). (34)

The functions ber(£) and bei(£) are the real and imaginary parts of the Kelvin function. The
dynamic parameter h is a characteristic length generally associated with the steady-flow hy-
draulic radius of the pores, or with a typical pore size. With some modifications to all terms
involving properties of the saturating fluid, these equations have also been shown to apply to
partially saturated porous media as well (Berryman, Thigpen, and Chin, 1988).

The coupled equations (28) and (29) give rise to three distinct modes of wave propagation:
two compressional waves (fast and slow) with wavenumbers k4 and k_ and a single shear wave
speed having wavenumber kj.



The coeflicients appearing in Biot’s equations of poroelasticity must be known before quan-
titative predictions can be made with the theory. Brown and Korringa (1975) have shown that
these coeflicients are given for general isotropic porous media by

4
H=K+ooC+ 3 (35)

¢=of llj +¢ (ng'f - A%)] ’ (36)

and
M =Clo, (37)
where
oc=1-K/K,. (38)

The three bulk moduli characteristic of the porous frame are defined by Brown and Korringa
through the expressions:

1 1 /9V

= v (), (39
1 1 [V

K, V (8pf)pd’ (40)

and

1 1 mg)

T P ) 41
Ky Vo (0pf oy )

where V' is the total sample volume, V; = ¢V is the pore volume, p is the external pressure, py
is the pore pressure, and pg = p — py is the differential pressure. Brown and Korringa (1975)
state that, although these three bulk moduli have simple physical interpretations, this “does
not necessarily help in knowing their values.”

It is implicitly assumed that K, K, and K4 are properties of the solid frame alone, and
therefore independent of the pore fluid modulus Ky. This basic assumption of poroelasticity
is not as restrictive as it might at first appear. The pore fluid modulus Ky is associated with
connected (primary) porosity, while any isolated or unconnected (secondary) porosity is treated
as part of the solid frame. Thus, isolated fluid inclusions may also be treated by the methods
developed here.

The constant K is just the bulk modulus of the drained porous frame that we introduced
earlier. However, the values of the two remaining constants Ky and K are generally not known
unless the porous frame is homogeneous on the microscopic scale. For this special circumstance
[which is also the only one considered by Gassmann (1951)] with a single type of elastic solid
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composing the frame, these two moduli are both equal to the bulk modulus K,, of the single
granular constituent

K, =Ky=K,. (42)
Thus, Gassmann’s equation is equivalent to

1 ¢ oc— ¢

M~ K, K,

o=1-K/K,, (43)

while Brown and Korringa’s more general result is equivalent to

1
L_9 4,9 _ 2% L_1_kKJk, (44)
M Ix’f K, Ii¢

Gassmann’s result has also been derived within the context of Biot’s theory of poroelasticity
by Biot and Willis (1957) and Geertsma (1957), and from a micromechanical theory based on
classical elasticity by Zimmerman, Somerton, and King (1986). Results essentially equivalent
to those of Brown and Korringa were also obtained later by Rice and Cleary (1976) and by
Palciauskas and Domenico (1989). The more general constants of Brown and Korringa, K
and K4, must somehow be related to the material properties of the multiple solid constituents
of the porous frame. Finding such relations using the single-scattering approximations is the
main focus of the remainder of this paper.

4 Scattering Coeflicients

Let the spherical inhomogeneity have radius a. The spherical region is internally homogeneous,
but otherwise its properties are arbitrary. Thus, the bulk and shear moduli, grain bulk modulus,
density, porosity, and permeability of the solids included may all be different from those of the
host. Similarly, the bulk modulus, density, and viscosity of the fluids included may also differ
from those of the host fluid.

Suppose now that a plane fast compressional wave is generated at a freee surface far from
the inclusion. If the incident fast compressional wave with wavenumber k4 has the form

u = 2(Ag/iky)expi(kyz — wi), (45)

then, due to mode conversion at the sphere interface, the radial component of the scattered
compressional wave contains both fast and slow parts in the far field. The general expression
for this radial component is

u, = (iky) texpi(kir — wt) X [B((J+) — B£+) cos 6

— B (3c0s20 + 1)/4]

—(ik_)"texpi(k_r — wt) x [B((J_) — BY) cos 6
—B{) (3 cos26 + 1)/4]. (46)

The wavenumber for the slow compressional wave is k_. The coefficients for the scattered fast
(+) (-)

wave are B; ; For the present

for j = 0,1,2; for the scattered slow wave, they are B
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application, only the first coefficient in each set is needed and these two coeflicients are known
exactly.
At low frequencies, the coeflicients of interest are given by
_ B a3CA
Bé ) = _/ Ty 04
SHM'(K'+ 3p)

4 4
C(K'+ g+ 0'C) = C'(K + g+ 0C)| (47)

and
_kf_aSAo [K'— K+ (¢' — 0)C]
3 K'+ 3p

BiY = + (ks [k )BT (48)
It is easy to check that, if the fluid bulk modulus vanishes Ky — 0, then C' — 0 so B(()_) — 0
and (48) reduces to (3). Thus, in the absence of a fluid, the equations reduce to those for elastic
wave scattering from a spherical inclusion.

5 Consistency Conditions

The remainder of this paper will involve detailed calculations of the single-scattering approxi-
mations and comparisons of the results with Gassmann’s equation and Brown and Korringa’s
equation [our equations (43) and (44), respectively]. It will simplify the presentation of these
results somewhat if we first determine some general criteria to show what it means for an
approximation to be consistent with either Gassmann (1951) or Brown and Korringa (1975).

The first fact is that the constant ¢* must be independent of the fluid properties unless the
fluid is trapped in a way that makes it effectively part of the porous frame. Furthermore, if
there is only one type of elastic solid grain in the composite porous medium, then Gassmann’s
derivation is valid and (42) should hold. This requirement implies that, if K?(T} ) = Kg) = K,,
then K7} = K,,. If this requirement is not satisfied, then of course (42) would be violated and
the approximation would be inconsistent with Gassmann’s equation.

The next fact to note concerns the effective bulk modulus of a composite fluid. It is well-
known that the effective bulk modulus K7 of a fluid composed of two fluids with bulk moduli

Kj(fl) and KJ(P) and volume fractions v and v = 1 — v(1), respectively, is given by the
harmonic mean

_I_

K kD KD ()

which is sometimes called Wood’s formula (Wood 1957). Equation (49) may be generalized for

an arbitrary number of fluids to
1 1
= ( 50
K3 <Kf(x)> ’ (50)

where the bracket < - > is a volume average. From (50) and the form of M given in both (43)
and (44), it is clear that a sufficient condition for consistency is that the effective constant M*
should satisfy

1\;* - <M1x)>’ (51)
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while the effective constant ¢* is independent of the fluid properties.
For the differential effective medium for a composite fluid, the defining equation is derived
from the single scattering coeflicient

K: - Ky

_|_
Bé)o{ K} ’

(52)
where K is the bulk modulus of the host and E} is the bulk modulus of the spherical scatterer.
If there are only two fluids, we define z = v(}) and y = v(? where z + y = 1. Then, if

the initial host medium is pure type-1 (i.e., KJ*C(O) = K](cl)), the differential effective medium
approximation is

Ki(y+dy) - K3(y)  dy K¥ - K3(y)

= = . 53
K3(y + dy) 1=y & (53)
Taking the limit dy — 0 in (53), we obtain
1 1 1
Lo g)o || = e — 54
( )d?/ [Kf(?/)] K](,Q) K3(y) 549

It is not difficult to check (see Appendix A) that Wood’s formula (49) satisfies (54). Again
from the form of M in (43) and (44), it follows that a sufficient condition for consistency of the
differential effective medium for Biot’s equations is

d 1 1 1
(1- y)d_y [M*(y)] T MO M(y)

(55)

while the effective constant ¢* must again be independent of the fluid constituents.

We stress that the conditions (51) and (55) are sufficient but not necessary. In fact, the ac-
tual expressions for the effective constant M™* are more complex than either of these expressions,
but we will find that they share their main features.

6 Single-scattering Approximations

Now we develop the single-scattering formulas for ¢ and M based on the scattering coefficients
(48) and (47). The methods used are completely analogous to those used in deriving the
expressions for K* and p*, so we will not repeat the arguments here. In this section, we
assume that the individual scatterers are porous fluid-saturated materials having coefficients
that satisfy Gassmann’s equation. Then, we check to see if the results for a composite porous
material are consistent with Brown and Korringa’s result generally and with Gassmann’s result
specifically when only one type of solid grain is involved.

When computing the scattering formula for o, in each case we assume that the terms in
(48) proportional to (/' — K') have already been averaged to find the effective constant for the
drained porous frame. Then, these terms are guaranteed to cancel from the equations derived
in this section. This assumption is used repeatedly in the analysis for o*.

13



6.1 Average T-matrix approximation

For two fluid-saturated porous components, the ATA for o* is

Piga =0 oy ool
Kigq + 3u0 K@+ 1,0

Generalizing to multiple components and using (11) to simplify the result, we find
TATA o(x)
= ) 57
Ky g+ 500 <K(X) + %H(1)> (57)

Equation (57) clearly satisfies the requirement that 6% 4 is independent of the fluid properties.
For computations, (57) is the most useful form of the equation. However, to check the other

consistency conditions, it is helpful to substitute o* = 1 — K*/ K7 and ol =1 — K(i)/KT(ri).

Then,
1 1 1+ 3/ K5, (58)
K: \Fn) 14 30K (x) ]

Using (11) again, it is not difficult to see that (58) implies that K} = K,, if K(x) = K,, is
constant throughout. This result is required for compatibility with Gassmann’s equation.

For two components, it follows from (47) and (56) that

1 (c%)? @) 1 (0(2))2
+ = + ‘ 59
My Kips+ 3p) Y M T k@ + 3 (59)

Generalizing to multiple constituents and using (57), we find that

1 _ 1 [0(x) = Ty al?
Mir, <M(x) * K(x) + 4u > (60)

Comparing (60) to (51), we see that the only difference between the two is a term in (60) that
depends only on the solid properties. Thus, (60) is indeed consistent with the results of Brown
and Korringa (1975).

We can now use (60) to obtain an estimate of K. Substituting (44) into (60), we find that

o/ d(x) ira [ 0(x) \  [lo(x) = cipal?
K5 <Km(x)> + l K <Km(x)> <K(X) FIE VN >] ; (61)

where 1/K7 = (1 — 0%p4)/ K44 and ¢* = (¢(x)). To check the consistency of this formula

with Gassmann’s equation, consider the limit Kg) = KT(,?) = K,, in which we have already
shown that K7 = K,,. Then, using the identity (in this limit) that

<[U(X) — Caral’
K(x)+ %,u(l)

we find that the bracketed expression in (61) vanishes, so K} = K, as required for agreement
with Gassmann. Also note that (62) incidentally provides a simple proof that K%, 4 < (K(x))
in general and that 6%, > (o(x)) in this limit, since the left hand side of (62) is clearly
non-negative.

> = (K(x) = Kra)/ K7 = {04z — 0(X))/ K, (62)
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6.2 Coherent potential approximation

The main results of this subsection have appeared before in Berryman (1986).
For two fluid-saturated porous components, the CPA for o* is

o0V s 0P moies (63)

. + 0t —
KW+ 3utpy K@ + 308 pa

Generalizing to multiple components and using (16) to simplify the result, we find

of o(x
7k Cpf * = < -~ ( 4) * > (64)
Képa+ 380pa K(x)+ 3u0pa
Equation (64) clearly satisfies the requirement that of.p 4 is independent of the fluid properties.
For computations, (64) is the most useful form of the equation. However, to check the other
consistency conditions, it is helpful to substitute o* = 1 — K*/ K7 and ol =1— K(i)/KT(,ZL).
Then,

L — 1 . 1 —I_ %MEPA/I(éPA (65)
K \En(x) 14 3uips/K(x)
Using (16) again, it is not difficult to see that (65) implies that K} = K,, if K(x) = K,, is
constant throughout. This result is required for compatibility with Gassmann’s equation.

The CPA for M* is most conveniently written for the case of multiple components as

L 1 [0(x) — 07 pal’®
Méps <M(X) * K(X)+ 315 pa > ' (66)

Comparing (66) with (51), we see again that the fluid dependent terms are identical and that
is all we require for the approximation to be consistent with the result of Brown and Korringa
(1975). Note that the ATA (60) and the CPA (66) are identical when the shear modulus is
constant.

Equation (66) can now be used to obtain an estimate of K. Substituting (44) into (66),

we find that
o* ] o(x) aipa [ o(x) \  [lo(x) = atpal?
==\ 7 + == - - T . ; (67)
K K,.(x) K Ko (x) K(X)+ 3puipa
where 1/K? = (1 —ofps)/Kipy and ¢* = (¢(x)). To check the consistency of this formula

with Gassmann’s equation, consider the limit KT(,}) = KT(,?) = K,, in which we have already
shown that K7 = K,,. Then, using the identity (in this limit) that

<[U(X) — 0¢pal’
K(x)+ gp°

> = (K(x) = Kipa)/ K7, = (00ps — 0(X))/ Ko, (68)

we find that the bracketed expression in (67) vanishes, so K} = K, as required for agreement
with Gassmann. Equation (68) also shows that K7 p, < (K(x)) in general, and that ofp, >
(o(x)) in this limit.
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6.3 Differential effective medium

When there are only two components in the composite material, the defining DEM equation
for o is

ohem(y+dy) —ohpm(y) _ dy o —o}puy) (69)
Kooy +dy) + 30hpm(y)  (1—9) KO 4 247, 00,(y)’

from which it follows that

o) — ohEm(Y) 4
. I,’* - * 70
O %M*DEM(?J) Dem(y) + 3MDEM(?/) , (70)

with 03 53,(0) = o). Comparing (70) and (19), we find that

(1- y)diy (D a(v)] =

d ., d .., oD =0} puy)
3 e/ s (K] = =2 ()

which can be integrated to yield

oM - KO _ K@

opem(y) — o Khpu(y) — K® (72)

Equation (72) is the main result for o7, ;,,(y).
To compare the DEM result with that of ATA, note that (56) and (9) show that

s — oM _ @ Karat st _ B4~ KW (73)
o(2) — (1) K@)+ %,u(l) K@ — g’
from which we can easily derive
Tiga =0 _ Kip, — K (74)

o) - — KO - K@)

Equations (74) and (72) are very similar. Furthermore, recall that, if the shear modulus is
constant so M) = u(® = p* then K%y, = K}pps as we have shown previously. So it also
follows from (74) and (72) that 6% 4 = 055, When the shear modulus is constant.

Similarly, to compare the DEM result with that of CPA, note that (63) and (15) show that

o) — ok p, _ 0@ KO+ 3t pa _ KM — Ktpy (75)
o) —atpy oW K@ 4 Sutp, KO - Kgp,
from which it is easy to show that
otpa— 0% Kipy— K (76)

o)~ KO _ g@) "

Equation (76) should be compared to (74) and (72). Clearly, if the shear modulus is constant,
all three approximations give the same results for ¢* as well as for K*. Furthermore, it has
been shown elsewhere by Berryman and Milton (1991) that the result

o* —o(? K*— K@®)

S0 _o® ~ KO _ KO (77)
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is exact for two component composite porous media. Thus, all three approximations produce
expressions for K} or for ¢* in agreement with exact results for generalized Gassmann’s equa-
tions.

To check further for consistency with Gassmann’s equation, now substitute * = 1— K*/ K}

and o() =1 — E'(i)/li’f(ri) into (72). We find that

Kppu(9)/K:(y) = KO/KS  Kppy(y) — KO

KO/ -k KO- K® )
Solving for K}(y), we find
KO - g2
Ki(y) = ———— e OTRE - N (79)
(K W/~ K (2)/Ig7(;f)) + IIX‘;;Z((;) (1/1’17(73) - 1/1’17(7%))
Another useful form of the result [see Berryman and Milton (1991)] is
VK (0) = /K 1/ Eppy(y) ~1/K?) (80)

kD 1@ /KO —1/K®)

It follows from (79) or (80) that, if kY = kP = K,,, then K7 = K,, — consistent with
Gassmann’s equation. Expressions corresponding to (79) and (80) may also be derived for the

ATA and the CPA.
We now compute the DEM for the coeflicient M*. From (47), we find that

1 N 1 ohem(y+dy)  Kppm(y) + 500pem(y)
Mppu(y+dy)  Mppy(y)  oppm(y)  Kppu(y+dy) + 5uhpm(y)
_I_UBEM(Z/ +dy)(ohpm(y +dy) — ohpm(y))

Kppm(y+ dy) + 50550 (y)

_ 4y [ L 1 @  Kppu(y) + 3ubem(y)

(1= tM® Mpypy(yv) obem(y) K@+ Suh (1)

0(2)(0(2) — UJBEM(y))] (81)

K® + %H*DEM(y) '

To simplify (81), we need the following identities

openWtdy)  Kppn(¥) + 565 (v)
oY) Kppu(y+dy) + 5650 (Y)
— dy ldUBEM(Z/)/d’y B dKpHpm(y)/dy ] (82)
dy—0 ohem(y) Khpm(®) + 565mm()]

-1

and, using the results (19) and (70),

(1-y) ldUBEM(y)/d?J B dK D pv(y)/dy ]
ohem(Y) K () + 56580 ()
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KO+ 2 p0u(9) K® + 3uhpm(y)
_ l o®  Kpeu(y)+ %MEEM(?/) _1|. (83)
opem(¥) K@+ 5uppa(y)

[ (A 1] Kppm(®) + 5upem(y) K@ — Ky (y)

So, when we take the limit dy — 01in (81), terms of the form (83) cancel from both sides of the
equation and the result is

d 1 1 1 [0®) — o} ()]
1—9y)— - = - — + = P 84
( )dy [MDEM(C‘/)] M@ Mppy(y) K@+ 550 (y) (89

Comparing (84) with (55), we find that all terms depending on fluid properties are consistent,
while the remaining term in (84) depends only on solid properties. This result is required for
the DEM to be consistent with the results of Brown and Korringa (1975).

Considering the case with constant shear modulus, we find that (60) and (66) (being the
same in this limit) are both solutions of (84). Thus, we find again that all three approximations
are the same for constant shear modulus composites.

Using (72) we can further simplify (84) by noting that

w@)—aﬁmw@HQI(Am__* (%)) oo [L—BBEM@O+%M%MWWW
E® + uhpm(y) KM - KG) K®) + 30hpm(9)

o) = 5(2) . d
m) [0(2) —opem(y) — (1 - y)d._y (UDEM(y))]a
(85)
where (70) was used in the last step of (85). Equation (84) can now be rearranged into the
form
1 d N 0'(1) — 0'(2) 1 . 0.(1) — 0.(2)
(1- y)d_y M5nr(9) + UDEM(?/)I((U x| T M5 (9) +opEm(Y) RO o)

which is in the form shown to be integrable in Appendix A. Thus, we find the general result
for the DEM that

1 1 . o) _ 5(2)
M3 g (v) - <M(X)> +(o(x) — opEm(y)) (m) . (87)

To compare (87) to the corresponding result for CPA when only two constituents are present,
note that

o(x) — 0% ] oM _g@\? y eV _ 5(2) .
(b ceal)  (Z5m0 ) - Kena) = (i —eem ) (000 cmal(59)
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Substituting (88) into (66), we obtain

1 1 . o) _ (2)
Veor = \arpg) + ) = otea) (m) ’ (89)

which is of the same form as (87). A similar result holds for the ATA.
We can use (87) to find the DEM estimate of K. Eliminating the fluid terms from (87),
we find

&/ o)\, [ohenly) [ o(x) . o) _ o)
Ki(y) <Km(x)> * l IO <Km(x)> ~ (o) = oD (v) (K(l) - K(i’))]  (90)

S

(1) _

where ¢* = (¢(x)). To check the agreement of (90) with Gassmann’s equation, consider K’ =

K = K,,. We have shown before that, in this limit, K}(y) = K,,. Substituting these values

into (90) and simplifying, we find that the expression in brackets in (90) vanishes so the unique

solution is Ix;(y) = K. Thus, the DEM does satisfy Gassmann’s equation in this limit.
Finally, it has been shown by Berryman and Milton (1991) that the result

ot o Jo(x)— p(x) oM =6
K; T K: <T(x)> —(o(x) —0%) (m) (91)

is exact for two component composite media. The agreement in form between (90) and (91) is
clear. Furthermore, the results (61) and (67) for ATA and CPA respectively can be transformed
into the same form. Thus, we find that all three approximations produce formulas for K7 of
the right form to agree with all known exact results.

7 Gassmann’s Equation

In the previous section, we assumed that the scatterers had Biot coefficients that were them-
selves consistent with Gassmann’s equation. Then, we derived formulas that were consistent
with Brown and Korringa’s general result or with Gassmann’s result in special cases. Here we
will assume that the scatterers are spheres of fluid or spheres of a single type of elastic solid
and check to see if Gassmann’s equation is the result.

For a fluid inclusion, K’ = p' = 0, ¢/ = 1, and

1 1

= —. 92
JWf f(f ( )
For a solid inclusion, K’ = K,,,, ¢ = pt,, o' = 0, and
1
=0 93
= (93)

since the porosity of the solid vanishes. The volume fraction of fluid is ¢ and that of the solid
is 1 — ¢.
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7.1 Generalized ATA

We will now show that the generalized ATA for a mixture of fluid and solid spheres satisfies
Gassmann’s equation. In this section, we will not use any subscript to distinguish the starred
quantities. Also, it is required in what follows that the host shear modulus pf > 0. Figure 4
illustrates the concept of the generalized ATA considered here.

Starting with the effective porous frame bulk modulus for the generalized ATA, we find that

1 o) 1-¢

L (94)
K +gut gut 0 K+ gut
which can be rearranged to show that
K4 4t
K =(1-¢)K—3—. 95
L (95)
Similarly, the effective value of o* is given by
o* 10)
= 96
K+ gut Sut (56)
50
2 W K* + 3t -
o=+ | (K*4+-p)=1-(1-¢)—3—=1-K*/K,, 97
(%m)( g =1 (- / (97)

where (94) was used in the second step of (97), and (95) was used in the last step. Thus, (97)
shows that K} = K,,, as required by Gassmann’s equation.
The effective value of M* is given in this approximation by

r 1 [o(x) — o*]?
M* <M(x) + K(x)+ 4put > (98)

First, note that

(i) = 7 ®

in this limit. Then, note that, since o(x) = 0,1 for the fluid/solid composite, we have o(x) =
o(x)?, so

<a<x> - (a*>2> _o(i-07) (100,

K(x)+3ut [ K= +3pt’

T
=[5
P Eeuh
M| A
| —
=+ | |
wik| Q
= [
-+
~——
(l

Finally, we have

O'*(l _ O'*) B o* K* B o* . %MT B o* . é B o* — ¢ Lo
cx 4t T K x4 4t K K+ i) T K B - U ( )
K*+ 3u Cm K* + 5 m K*+3p Cm
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SO
r 1) o* — ¢
M* Ky Kp

: (102)

which is equivalent to Gassmann’s equation.

Thus, we have shown that Gassmann’s equation does result from any of the generalized
ATA approximations including the CPA as long as ut > 0. If uf = 0, this approximation fails
because much of the formal mathematics used here fails. This problem is significant for some of
these approximations since, for example, the CPA is known to produce p* = 0 for solid fractions
(1—¢) < 0.4. For the ATA, the significance of the problem is a little more subtle and has to do
with the choice of the host material. Clearly, we cannot choose the fluid to be the host for the
ATA since the fluid has puf = 0. However, if we choose the solid to be the host, then uf = u,,
which is satisfactory as far as the formal mathematical requirements, but this choice introduces
another problem. If the solid is used as the host in the ATA, then the thought process used to
derive the ATA clearly implies that the composite must have a connected (percolating) solid
frame for any value of the solid volume fraction. The fluid may or may not be connected in this
model; if not, then elasticity is sufficient and Biot’s equations need not be introduced. Also
significant is the fact that the scattering picture is one of Biot material imbedded in a solid
host. In contrast, since the CPA uses the effective medium as the host, the imbedding medium
for CPA is the fluid-saturated porous medium.

7.2 Differential effective medium

For the DEM, it will be instructive to derive the results twice: once with the fluid as the initial
host and once with solid as host.

Starting with fluid and adding solid, we have M*(0
E*(0)= KM =0, p*(0) = pM =0,1/M? =0, ¢ =
(19) and (70), it follows that

) = = Ky, 05(0) = o) = 1,
0, I()_Ixm,andqb_l—y From

d d
“log o*(y) = —log [K,, — K*(v)], 1
G080 (1) = o8 [ — K7(y)] (103)

which can be integrated to yield
o (y)=1- K*(y)/ K, (104)

as required. The equation for M*(y) is (84), which becomes

a1 1 1 [0 (y)I*
1—y)—= [ ] + - . 105
-9 M*(y)] ~ M*(y) K+ 307(y) 1o
To satisfy Gassmann’s equation, we must have
1 l-y o'y -(1-y)
= . 1

Mily) T K | K (106)

Substituting (106) into the left hand side of (105), we find
(1L |2 L _ oW, KW+ W) o) K= K*(y) , (107)

dy | Mz(y)|  Mily) K Ko + 507(y) Kp K+ 3p%(y)
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which reduces correctly to (105). Thus, M*(y) = M{(y), so the DEM does give Gassmann’s
equation. The fact that g*(0) = 0 plays no role in this result; furthermore, having p*(y) = 0
for any value of y > 0 would also not affect the result. This conclusion is significant because,
if we assume K*(0) = p*(0) = 0, then a solution is K*(y) = p*(y) = 0 for all y < 1. So in this
case the DEM produces the correct moduli for a suspension (a fluid containing solid particles
not touching each other), which also satisfies Gassmann’s equation.

Now starting with the solid as host and adding the fluid, we have 1/M*(0) = 1/M®1) =0,
o*(0) = oM =0, K*(0) = KU = K,,, p*(0) = p) = ptp,, M® = K7, 0@ =1, K? =0, and
¢ = y. Substituting these values into (19) and (70) gives the result

Liog[1 - 0" (y)] = - log K*(y) (108)
dy og o \y)= dy og Y)
which can be integrated to yield
1—0"(y) = K™(y)/ K, (109)
again as required. Substituting into (84) gives the result
d 1 1 1 1—o*(y)? 1 K*(y)]?
g Emlt e B e S Ay (0
y LMyl = M=(y) Ky 3pm(y) f Khse(y)
If M*(y) is to satisfy Gassmann’s equation in this case, it must be of the form
1 y ,oW-y
==+ —. 111
Mi(y) Ky + K., (111)
Substituting (111) into the left hand side of (110) gives
d 1 1 1 1 1 d
1 _ . - _ - 1 _ . * *
(-9, lMc*;(y)] Yy S K TR, (I=y)g, oW +W)
(012
- 12‘ W (11

showing again that M*(y) = M{(y), so the DEM satisfies Gassmann’s equation. In contrast to
the previous derivation, this one would clearly break down if p*(y) = 0 for any value of y < 1.

8 Inequalities

In this section, we will develop some relationships that show the range of possible variation of the
coeflicients in Biot’s equations when they are computed using one of the three approximations
(ATA, CPA, or DEM) that we have been studying. One motivation for finding such bounds is
to provide a more transparent method of checking the results of the previous sections. Another
motivation is that knowledge of limits and the range of possible values is very helpful for checking
the results of numerical algorithms such as those to be developed in the next section. We stress
that the results in this section are bounds not only on the estimates of the effective constants,
but also bounds on the constants themselves when only two constituents are present [because
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then the formulas used are exact (Berryman and Milton, 1991)]. To the author’s knowledge,
no work has been published previously providing nontrivial bounds on the coefficients in Biot’s
equations. However, the theory of composites has been used to find rigorous bounds on the
elastic constants for the frame and the known results for porous media have been enumerated
earlier by Berryman and Milton (1988).

First, recall the known inequalities satisfied by the effective bulk and shear moduli in all
three approximations. The inequalities for the generalized ATA and CPA follow from the
monotonicity of the functional

K(p) = <m> - (113)

as has been shown previously by Berryman (1982). The resulting set of inequalities for K*
computed using either ATA or CPA is

min K (x) < (1/K(x))" < K* < (K(x)) < max K (x). (114)

To see that K7},,, also satisfies (114), note the following rearrangements of (19)

(K@ — Ko (v)]

d
1— ],* I,r* — I((Q) _ < I,(Q) 11
( y)—dy[XDEM(y)]—I- DEM(Y) KO+ T (g ~ ( (115)
and
d 1 1 1 2
) — — K@= _
" y)dy lKl*)EM(y)] * Kppu(y) K@) [A [EDpm(y) 1]

)
1( - ! ] = (116)

< .
- lﬁ D KO+ guppy(y)] — K@

The inequalities on the right of (115) and (116) follow from inspection and the fact that
EhEam(y) > 0. The analysis in Appendix A shows that integrating (115) gives K} (y) <
(K(x)), while integrating (116) gives 1/ K7 p3(y) < (1/K(x)). Thus, we have shown that the
set of inequalities given in (114) is valid for all three approximations considered. Analogous
arguments for the shear modulus may be used to show that

min a(x) < (1/u(x)) " < 4 < (u(x)) < max p(x). (117)
The monotonicity of K(u) may also be used to show that
Kira < Kopa < Kjpy, (118)

where K, is the value of K%, for uf = min u(x), while K}, , is the value of K%, for
pf = max p(x). Similarly, we find that

Kura < Kppu(y) < Kipy (119)
follows from the fact that

(1—@/)i !

1 1
= + = = —
dy [I‘DEM(?/) + %HT] Kppu(y)+5ut K@ 4 St
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EO gt ) 1 1

Kppm(y) + gt ] lK(Q) + 3t Khpu(y) ‘1" st

< my (120)
since the right hand side of (120) is less than or equal to 1/(K® + 2ut) when p} a0, (y) > uf,
while it is greater than or equal to 1/(K® + 4ut) when p}ga(y) < pf. The result (119) then
follows from the two extreme cases of (117). Since K1, and K5, have values identical to
the upper and lower bounds of Hashin and Shtrikman, (118) and (119) provide proofs that the
estimates obtained from CPA and DEM lie between these rigorous bounds. A similar proof
can be given for the shear modulus estimates. See Berryman (1982) and McLaughlin (1977)
for earlier proofs.

Recall that the absolute bounds on o given by 0 < ¢(x) < o(x) < 1 follow from its definition,
the non-negativity of the bulk moduli, and the Voigt bound (Watl et al. 1976) on the frame
modulus K (x) < (1 — ¢(x))K,,(x). When only two constituents are present in the composite,
(72), (74), and (76) have the same form as the general result (77), shown to be exact in this
limit. Inequalities for o* then follow from (114) and (77). First, it follows easily that

mino(x) < 6" < maxo(x). (121)
Then, assuming without loss of generality that K1) > K(2) we also have

(K7'(x))' - K®  o*—0® (K(x))-K®?

KO K@ S50, = g0 K@ (122)
Furthermore, we can show that
o*— (o)  K*—(K)
o0 — o)~ KO KO (123)
If the grain modulus is constant kY = kP = K,,, then (123) implies 0* > (o), which also

follows in this simple case from K™ < (K).

For the ATA and CPA estimates of K}, we find bounds by treating the shear modulus in
the formulas (58) and (65) as a parameter. Then, letting g — 0 and g — oo, we find the limits
of 1/K7 are (1/K,,(x)) and (K(x)/K,,(x))/(K(x)), respectively. Which of these limits is the
upper and which the lower bound depends on the relative values of the constituent constants.

For two constituents if (K (2 — K(l))(](?(nl) — Bq(i)) > 0, then

1 1 (K(x)/EKn(x))
(em) S e (124)

The inequalities in (124) are reversed if (K () — K(l))(ﬁ}g) — KT(,?)) < 0. Also, note that it is
easy to show from (124) and (114) that (o(x)) < o*, whereas this inequality is also reversed
if the either of the relative values is reversed. A bound on K for the DEM follows from (79)

when only two constituents are present and K2 < K1), Then, if ng) < I(?(?%), we find

K® < kr< kW, (125)
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If the inequality on the grain moduli is reversed, then the inequalities in (125) are also reversed.
The inequalities in (125) are valid for all three approximations. All of these bounds on K} show
that K7 = K,, if the grain modulus K(x) = K,, is constant. Furthermore, a rigorous bound
on K} that follows from (80) and (114) is

min K,,(x) < K < max K,,(x). (126)

which is valid for two constituent porous composites.

Using the fact that o(x) > ¢(x), we find for the ATA and for the CPA that
¢ (o) do)
— — —2>{({————) > 0. 12
K K3~ < o) /=0 (127)

Equation (127) follows easily by rearranging (61) and (67). Similarly, (90) may be rearranged
to give

dy \ K: K K: K K9
(0@ — o5 ) @ @)

K@+ Suppn — K

(128)

The two constituent version of (127) for DEM follows from (128) using the analysis of Appendix
A. Equation (127) does not provide an optimal (tight) bound on K. To obtain a better bound,
we solve (61) and (67) for K7, so that

¢*
o* /K3 = ([o(x) = ¢(x)]/ En(x)) = ([o(x) = o*]*/[K (x) + 37])

Then, the tightest possible bounds on K are obtained from (129) by substituting the optimal
bounds on K} and ¢* found previously. The resulting inequalities are not illuminating however,
so we will not present them here. Furthermore, for special values of the constituents’ parameters,
it is possible for K7 to take virtually any real value —oo < K7 < +oo. This point will be clarified
in the remaining paragraphs of this section and in more detail in the next section.

We will conclude this section by presenting a rigorous bound on the actual effective constants
(not just a bound on the estimates). Recalling that the coefficients H and M are coefficients
in the quadratic form for the internal energy (27), we then have in general that both of these
coeflicients must be non-negative in all circumstances, otherwise the fluid-saturated porous
material would collapse due to an inherent mechanical instability. Using (36) and (37) together
with the implicit assumption that K7 and K7 are independent of the pore fluid modulus Ky,
the inequality M > 0 from mechanical stability is sufficient to show, in general, that

K= (129)

O.* ¢*
— > 0. 130
K; K; - (130)

This follows because, if (130) were not true for some porous material, then with a nearly
incompressible fluid in the pores C' and M would become negative. Inequality (130) guarantees
that the porous frame is mechanically stable against collapse, regardless of the properties of
the saturating fluid.
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Now there are two ways in which (130) can be satisfied. First, it will be trivially satisfied
if K7 > 0and Kj < 0. From the definition (41), we see that K could be negative if an
increase in the fluid pressure p; at constant differential pressure py resulted in an increase in
the pore volume. Although negativity of A7 may seem odd, it does not appear to be physically
impossible. Second (and we expect the more common situation), (130) will be satisfied if
K;>0,K>0,and

K3 > ¢"K: o™ > " K. (131)

Of course, Gassmann’s equation automatically satisfies (131), since in that case K =K; >
¢* K7 is satisfied trivially.

Inequality (131) provides an elementary check on the consistency of experimental data. For
example, if we consider the data presented for Berea sandstone by Green and Wang (1986), we
find that in one case (pg = 2.0 MPa) the data do satisfy the inequality K3 > ¢"K7, while in
the other two cases (pg = 0 and pg = 0.9 MPa) the data violate the inequality. This lack of
consistency may be due to the fact that Green and Wang used values of the compressibilities
1/K* and 1/K} taken from the literature, while their own measurements on different samples
were used to estimate 1/K. The consistency relation (131) is a sensitive check on the input
parameters to Brown and Korringa’s equations; Green and Wang (1986) noted some small
(< 5%) discrepancies between the calculated and measured values of the pore pressure buildup
coefficient, but were unaware of the demonstrable inconsistencies in the data they used.

Monotonicity properties of the formulas for A and K at fixed values of volume fraction
and as a function of K™ are discussed in Section 10. These monotonicity properties could also
be used to generate inequalities for the constants.

9 Special Analytical Results

In this section, we will show that, in some special cases, the DEM formulas as well as the CPA
and ATA can be solved exactly. These results are not expected to have much direct practical
importance, but they do provide very convenient checks on the numerical methods used to solve
the equations.

Starting again with the solid as host and adding the fluid, we have 1/M*(0) = 1/M®) =0,
0*(0) = oM =0, K*(0) = KO =K, w(0) = p =y, M3 = Ky, o® =1, K& =0, and
¢ = y. Substituting these values into (19) and (20), we find

d 1 1 1
1—y—[, ]:, + , 132
=95 7w = 7 s (y) 1
and
d 1 1 1
1—y)— [ ] = + . 133
S rw) T e T W 13
The resulting elastic constants satisfy a power law relation if and only if K,, = %um = %Fm
(which is approximately true for glass beads), in which case
KX (9)/ K = 1°(9) 1t = (1 = 9)* = (1 = ¢)°. (134)
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Another exact result is obtained from (19) and (20) when K1) = 24(1) and K® =
%u@) (i.e., when Poisson’s ratio takes the constant value of 1/5). Then, K}y, (y)/K® =
HEEM(?/)/N(Q) = f(y), where the function f(y) satisfies the equation

2/(y)[1 — f(y)]
L+ f(y)
The existence of two distinct solutions to the nonlinear ordinary differential equation (135) fol-

lows easily from the observation that f(y) and 1/f(y) both satisfy the same equation. Equation
(135) can be integrated analytically to yield

(1- y)d%f(y) = (135)

fely) = 1+ ()2 [0(y) + b)) (136)
where
_L-sOF,
Py) = 7(0) (1-9), (137)

with f(0) = ]((1)/]((2) > 0. Only one of these solutions satisfies the initial condition; thus, the
minus sign in (136) holds when f(0) < 1 and the plus sign when f(0) > 1. Furthermore, note

that fi - f_ = 1.

The CPA can also be solved exactly when the constituents satisfy K1) = %,u(l) and K =
4
3
%F *. Solving

12, Then, the equations for the bulk and shear moduli are proportional since K* = %,u* =

1 1
2K* <K(x) + K* > (138)
for K*, we find that
K*(y) = 0(y) + [0*(y) + KO KD]?, (139)
where
0(y) = LKW - K@)(1 - 2y). (140)

At y = 1, the CPA gives the geometric mean K*(%) = (K(I)K(Q))%. To compare this result

with that of DEM, we can prove (using the general fact for positive f that [1+ f(0)] > Qf%(O)
and carrying through some tedious algebra) that

F-(3) < 12 (0). (141)

Since K* = f%(O)K(Q) is the geometric mean, (141) shows that the DEM gives a lower value of
the effective constant than the CPA at y = £ when f(0) < 1. The fact that fi(y) = 1//_(y)
together with (141) then shows that the DEM gives a higher value of the effective constant
than CPA at y = 1 when f(0) > 1, since

F+(3) = 1730 (142)



The exact results (134) and (136), although very special and therefore unlikely to apply in
real problems, are very useful checks on our numerical integration scheme. We have chosen to
use a Runge-Kutta integration scheme (Hildebrand, 1956), to improve the accuracy and thereby
avoid the necessity of using very small steps in y. Likewise, the exact formula (139) serves as
a check on the convergence of our iteration scheme for the CPA.

10 Numerical Comparisons

Detailed discussion of numerical methods for ATA and CPA were presented by Berryman
(1980). A brief discussion of methods for DEM will be followed by numerical comparisons
among the various approaches.

Since the formulas (77) and (91) are known to be exact for two component composite porous
media, the only differences that will occur in the computations of the approximations aarise
from the differences in the computed values of the frame bulk modulus K*. It follows from (77)

that
do* [ oW _ @
dK* ~ (K(l) —K® )’ (143)

or from (80) that

d/Kn)  YED - yEd
d(1/K*) " KO /K@~ "

(144)

so * is a monotonic function of K* and 1/ K7 is a monotonic function of 1/K*. Whether these
are monotonically increasing or decreasing depends on the signs of the derivatives in (143) and
(144). Similarly, it follows from (91) that

LA/KG) = 1 145

¢ d1/K —7(1+7). (145)

Also notice that the results (143) and (144) are independent of the volume fractions of the

constituents, while (145) is dependent on both the volume fractions and the porosities of the
constituents.

For fixed values of the volume fractions, we see that ¢* is a linear function of K*, while
K7 is hyperbolic in K*. The behavior of A7 implied by (145) is generally hyperbolic in K™,
but it is also complicated by the fact that in some (rare) cases K can be negative. If (again
for fixed values of the volume fractions) there exists a value of K* for which the right hand
side of (91) vanishes, then as K* varies near this value from slightly smaller to slightly larger
values K7 will jump from —oo to +o0 (or vice versa) and then continue to vary monotonically
as K* continues to increase. Clearly, either a positively or negatively infinite value of A7 has
the same physical significance: the pore space becomes incompressible for this special value of
K*. Except for this unusual case, the monotonicity properties of the moduli are quite simple.
Depending on the signs of the slopes in (144) and (145), we expect predictable relationships
between estimates of K7 and K for different estimates of K*.

We will now consider some particular examples.
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10.1 Analytical model

Our first example will be the artificial model introduced in Section 9 that can be solved ana-
lytically. The defining requirement for this model is that the materials constituting the porous
composite have a constant Poisson’s ratio of 1/5. This condition is equivalent to requiring
K@) = %,u(“), K® = %,u(b), etc. Table 1 lists four such artificial materials. Units in Table 1 are
arbitrary, but could be taken to be 10 GPa; then, material ¢ behaves like a porous glass.

The main purpose of this exercise is to check the numerical accuracy of our codes since
the exact formulas can be directly compared to the results of the integration and iteration
performed for the DEM and the CPA, respectively. We find that the two calculations of the
DEM agree in all cases to four significant figures when we compute the DEM in steps Af = 0.01
of the increment in volume fraction.

Tables 2, 3, and 4 give details of three sample calculations, each succeeding case with more
extreme contrast between the constituents’ parameters than the one that preceded it. In each
Table, the columns labeled DEM ™~ and DEM™ refer to DEM calculations starting with the low
modulus material or the high modulus material as host, respectively. The CPA is symmetric
in the constituents so only one result is obtained, assuming as we must here that the inclusions
are spherical. We see in general that the values of K* satisfy

Kppm- < Kopa < Kppy+s (146)

as we expect from the preceding analysis. But, note that (146) has only been rigorously proven
for f = 0.5 at present. Nevertheless, (146) holds for this analytical model without exception
empirically. Given (146) the preceding analysis (144) in this section shows that

K*(DEM™)< KX(CPA) < KX(DEM™), (147)

as is again observed to hold in the examples. No such simple relation holds or can be expected to
hold for the bulk parameter K. Indeed the observed variations for this parameter are neither
monotonic nor bounded by the extreme values of K,,. As the contrast increases, it is also
observed that negative values of K} occur. As explained previously, this behavior is actually
required by the mechanical and thermodynamical constraint (130).

10.2 Mixture of two sands

Next we consider a mixture of two types of sandstone whose properties are listed in Table
5. We chose the type-A sand to be the same as one considered by Korringa and Thompson
(1977), and type-B is a modified version of their type-B. Korringa and Thompson (1977) used
essentially the same method as the CPA we use here to arrive at their frame constants. Korringa
and Thompson also used more general CPA formulas based on nonspherical pore shapes to
generate other examples; this approach is presumably similar to that discussed in more detail
by Berryman (1980). We had to modify the type-B sand because Korringa and Thompson treat
two sands with the same grain bulk modulus K,,. But we know that the results for A7 and K7
will then be trivial for all values of the mixing fractions, since Gassmann’s equations requires
that K7 = K3 = K, in this situation.

Table 6 shows the results of the calculations. We see that with only moderate contrasts in
the material properties all the moduli behave in a very regular, monotonic manner as a function

29



of the volume fraction. In addition to the relations (146) and (147) which are again observed
to hold for these synthetic data, now we also observe that

K;(DEM_) < K;(CPA) < K;(DEJW"') (148)
and furthermore that

K; < K} (149)
within each class of approximation. The results of the previous subsection show that (148) and
(147) are not general, but nevertheless we expect them to hold whenever the properties of the
constituents are not too dissimilar.

10.3 Clayey sandstone

The presence of clay in sandstones has been shown to have a significant effect on the com-
pressional and shear wave speeds of such rocks (Han, Nur, and Morgan, 1986), and to have a
strong effect on the slow wave propagation and fast wave attenuation as well (Klimentos and
McCann, 1988; 1990). The present results together with the exact results of Berryman and
Milton (1991) may be used to derive formulas for clayey sandstone, depending only on known
quantities and the overall bulk modulus K* of the composite. This calculation is a two step
process.

First, consider a porous clay composed of a single type of solid grain, but with a substantial
amount of void space in the interstices among the mineral grains making up the clay and also
with occasional large voids. We will call this the type-a composite. Such a material may be
treated by taking the porous clay as the first constituent (type-1) and the large voids as the
second constituent so that ¢(2) = ¢(2) = 1 and K = 0. Then, [f(V) + fPp(®) = FD 41 4 £(2)
and it is not difficult to show that (77) and (91) reduce to K = K(Esa) = Kr(r}), also in agreement
with Gassmann. We could have anticipated this result since, by assumption, there is only one
type of solid grain in such a clay with large voids.

Second, consider a clayey sandstone in which sand grains are imbedded in a matrix of clay
including some large pores (see Figure 5). Thus, we have a mixture of types a and b where
we computed the coefficients for type-a in the preceding paragraph and the coefficients for the
solid grains (type-b) are given by ¢ = o) =0 and KO = KSZ). The overall results for the
clayey sandstone as determined by (77) and (91) are then given by

@ K" — K

s gle) 2T Am 150
7T K@ _ KO (150)
and
¢° 0" W= ) ) ey 0D
K; K ! K (7o 7 )(K(a) - Kfﬁ))' (151)

In these formulas, KT(,?) = Kr(r}), the volume fractions satisfy f) + f(2) = fla) =1 — f(® and
the porosities ¢* = f(@gle) = fFMp) 4 £(2),
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To obtain some insight into the behavior of (150) and (151), suppose that the clay is com-

posed of nearly incompressible grains so that K, — oo and o(® — 1. Then, if the bulk
modulus of the clay/void mixture is much smaller than the bulk modulus of the sand grains,

we have K(9) « Kfﬁf) and
K~ KD (152)
follows from (150). Similarly, letting K = 00 and K@ — 0 in (151), we have
Kj~ @WK, (153)

There is an implicit assumption in the derivations of (152) and (153) that K(*) < K* ~ K,
if instead K* ~ K(%)_ then K¥ — oo and either K% — oo or K7 takes negative values in order
to satisfy the physical requirement (130).

We also note that both of these results (152) and (153) are essentially independent of both

K* and K@) as long as the assumption that K@) « KT()E;) ~ K* holds. Both coefficients are
strong functions of K* if K* — K@),

Table 7 shows the properties of a clay and a sand (Kayenta). Both of these sets of values
correspond to examples discussed by McTigue (1986) and Palciauskas and Domenico (1989).

Table 8 shows the results of our calculations. The sand is assumed to occupy the fixed
fraction f(®) = 0.8, while the large void fraction f(2) = 1 — f(1) varies with the clay fraction.
For this example, the clay fraction varies from 0.0 to 0.2. First, the effective constant K(*) is
computed for the clay/void composite. Then, K* is computed for the sand/clay/void composite.
The results substantially agree with the formulas (152) and (153). For example, notice that for
this calculation 0.4 < ¢(*) < 1, whereas 0.08 < ¢*/o* < 0.2/0.34 = 0.59. Thus, the requirement
from (130) that K3 > ¢" K7 /o™ reduces to #@) > ¢*/o*, which it can be see from the values in
Table 8 is easily satisfied for all volume fractions.

11 Conclusions

All three of the approximations considered (ATA, CPA, DEM) give estimates of the coefficients
that are in agreement with the general results of Brown and Korringa (1975) when the scatterers
are spheres of Biot material satisfying Gassmann’s (1951) equation. All three approximations
are identical when the shear modulus is constant throughout the porous composite and agree
with Hill’s exact formula (Hill, 1963) for the effective bulk modulus K*. It is reasonable to
conjecture in general that the formulas obtained for the coeflicients in Biot’s equations are
exact in the limit of uniform shear modulus. As further evidence in favor of this conjecture, it
is known that the formulas are also exact when the composite porous material contains only
two porous constituents with the same shear modulus (Berryman and Milton, 1991).

Having proven that all three of these approximations have the proper dependence on the fluid
bulk modulus, we were able to eliminate the fluid from further consideration and concentrate
on the more difficult problem of evaluating the various moduli of the composite porous frame.

The ATA is the easiest approximation to compute since the formulas are explicit. The other
two approximations require either iteration or integration for their solution. However, ATA is
usually an extreme approximation; with only two constituents, ATA provides either an upper
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or lower bound on the actual values of the effective constants. Because of the inherent path
dependence of the integration scheme, the DEM is difficult to generalize for multiple constituents
[but see Norris (1985) for a discussion], while the ATA and CPA are easily generalized as shown
here.

When only two constituents are present in the porous composite and these constituents
fit perfectly to fill the volume, exact formulas are now known for all the moduli in terms
of the effective bulk modulus of the porous frame (Berryman and Milton, 1991). All three
approximations found in the present paper agree in form with these exact results, but they
may nevertheless produce differing values because the estimates of the frame bulk modulus K*
generally differ in the various approximations. The ATA and CPA are also more versatile than
the exact formulas since they provide approximate formulas for problems with two or more
types of spherically shaped constituents, whereas the exact results are valid only for composites
having two constituents of arbitrary shape.

The results presented in this paper are based on scattering coeflicients for spherical inclu-
sions, thus limiting their applicability. Scattering coeflicients for non-spherical inclusions of
Biot material are not known at present, so the generalization to composites containing other
inclusion shapes must await the calculation of these coefficients.
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A Analysis of DEM Equations

A recurring equation in analysis of DEM formulas is

(1= )3 W)+ X(0) = h(o), (154)

for 0 < y < 1 with the initial condition x(0) = G. If the right hand side is constant [say
h(y) = H], then the solution is

xa(y) = (1-y)G+yH. (155)

If the right hand side is positive h(y) > 0, then (154) may be analyzed by considering

d
(1- y)@ [X(9)] +x(y) > 0, (156)
which can be integrated to yield

x(y) > (1 =y)x(0) = (1 -y)G. (157)

Now, if the right hand side of (154) is less than some constant so h(y) < H, it is straight-
forward to see that

(1- y% e (9) = x(0)] + () = x(0)] = H — hy) > 0. (158)

Noting that xz(0) — x(0) = 0 and using the result (157), we finally have

x(y) < xu(y). (159)

This inequality is used repeatedly in the analysis of DEM equations. In particular, it shows
that (1/K(x))™" < Kpprly) < (£ (x)).
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Table 1. Four materials with Poisson’s ratio equal to 1/5. Units are arbitrary.

material | ¢ K | K, 7 L

a 0.35 | 1.00 | 4.00 | 0.7500 | 3.00
b 0.35 ] 0.20 | 0.80 | 0.1500 | 0.60
¢ 0.35 | 0.10 | 0.40 | 0.0750 | 0.30
d 0.35 ] 0.01 | 0.04 | 0.0075 | 0.03

Table 2. Computations for a composite of types a and b from Table 1. Units are arbitrary.

fraction DEM™ CPA DEMT™
JO=1-yO 1 Kk~ | K; | K; | K* | K; | K; | K* | K; | K}
0.0 0.20 | 0.80 | 0.80 | 0.20 | 0.80 | 0.80 | 0.20 | 0.80 | 0.80
0.2 0.26 | 1.06 | 1.21 | 0.27 | 1.07 | 1.25 | 0.29 | 1.14 | 1.48
0.5 0.42 | 1.68 | 2.39 | 0.45 | 1.79 | 2.93 | 0.48 | 1.90 | 3.73
0.8 0.70 | 2.80 | 3.99 | 0.75 | 2.99 | 4.94 | 0.76 | 3.03 | 5.16
1.0 1.00 | 4.00 | 4.00 | 1.00 | 4.00 | 4.00 | 1.00 | 4.00 | 4.00

Table 3. Computations for a composite of types a and ¢ from Table 1. Units are arbitrary.

fraction DEM~ CPA DEMT
JO=1-79 1 K~ | K; | K; | K* | K; | K; | K* | K; | K}
0.0 0.10 | 0.40 [ 0.40 [ 0.10 | 0.40 | 0.40 [ 0.10 [ 0.40 | 0.40
0.2 0.14 | 0.57 | 0.70 | 0.15 | 0.58 | 0.75 | 0.18 | 0.70 | 1.41
0.5 0.27 | 1.06 | 2.26 | 0.32 | 1.26 | 8.15 | 0.38 | 1.50 | -6.83
0.8 0.57 | 2.28 | 7.17 | 0.69 | 2.74 | -53.02 | 0.70 | 2.82 | -25.46
1.0 1.00 | 4.00 | 4.00 | 1.00 | 4.00 | 4.00 | 1.00 | 4.00 | 4.00

Table 4. Computations for a composite of types a and d from Table 1. Units are arbitrary.

fraction DEM~ CPA DEMT
JO=1-f@O | Kk | K; | K; | K* | K; | K; | K* | K; | K}
0.0 0.01 | 0.04 | 0.04 | 0.01 | 0.04] 0.04]0.01|0.04] 0.04
0.2 0.02 | 0.06 | 0.09 | 0.02 | 0.07 | 0.10 | 0.06 | 0.23 | -0.15
0.5 0.04 | 0.15 | -4.01 | 0.10 | 0.40 | -0.11 | 0.26 | 1.06 | -0.11
0.8 0.17 | 0.70 | -0.35 | 0.61 | 2.44 | -0.20 | 0.65 | 2.59 | -0.22
1.0 1.00 | 4.00 | 4.00 | 1.00 | 4.00 | 4.00 | 1.00 | 4.00 | 4.00
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Table 5. Material constants for two representative sandstones.

material | ¢ | Kcpa(GPa) | K,,,(GPa) | ucpa(GPa) | pn,(GPa)
sand A | 0.3 17.76 40.0 15.62 40.0
sand B | 0.3 11.44 30.0 8.07 20.0

Table 6. Computations for a sandstone mixture of types A and B from Table 5. Units for bulk
moduli are GPa.

Sfraction DEM™ CPA DEMT™

e K* | K} | K3 | K* | K; | K5 | K* | K; | K
0.0 | 11.44 [ 30.00 | 30.00 | 11.44 | 30.00 | 30.00 | 11.44 | 30.00 | 30.00
0.2 | 12.48 | 31.86 | 32.27 | 12.48 | 31.86 | 32.30 | 12.51 | 31.91 | 32.41
0.5 | 14.23 | 34.80 | 35.56 | 14.26 | 34.84 | 35.68 | 14.29 | 34.89 | 35.80
0.8 | 16.26 | 37.89 | 38.46 | 16.29 | 37.93 | 38.58 | 16.30 | 37.95 | 38.61

1.0 17.76 | 40.00 | 40.00 | 17.76 | 40.00 | 40.00 | 17.76 | 40.00 | 40.00
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Table 7. Material constants for a clay and a sandstone (Kayenta).

material | ¢ | K(GPa) | K,,(GPa) | u(GPa) | p.,(GPa)
clay 0.4 | 0.0625 50.0 0.001 0.002
sand 0.0 37.88 37.88 29.0 29.0

Table 8. Computations for a clayey sandstone composed of the materials in Table 7. The sand
is assumed to occupy the fixed fraction f(®) = 0.8 = 1 — f(@), while the large void fraction

f@ = (@) _ () Units of bulk moduli are GPa.

clay | porosity DEM~ CPA DEMT

f(l) o* K* K I(; K* K I(; K* K I(;
0.00 0.200 0.000 | 37.88 | 37.88 | 22.84 | 37.88 | 37.88 | 24.95 | 37.88 | 37.88
0.02 0.188 0.001 | 38.25 | 39.28 | 22.84 | 37.88 | 37.30 | 24.95 | 37.88 | 37.30
0.04 | 0.176 0.002 | 38.29 | 38.97 | 22.84 | 37.88 | 36.67 | 24.95 | 37.88 | 36.67
0.06 0.164 0.005 | 38.33 | 38.62 | 22.84 | 37.88 | 35.97 | 24.95 | 37.88 | 35.97
0.08 0.152 0.008 | 38.38 | 38.25 | 22.84 | 37.88 | 35.19 | 24.95 | 37.88 | 35.19
0.10 0.140 0.012 | 38.44 | 37.92 | 22.84 | 37.88 | 34.32 | 24.95 | 37.88 | 34.32
0.12 0.128 0.019 | 38.52 | 37.66 | 22.84 | 37.88 | 33.33 | 24.95 | 37.88 | 33.34
0.14 | 0.116 0.028 | 38.63 | 37.58 | 22.84 | 37.88 | 32.22 | 24.95 | 37.88 | 32.23
0.16 0.104 0.043 | 38.79 | 37.92 | 22.84 | 37.88 | 30.95 | 24.95 | 37.88 | 30.96
0.18 0.092 0.077 | 39.04 | 39.42 | 22.84 | 37.88 | 29.49 | 24.95 | 37.88 | 29.50
0.20 0.080 0.352 | 39.57 | 45.69 | 22.89 | 37.89 | 27.84 | 24.99 | 37.89 | 27.83

Table 9. Same as Table 8 except that the sand is assumed to occupy the fixed fraction f(*) =
0.6 =1 — f(®), Units of bulk moduli are GPa.

clay | porosity DEM~ CPA DEMT

f(l) o* K* K I((’g K* K I(;‘) K* K I(;‘)
0.00 0.400 0.0000 | 37.88 | 37.88 | 7.67 | 37.88 | 37.88 | 13.74 | 37.88 | 37.88
0.04 | 0.376 0.0002 | 39.40 | 41.49 | 7.67 | 37.88 | 37.30 | 13.74 | 37.88 | 37.30
0.08 0.352 0.0006 | 39.54 | 41.45 | 7.67 | 37.88 | 36.67 | 13.74 | 37.88 | 36.67
0.12 0.328 0.0012 | 39.67 | 41.37 | 7.67 | 37.88 | 35.97 | 13.75 | 37.88 | 35.97
0.16 0.304 0.0021 | 39.82 | 41.33 | 7.67 | 37.88 | 35.19 | 13.75 | 37.88 | 35.19
0.20 0.280 0.0034 | 39.98 | 41.36 | 7.67 | 37.88 | 34.32 | 13.75 | 37.88 | 34.32
0.24 | 0.256 0.0054 | 40.19 | 41.54 | 7.67 | 37.88 | 33.34 | 13.75 | 37.88 | 33.34
0.28 0.232 0.0086 | 40.44 | 41.96 | 7.67 | 37.88 | 32.23 | 13.75 | 37.88 | 32.23
0.32 0.208 0.0143 | 40.76 | 42.83 | 7.68 | 37.88 | 30.96 | 13.75 | 37.88 | 30.96
0.36 0.184 0.0287 | 41.18 | 44.60 | 7.69 | 37.89 | 29.51 | 13.75 | 37.88 | 29.50
0.40 0.160 0.1622 | 41.77 | 48.48 | 7.79 | 37.94 | 27.97 | 13.81 | 37.91 | 27.86
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Figure Captions

Fig. 1. The average T-matrix approximation (ATA) treats one of the constituents (type-1 here)
as the host and sets the single-scattering contributions from the inclusions equal to the
scattering from a sphere of the effective composite.

Fig. 2. The coherent potential approximation (CPA) treats the composite itself (type-*) as the
host and sets the single-scattering contributions from all the inclusions equal to zero.

Fig. 3. The differential effective medium (DEM) approach treats the last computed effective
constant K (y) as the host and sets the single-scattering contributions for infinitesimal
concentrations of inclusions equal to the scattering from a sphere of the next effective
constant K (y + dy). After taking the limit dy — 0, a differential equation for the effective
constants is obtained.

Fig. 4. The generalized ATA uses an arbitrary host (type-{). For comparison with Gassmann’s
equation, the derivation is based on having pure solid (s) and pure fluid (f) inclusions.

Fig. 5. A clayey sandstone contains solid sand grains, porous clay adsorbed on the grain sur-
faces, and large pores which in some cases (in 3-D) provide a connected pathway for fluid
transport.
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