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A new 3D code for ElectroMagnetic Induction Tomography (EMIT) with
intended applications to environmental imaging problems has been devel-
oped. The approach consists of calculating the fields within a volume using
an implicit finite-difference frequency-domain (FDFD) formulation. The
volume is terminated by an anisotropic perfectly matched layer (PML)
region that simulates an infinite domain by absorbing outgoing waves. Ex-
tensive validation of this code has been done using analytical and semian-
alytical results from other codes and some of those results are presented
in this paper. The new code is written in Fortran 90 and is designed to
be easily parallelized, but this feature has yet to be tested. Finally, an
adjoint method, developed for solving the inverse problem for conductivity
imaging (for mapping underground plumes), uses this code as its forward
field solver.

1. INTRODUCTION

Although electromagnetic surveying techniques of both the electrical current in-
jection type and the magnetic field type have been well-known for many years [1],
efforts to turn these surveys into true 3D maps of subsurface physical properties
have only been attempted in the last 10 to 20 years [2], [3]. One of the reasons for
this delay has surely been the necessity of using large computer memories and fast
computing machines, because it does not take a very large 3D forward modeling
problem to swamp even today’s most advanced computing platforms. A recent
review of the state of the art in 3D EM modeling [4] demonstrated the limitations
and lack of consensus on the best methods for computing EM fields in applications
to inhomogeneous earth materials.

In this context, we have developed and continue to test and improve a new 3D
code for application to electromagnetic induction tomography and to environmental
imaging problems. The finite-difference frequency-domain formulation is based on

1This work was performed under the auspices of the U.S. Department of Energy by the Lawrence
Livermore National Laboratory under contract No. W-7405-ENG-48 and supported specifically
by the Environmental Management Science Program of the Office of Environmental Management
and the Office of Energy Research.
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that in [5], and an anisotropic perfectly matched layer approach [6], [7] is used to
specify the boundary conditions. The present paper summarizes our progress to
date on this code development.

Section 2 describes the algorithm implemented in the code. Section 3 provides a
series of examples validating the code. And Section 4 discusses how the code will
be used in the inversion problem for ElectroMagnetic Induction Tomography.

2. FDFD ALGORITHM

The goal of this code development effort is to produce an accurate and effi-
cient forward simulation for EM fields that can then be easily used for inversion
of ElectroMagnetic Induction Tomography (EMIT) field data. The FDFD (finite-
difference frequency-domain) formulation presented here is an extension to lossy
media of a method developed for lossless media in [5]. The mesh truncation ap-
proach involves using an anisotropic absorbing PML (perfectly matched layer) fol-
lowing the ideas in [6], [8]. The absorbing regions have material parameters similar
to those proposed in [9]. The code is written in Fortran 90, and ease of portabil-
ity to various high performance computing platforms has been one of our design
criteria throughout its development.

2.1. Finite-difference, frequency-domain formulation
To develop a system of equations to determine the electric and magnetic fields
within a volume, the integral form of Maxwell’s curl equations (Ampeére’s and Fara-
day’s laws),

%H-d£:jw/(€-E)-ﬁdS+/J-ﬁdS (1)
C S S

and
%E-dE:—jw/(ﬁ-H)-ﬁdS—/M-ﬁdS, @)
C S S

are used. Here J is the impressed electric current density, M is the impressed
magnetic current density, € and &t are diagonal dyads of dielectric permittivity and
magnetic permeability respectively, and C' is the boundary of the open surface S.
The integrals in (1) and (2) are applied to discrete elements (rectangular blocks)
within the volume using the following relations:

a/2
/ £-dt — afy, (3)
—a/2
and
a/2 b/2
f-ndS — abfm, (4)
—a/2J—b/2

where f,,, is a center value associated with the mth cell shown in Fig. 1. Note that
the discrete electric field is located at the center of an edge and the discrete magnetic
field flows through the centroid of a face. Also, the mth cell is normally referred
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FIG. 1. The field quantities associated with the mth cell (i,5,k).

to as cell(i, j, k), but for notational convenience, a cell mapping using symbols
such as u,d,l,r, f,b (for up, down, left, right, front, back) to specify the six cells
surrounding the mth cell is used. This mapping is presented in Table 1. Cells other
than the six cells adjacent to the six faces may also be labelled using the same
mapping. For example, relative to cell m, cell df is cell(i — 1,5,k — 1) and cell dib
iscell(i — 1,7 — 1,k + 1).

TABLE 1

Labels for cells surrounding m = cell(t, j, k).

|d:cell(i71,j, |u—cell (i+1,7,k) |

|l—cell( 1k)|r—cellzg+1k |

| f=cell(i,jk—1) | b=cell(i,jk+1) |

The discretized form of (1) and (2) results in an equation for each field component.
The resulting equations are cumbersome; however, presenting each expression using
matrices provides a compact form. Thus, using quantities defined in the Appendix,
(1) and (2) become

A"Dyh = jweoDac €+ Dy j (5)
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and
AD, &= —jwuoDa D, h — Dy 1, (6)

respectively. The apparent lack of symmetry in the pair of equations (5) and
(6) arises from differences in the method of discretizing € and p on the staggered
grid (see the Appendix for the details). Solving for the magnetic field (in order
to eliminate it from the equations) in (6) and then substituting the result into (5)
yields
A"D;D; ' D,  ADyé - k3Ds € =
—jwuoDs j — AT Dy D, ', (7)
which has a form entirely analogous to that commonly used in finite element codes,
i.€.,
Vx (B, ' VXE)-kig,-E=
—jwpod =V x gt M, (8)
even though our goal here is to develop a finite difference code.

A commonly observed problem in numerical computations of Maxwell’s equations
arises due to a possible resonance at zero frequency. If this occurs, the resulting
matrix has an eigenvalue at zero and therefore is not positive definite and not
invertible. For the geometries considered here, the fields for resonant frequency
of 0 Hz are generated only by electric charge within the volume. Such charges
may develop as an artifact of numerical roundoff when evaluating the vector wave

equation — especially at lower frequencies. This problem is avoided by eliminating
any charge within the volume using a term analogous to

V[V (&-E)=0. 9)

This is achieved by starting from Gauss’s law for the electric field in integral form,

/v-(a-E)dvzf(ET-E)-ﬁdszo, (10)
% s
to arrive at the discretized matrix expression

|:D£71DXEBT (D‘;eleBDAE)] €= 6’ (11)

where the matrices in parenthesis arise from discretizing (10) while the remaining
matrices in the square bracket arise from discretizing (9) after the application of
an integral identity. When (11) is added to (7), the result is

(A"D;D, ' D;* AD, + D, ' D;.B"D;;. BDj.
—k3Dae)é = —jwpoDy j — AT Dy Dt i, (12)

However, a more symmetric form is obtained by multiplying through by D'? and
then rewriting (12) as

(D}*A"D; D D' AD}? +
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D, '*D;.BT'D;LBDy D, "* ~ k2Ds.)D,"*¢ =
—jwnoD,*Ds j — D} AT D; D' . (13)

2.2. PML formulation for mesh truncation
The mesh is truncated using perfectly matched layers (PML) that absorb elec-
tromagnetic waves following the general ideas in [6]. The PML is a representation
of anisotropic media satisfying

D=%..-E and B=n,, -H, (14)

where

€pur = €- A and Poyr, = B - AL (15)

The symbol A stands for a diagonal dyad that has entries selected to absorb
incident electromagnetic waves. The form of this dyadic quantity is determined
by the normal to the PML interface. As an example, for a PML interface with a
normal in the z direction, the form of A is given by [7], [9]

a0 0
A.=|0a 0 |, (16)
00 1/a
in which a is given by
f(z.y,2)
=1 17
o=+ = (17)

where « is a constant and f(z,y, z) is a function of position that falls to zero at
the interface between the modeling space and the desired PML boundary. We have
found through empirical studies that a suitable form for a is

. Sy 2)
a_1+1+j€0w7 (18)
where f(z,y, z) is given by
_1-4)p
f(xay; Z) - p(x’ y72) (19)

Here, p(z,y, z) is a discretized distance from the modeling space/PML interface
to the centroid of the cell of interest inside the PML. The parameter 3 is chosen to
fix the amplitude of f(z,y,z). To date, the best form of p(z,y, z) has been found
to be linear in the distance as determined by numerical experimentation so that
f(z,y, z) has an inverse type distribution like that in [11], [12].

3. EXAMPLES

To demonstrate the accuracy and convergence properties of the code FDFD (for
finite-difference/frequency-domain), we have tested various cases against analytical
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FIG. 2. A rectangular cavity with dimensions a = 80 m, b = 5 m, and ¢ = 400 m. Also,

Zo = —200 m, Z; = —100 m, and Z3 = —300 m. The frequency of operation is 2 MHz.

and semianalytical results. The set of results include 1D, 2D, and 3D example
problems.

A rectangular cavity (80 m x 5 m x 400 m) is shown in Fig. 2. There are 16
cells in the z direction, 1 cell in the y direction, and 80 cells in the z direction.
The frequency of operation is 2 MHz, and the air/PML interfaces are located at
Z; = —100 m and Zy = —300 m. The dominant (TE19;) mode of the cavity
is launched from Z; = —200 m. The magnitude and phase of E,, sampled at
z = 40 m, are shown in Figs. 3 and 4. The FDFD results agree well with analytical
calculations, with the only significant deviations lying within the PML regions.

A line of constant current is placed in the center of the square cavity shown in
Fig. 5. Each side has a length of 400 m (80 cells), and the height of the cavity is
5 m (1 cell). The frequency of operation is 2 MHz. The magnitude and phase of
E. are shown in Figs. 6 and 7. The data are plotted as a function of p, which is
positive when to the right of the line source or negative if to the left. The calculated
and analytical data agree well, with the only significant deviations occurring in the
PML region.

The two sets of 3D examples we will show here are based on the field geometry of
Fig. 8. Receivers are down a borehole in a layered medium with air above the free
surface. The first example of a buried resistive layer has a 60 m thick layer with
conductivity = 0.3 S/m, a 25 m thick layer with conductivity = 0.016 S/m, and an
85 m layer with conductivity = 0.3 S/m at the bottom of the model. Appropriately
designed PML absorbing layers surround the modeled region on all six sides of the
domain. The relative permittivity of all three earth layers is constant and assumed
to equal 10.0. The frequency of the excitation is 1 kHz with the magnetic dipole
transmitter located at the free surface with an offset of 5 m from the borehole. The
finite difference representation was chosen so the unit spacing in the earth model
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FIG. 4. The phase of Ey at = 40 m for the rectangular cavity.
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was 2.5 m, with 50 cells x 50 cells in the zy direction, and 10 layers of PML on
those four sides. In the vertical direction, there were 68 cells in the earth model,
12 cells in the air above the free surface, and 10 more cells above and below for
the PML layers. All PML cells are 10m thick in the directions away from the
earth model. The overall problem is then approximately 70 x 70 x 100 ~ 500, 000
cells. The computations were performed on a DEC Digital Ultimate Workstation
(533 MHz) and required approximately 45 minutes of CPU time using about 260
iterations to achieve the convergence for the largest choice of tolerance (107°).
The smallest tolerance (10~7) required about 3.4 hours and 1200 iterations. This
computation was serial and required about 700 MB of memory. In Figs. 9 and
10 the results of the code calculations for the magnetic field magnitude and phase
are compared to results for the same model obtained using the code EM1D (based
on a semianalytical formula for such layered models) developed by Ki-Ha Lee at
LBNL. The observed agreement is good for all choices of convergence tolerance,
but becomes excellent for the two smallest values.

Since the buried resistive layer might be viewed as an easy case for the PML since
the majority of the medium is conducting and therefore helping to attenuate the
signal — perhaps obviating the need for the PML, we have also tested the code for
the reverse problem of a buried conductive layer in a resistive background. All the

_><
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FIG. 5. A square cavity with dimensions a = 400 m and b = 5 m. The line of current is
along the z axis. The frequency of operation is 2 MHz.
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FIG. 8. Current loop at the surface of medium with a buried resistive layer. The same basic
picture also applies to our second example with a buried conducting layer, but the conductivity
values are reversed (0.3 <> 0.016) in that case.

Buried Resistive Layer: Magnitude Computations
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FIG. 9. Comparison of FDFD computed magnitude of magnetic field in the layered model
with buried resistive layer in Fig. 8 with semianalytic results from EM1D of Ki-Ha Lee (LBNL).
The two smaller choices of convergence tolerance give virtually the same results for this example,
and are in good agreement with EM1D.
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Buried Resistive Layer: Phase Computations
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FIG. 10. Comparison of FDFD computed phase of magnetic field in the layered model

with buried resistive layer in Fig. 8 with semianalytic results from EM1D of Ki-Ha Lee (LBNL).
The smallest choice of convergence tolerance gives virtually the same results as EM1D for this
example, while the other two are also in good agreement.

other parameters are the same including those used for the PML. The computation
was performed as in the previous example and required approximately 3.3 hours
of CPU time using about 1150 iterations to achieve convergence (with observed
excellent agreement) for the intermediate choice of tolerance (107%). The smallest
tolerance (10~7) required about 7.5 hours and 2700 iterations. In Figs. 11 and
12 the results of the code calculations for the magnetic field magnitude and phase
are again compared to results for the same model obtained using the code EM1D
developed by Ki-Ha Lee at LBNL. The observed agreement is excellent for the two
smallest choices of convergence tolerance, but the resistive background case clearly
is harder to compute since the worst agreement seen here is for the phase at large
depths when the largest choice of convergence tolerance (107°) was in use.
Finally, consider the geometry shown in Fig. 13, which depicts a conductive body
buried within a homogeneous halfspace with a rectangular loop of current as the
excitation. The frequency of operation is 1 kHz. The x component of the electric
field and the z component of the magnetic field are sampled along the y axis about
the origin. The magnitude and phase of the electric field are shown in Figs. 14 and
15. The magnitude and phase of the magnetic field are displayed in Figs. 16 and 17.
In each plot data from codes described in [10] are compared against data generated
by FDFD. The three curves used in the comparisons to FDFD are: (a) IE for the
full integral equation solution, (b) QRS for the quasi-linear approximation using the
simplest scalar reflectivity tensor, and (¢) QRD for the quasi-linear approximation
using the diagonal reflectivity tensor. FDFD produces results similar to those
obtained from IE, QRS, and QRD for both the electric and magnetic fields in all
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Buried Conductive Layer: Magnitude Computations
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FIG. 11. Comparison of FDFD computed magnitude of magnetic field in the layered model
with buried conductive layer as in Fig. 8 (but reversing the values 0.3 < 0.016) with those from
EM1D. All three choices of convergence tolerance give virtually the same results for this example,
and are in good agreement with EM1D.

cases. FDFD is seen to be especially good at finding the dip in the magnetic field
magnitude in Fig. 16 and at approximating the magnetic field phase in Fig. 17.

4. DISCUSSION

We continue to test and improve the EM forward modeling capability developed
here with the ultimate goal of providing the forward modeling tools needed for
a fully nonlinear inversion technique for electromagnetic induction tomography.
Working in parallel, a new approach to the inverse problem of electromagnetics has
been developed by [13] based on the so-called “adjoint technique.” This method
has the very useful property that the inverse problem can be solved approximately
by making two uses of the same forward modeling code we have developed and
described here. Using a somewhat oversimplified description of this technique, the
updates to the electrical conductivity distribution are obtained by first making
one pass through the forward solver using the latest best guess of the nature of the
conducting medium, and then another pass with the adjoint operator (which for this
problem is just the conjugate transpose of the forward modeling operator) applied
to the differences in computed and measured data. (The adjoint method is modular
when applied in this fashion and could make use of other forward solvers as long as
they share the main features of the one described here.) Then the results of these
two calculations are combined to determine updates to the original conductivity
model. The resulting procedure is iterative and can be applied successively to
parts of the data, e.g., data associated with one transmitter location can be used to
update the model before other transmitter locations are considered. This procedure



A 3D FINITE-DIFFERENCE FREQUENCY-DOMAIN CODE... 13

Buried Conductive Layer: Phase Computations
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FIG. 12. Comparison of FDFD computed phase of magnetic field in the layered model

with buried resistive layer in Fig. 8 (but reversing the values 0.3 <> 0.016) with those from EM1D.
The largest deviation from EM1D is observed here for the largest choice of convergence tolerance,
while the two smallest values give virtually the same results as EM1D for this example.
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FIG. 13. Current loop at the surface of medium with a conductive body buried in a

homogeneous halfspace as in [10]. The frequency of operation is 1 kHz.
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FIG. 14. Comparison of the scattered electric field magnitude for model in Figure 13. The
fields are sampled along the y axis about the origin.

has several of the same advantages as the very well tested method of wave equation
migration in reflection seismology [14] and is also related to more recent methods
in electromagnetics introduced by [15].

APPENDIX
Various special symbols used in this paper will now be defined. First, .., Ym,
and z,, are the edge lengths of the mth cell (Fig. 1) in the z, y, and z directions,

respectively. Additional lengths associated with the magnetic fields (staggered grid
cell lengths) are given by

T = L’”;Id),ym = L”;w),zm = 7(2’”;”). (A.1)

Then, the area of the staggered grid cell face is given by

 YmZm F Yz + Yrzf T Yif2If
am - b)

N 4
TmZm + TdZd + Tf2f + Tdf Zdf
am, = 4 )
. — TmYm + Ta¥d + TiY1 + Taiydi (A.2)

4
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FIG. 15.  Comparison of the scattered electric field phase for model in Figure 13. The fields
are sampled along the y axis about the origin.

in the x, y, and z directions, respectively. Next, the permittivities associated with
the electric field at an edge are given by

YmZmEmy, T YIZIE€L,, T YF2FEf,, T YLFZIFELf, s,

Emza: = 4 9

_ _ TmZm€my, + TdZd€d,, + Tpzfes,, + Xdf Zdf €df,,

emyy - 4 b)
_ _ TmYmEm,, + TdYd€d,, + TiYi€l,, + TdiyYdi€dl,, A3
6mzz - 4 . ( . )

And finally, the magnetic permeabilities associated with the magnetic field com-

ponent at a face are given by

— _ Hmas Hdes (Tm + Ta)
T (T g + Tdfima,)
o b (Ym + u1)
T (Yt + Yitimy,)
R L (zm +27) (AA)
" (Zmbf, + 2 nss)

The set of all these cell quantities is represented using matrices as

DZ:Diag("‘azmaym;zmv"')v
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FIG. 16. Comparison of the scattered magnetic field magnitude for the model in Figure

13. The fields are sampled along the y axis about the origin.

DZ: Dlag ("'sz-,ymvfma"')a

Dy = Diag (..., TmYm, TmZm, YmZm; - - ) »

Dj; = Diag(...,amz,amy,amz,...),

Dy =Diag (..., €m.. €my, > Emaes- - -) 5

D/J = Diag (' . 7ﬁmzz7ﬁmyy7ﬁmzxa .. ') .
Additionally, the volume matrix is given by

DVEE :Dlag (-'-7szavmyavmma-'-)a
where

Vi, =
1 2 2
§ |€m,la | TmYmZm+ |€dCm | Tqydzd +

leta? Tz + legon > Tpypzs +

(A.5)

(A.6)

(A7)

(A.8)



A 3D FINITE-DIFFERENCE FREQUENCY-DOMAIN CODE... 17

1801

—— FDFD
o IE
1200 QRD
------- RS
QT Q
o 60
8
5 301
@
h=2 or
)
g -30[
T
-60 [
-90 [
-120
-150
-180 L L L L L I}
-45 -30 -15 0 15 30 45
Distance [m]
FIG. 17. Comparison of the scattered magnetic field phase for model in Figure 13. The
fields are sampled along the y axis about the origin.
2 2
|€dfuc|” Taryaszar + l€dine|” Taryarzar +
2 2
€t |” Tipyrs21s + l€difual Idlfydlfzdlf} : (A.9)
The vectors €, f_i, f, and m have the general form
f:(...,sz,me,sz,...). (A.10)

Finally, the coefficient matrices A and B are given as in [16] by (note that the
first row displayed in each of the two following equations is shown to clarify the
indexing scheme used in the matrix shown)

 Zm Ym Tm Zu Yu Tu--- Zr Ypr Tp oov 2 Yb Th---

and
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Zf - Y - TdEmYmTm - - -
1
1
B = . (A.12)
1

-1 ...-1...-1111

-1 ...-1...-1111
-1...-1...-1111
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