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Analysis of array data from acoustic scattering in a random medium with a small number of isolated
targets is performed in order to image and, thereby, localize the spatial position of each target.
Because the host medium has random fluctuations in wave speed, the background medium is itself
a source of scattered energy. It is assumed, however, that the targets are sufficiently larger and/or
more reflective than the background fluctuations so that a clear distinction can be made between
targets and background scatterers. In numerical simulations nonreflective boundary conditions are
used so as to isolate the effects of the host randomness from those of the spatial boundaries, which
can then be treated in a separate analysis. It is shown that the key to successful imaging is finding
statistically stable functionals of the data whose extreme values provide estimates of scatterer
locations. The best ones are related to the eigenfunctions and eigenvalues of the array response
matrix, just as one might expect from prior work on array data processing in complex scattering
media having homogeneous backgrounds. The specific imaging functionals studied include
matched-field processing and linear subspace methods, such as MUSIC~MUtiple SIgnal
Classification!. But statistical stability is not characteristic of the frequency domain, which is often
the province of these methods. By transforming back into the time domain after first diagonalizing
the array data in the frequency domain, one can take advantage of both the time-domain stability and
the frequency-domain orthogonality of the relevant eigenfunctions. ©2002 Acoustical Society of
America. @DOI: 10.1121/1.1502266#

PACS numbers: 43.60.Pt, 43.60.Gk, 43.30.Vh@JJM#
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I. INTRODUCTION

Imaging in ultrasonics is closely related to recent stud
of time-reversal acoustics that have been experiencing a
rapid growth in interest and research activity since the e
work of Fink et al.,1 Jackson and Dowling,2 and Prada and
Fink.3 In particular, a series of review articles4–9 has ap-
peared recently that, when taken altogether, largely sum
rizes the current state-of-the-art.

It is important to distinguishphysicaltime-reversal and
re-emission of the acoustic signals by the array, so a
produce optimal focusing on a target, fromsynthetictime-
reversal processing in which the acoustic array data are
to estimate the location of the scatterers. The work of Pr
and Fink10 and Pradaet al.11 on the D.O.R.T. method
~French acronym for a diagonalization of the array respo
matrix! has clarified the connection between individual sc
tering objects and the eignfunctions of the time-reversal
erator. Scatterers can be associated directly with eigenf

a!Electronic mail: berryman1@llnl.gov
b!Electronic mail: borcea@caam.rice.edu
c!Electronic mail: papanico@math.stanford.edu
d!Electronic mail: tsogka@lma.cnrs-mrs.fr
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tions except when they are not well separated or when t
are placed in some special, symmetric positions relative
the array.12 Such degeneracies are, however, not importan
random media.

After decomposing the array response matrix us
eigenfunctions~this is normally done in the frequency do
main!, two alternatives are available for us to pursue. Eith
we can use the eigenfunctions to refocus acoustic ene
back onto the scattering target~for purposes either of com
munication or medical ultrasound treatments—see, for
ample, Refs. 9 and 13!, or we can try to make use of them t
localize or form an image of the scatterers’ spatial distrib
tion. Both of these applications are relatively straightforwa
if the background medium is itself homogeneous.14 But, if
the background medium is heterogeneous~i.e., the acoustic
wave speed varies randomly with position!, then the difficul-
ties rapidly mount for both applications even if there are
additional complications. Such complications might, for e
ample, include~1! near/close boundaries as will common
occur in wave guides15,16 ~including the ocean bottom an
surface for ocean acoustics17!, ~2! drift of the actual acoustic
medium itself or just its physical properties due to curre
or temperature fluctuations,18 ~3! periodic changes such a
1509509/14/$19.00 © 2002 Acoustical Society of America



ie

al
tie
u

a
re

o
lt
-
n

o
el

i
fe
tip
tin
p
nd

t l
ul
fie

e
ns
r
es
m
m

ur
p
o

h
ne
p
ti
d

lta
s

rg
fte
t
e

es
e
fo
on

a
lu
e
iv
nd
es

as
ting
ine
ue,
sly.
sug-
ese
om-

t
ed

re-
are.

e-

to
the
ion
ck-

w,
ex-
ays
pa-
m is
om
eis-

we
all-
t be
re

na-
m

no-
ent
the
and
n.
d,
ly

ng.
als
ce
lize
.
ion
ter
op-
lti-

iliar
ed in
expansion and contraction due to the breathing of a pat
while being diagnosed or treated with ultrasound.

Our focus in this paper will be to ignore any addition
complications, and concentrate instead on what difficul
are introduced just by the spatial heterogeneity of the aco
tic medium, and what can be done with acoustic array dat
achieve reliable images or maps of any significant scatte
present in such media. One companion paper19 addresses the
issues of refocusing sound at a target in the presence
heterogeneous acoustic background with significant mu
pathing~multiple scattering!, and some of the results on im
aging presented here are an outgrowth of another compa
paper20 on acoustic imaging in random media.

It is beyond our current scope to review the literature
acoustics in random media, but we will mention a few r
evant references. Early work by Keller21,22 and Karal and
Keller23,24 has shown that the averaged Green’s function
random media is a well-behaved quantity and how the ef
tive wave speed and apparent attenuation due to mul
scattering both depend on the statistics of the fluctua
acoustic wave speed. These and many other topics are
sented in Ref. 25. Wave front stabilization in complex a
especially in layered media has been observed26 and studied
extensively in Refs. 27–33.

There have been many methods of estimating targe
cation using acoustic array data. Some of the most pop
ones in recent years have continued to be matched-
processing,34–38 MUSIC ~MUltiple SIgnal
Classification!,12,39,40 and other linear subspac
methods.41–43We will be discussing necessary modificatio
of these methods here, since the randomness we conside
a different character than that usually envisioned in th
traditional analyses of acoustic array data, because it co
from multipathing that is generated by the random mediu

Typical array processing methods assume that a so
is located at a great distance from the array, while the pro
gating medium is homogeneous, so that from the point
view of the array of the target looks like a point source. T
incident sound arriving at the array takes the form of a pla
wave having no measurable curvature across the array a
ture and, furthermore, has no measurable amplitude varia
across that aperture. Array noise has usually been treate
due either to diffuse sources of white noise coming simu
neously from all directions, or to isolated ‘‘noise’’ source
having the same types of source characteristics as the ta
of interest. Because the applications of interest have o
involved passive bearing detection of active sources, mos
the methods and their minor variations considered here w
first introduced for such passive data collection and proc
ing problems. But, for time-reversal methods, it quickly b
comes clear that virtually the same methods—except
some obvious minor technical differences—should be c
sidered for both active and passive arrays.

Time-reversal processing of the array response dat
most naturally based from the outset on the Singular Va
Decomposition~SVD!. This approach is consistent with th
concept of real-space time-reversal—involving an iterat
procedure that amounts to using the power method for fi
ing the singular vector of the data matrix having the larg
1510 J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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singular value. When the full response/transfer matrix h
been measured for a multistatic active array, the resul
data matrix can be analyzed directly by SVD to determ
not only the singular vector having the largest singular val
but all singular vectors and singular values—simultaneou
There remain some issues about signal-to-noise ratios
gesting that the physical iterative approach of finding th
same singular vectors can be preferable to the purely c
putational alternative both in acoustics44 and also in other
inverse problems.45 But it is also important to recognize tha
the SVD of the transfer matrix does not require specializ
hardware~any acoustic array can be used to do this!, whereas
the physical time-reversal approach for ultrasound does
quire very specialized and often quite expensive hardw
Thus, SVD may have a distinct advantage in some tim
reversal imaging applications.

For acoustical imaging purposes, we do not need
propagate the actual time-reversed signal back into
physical random medium, whereas for either communicat
or target retrofocusing applications, such real-space ba
propagation is always required. From this point of vie
time-reversal imaging can also be seen as a relatively in
pensive process. The drawback is that imaging is alw
done using a fictitious medium for the simulated backpro
gation that produces these images since the real mediu
not known. Its large scale features could be estimated fr
other information, such as geological data obtained by s
mic methods. For example, migration methods46–48 can be
used, where very large arrays—much larger than those
contemplate using here—are required. However, the sm
scale random inhomogeneities are not known and canno
effectively estimated, so the simplest thing to do is igno
them when imaging.

The following results are based in part on another a
lytical and computational study of time-reversal in rando
media by the present authors.20 In the first section, we briefly
present the problem to be studied and then elucidate the
tation to be used in the following sections. Then, we pres
a series of examples—in order to compare and contrast
results. Section II focuses on the standard matched-field
MUSIC objective functionals in the frequency domai
These methods donot provide statistically stable results an
therefore, are not useful for imaging in media with random
fluctuating acoustic wave speed and strong multipathi
Section III then shows how these same objective function
may be transformed into the time domain in order to produ
statistically stable and, therefore, useful images that loca
the target cross range~or bearing! in a satisfactory manner
Section IV then goes further to show how range informat
may be obtained from the time-domain arrival data af
careful processing and subsequent averaging of multiple c
ies of the pertinent singular vectors contained in the mu
static array data. Synthetic Aperture Imaging~SAI! is also
used to provide another source of comparison to a fam
data processing scheme. Our conclusions are summariz
Sec. V.
Berryman et al.: Ultrasonic imaging in random media
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II. PROBLEM STATEMENT AND NOTATION

An array hasN transducers located at spatial positio
xp , for p51,...,N. When used in active mode, the arra
probes the unknown acoustic medium containingM small
scatterers by emitting pulses and recording the time trace
the back-scattered echoes. We call the resulting data se
multistatic array response~or transfer! matrix P(t)
5(Ppq(t)), where p and q both range over all the arra
elements. For our simulations, we consider a linear ar
where two adjacent point transducers are a distancel/2
apart, withl being the carrier~central! wavelength of the
probing pulses. Such an arrangement ensures that the co
tion of transducers behaves like an array having apertua
5(N21)l/2 and not like separate entities, while keepi
the interference among the transducers at a minimum.49 Our
goal is to detect and then localize allM of the targets in the
random medium, if possible.

The array response matrixP̂(v) in the frequency do-
main is, in our linear acoustics simulations, symmetric
not Hermitian. The singular value decomposition~SVD! of
the response matrix is given explicitly by

P̂~v!5Û~v!S~v!V̂H~v!. ~1!

The eigenvectors ofP̂(v) P̂H(v) having unit norm, denoted
by Ûr(v), for r 51,...,N, are the columns of matrixÛ(v).
The eigenvalues ofP̂(v) P̂H(v) ares r

2(v), with s r(v) be-
ing the singular values ofP̂(v) that form the diagonal ma
trix S~v!. The significant singular vectorsÛr(v) @i.e., those
in the range ofP̂(v)# correspond to singular valuess r(v)
.0 for 1<r<M , whereM is either the number of targets, o
the size of the array~N!—whichever is smaller. For definite
ness, we usually assume that the number of targets is sm
than the array sizeN, so thatM is in fact the number of
distinguishable targets. In our setup, the left singular vec
Ûr(v) are the complex conjugates of the right singular v
tors V̂r(v), for r 51,...,N. Most physical arrays, howeve
are not constructed with isotropic point transducers and,
thermore, the amplitude response~especially in transmission
mode! does not have to be linear~with strong deviations
from linearity generally occurring at both high and very lo
amplitudes!, so measured response matrices are not nece
ily symmetric. We assume symmetry here for simplicity, a
this is fully consistent with our linear acoustics simulation
All of our analysis nevertheless carries over to the nonsy
metric case.

We denote byĝ0(ys,v) the vector observed at the arra
for a source located atys in a deterministic medium~i.e., the
medium with the wave speedc0 given by the averaged ve
locity of the random medium!. In our simulations,c0 is con-
stant but, in general, it could vary in space—assuming p
knowledge of the environment. Then,ĝ0(y,v) is given by

ĝ0~ys,v!5S Ĝ0~ys,x1,v)

Ĝ0~ys,x2 ,v)

A

Ĝ0~ys,xN ,v)

D , ~2!
J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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where Ĝ0(ys,xj ,v) is the deterministic two-point Green’
function, andxj is the location of thejth array element.

We also define the projectionPNĝ0(y,v) of ĝ0(ys,v)
onto the null-space ofP̂P̂H(v) by

PNĝ0~ys,v!5ĝ0~ys,v!2(
r 51

M

@Ûr
H~v!ĝ0~ys,v!#Ûr~v!,

~3!

for each frequency in the support of the probing pulsef̂ (v).
Our simulations assume thatl<,!a5(N21)l/2!L,

wherel is the central wavelength,, is a characteristic length
scale of the inhomogeneity~like a correlation length!, a is
the array aperture, andL is the approximate distance to th
targets from the array. This is the regime where multipathi
or multiple scattering, is significant even when the stand
deviation of sound speed fluctuations is only a few perce

We solve the wave equation in 2D with a numeric
method based on the discretization of the mixed veloc
pressure formulation for acoustics. For the spatial discret
tion we use a new finite element method,50 which is compat-
ible with mass-lumping techniques~i.e., it leads to explicit
time discretization schemes! and for the time discretization
we use a centered second order finite difference schem
the numerical simulations, we have statistically homog
neous Gaussian random velocity fields generated using a
dom Fourier series, with constant meanc051.5 km/s, and
exponential correlation function having correlation leng
,50.3 mm and standard deviation ranging from 1% to 5
The probing pulse is given by

f ~ t !522p2n2S t2
1

n De2p2n2@ t2~1/n!#2
. ~4!

The central frequency isn53 MHz and f̂ (v), ~v52pn! is
supported over the band of frequencies 0.159–7.958 M
The carrier wavelength isl50.5 mm and the aperture of th
array isa52.5 mm. Then, the targets, which are soft scatt
ers, are modeled by small squares. The size of a small ta
is l/303l/30, while the size of a larger one isl/153l/15.
Simulations are done on individual realizations, to be con
tent with what happens in practice; there is no averaging
results from many realizations here. Furthermore, the sa
realization is typically used for the tests of all the imagi
methods. Whenever the parameters~s and M.F.! ~M.F., maxi-
mum fluctuations! are fixed, the realization is also fixed; bu
when the parameters change, the realization necessarily
changed. More details concerning the simulations may
found in Refs. 20 and 50.

We purposely present all the formulas in their most ge
eral form in terms of Green’s functions. Thus, these formu
are valid either in 2D, as is relevant specifically to our sim
lations, or in 3D. The comparisons shown here use
Hankel-function fields in free space for the 2D simulation
but these functions would be replaced by point sou
Green’s functions of the formeikr /4pr for realistic data ap-
plications in 3D. Due to the high cost of numerically sim
lating wave propagation in random medium, with significa
multipathing, we only did 2D simulations up to now.
1511Berryman et al.: Ultrasonic imaging in random media



tions
FIG. 1. The matched field central frequency@MF estimate~6!# estimate of the location of one target in random media with different strength of the fluctua
of the sound speed. The exact location of the target is denoted by the green star. The standard deviations and maximum fluctuations~M.F.! are indicated on
the top of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.
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III. FREQUENCY DOMAIN METHODS: NOT
STATISTICALLY STABLE

Two well-known frequency-domain imaging method
matched-field processing34–36,38,51 and MUSIC,12,39–42,52,53

will be presented next to show how these methods behav
the types of random media we are considering.

A. Matched field–central frequency

For matched-field~MF! processing, we compute

GMF
~ j ! ~ys!5uÛj

H~v!ĝ0~ys,v!u2, ~5!

and display the objective functional
1512 J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
,

in

RMF~ys!5(
j 51

M GMF
~ j ! ~ys!

maxys GMF
~ j ! ~ys!

, ~6!

for a discrete set of points~usually regularly spaced on a gri
which then aids in the ultimate computer display! ys in the
target domain.

Examples of matched-field processing with one or t
targets are displayed in Figs. 1 and 2.

The standard-matched-field~SMF! processing38 uses a
somewhat different functional operating directly o
P̂(v) P̂H(v). In our notation, the Bartlett-type objectiv
functional of Ref. 38 is
FIG. 2. Similar to Fig. 1 but with two targets.
Berryman et al.: Ultrasonic imaging in random media



ions
FIG. 3. The MUSIC central frequency estimate@MUSIC estimate~9!# of the location of one target in random media with different strength of the fluctuat
of the sound speed. The exact location of the target is denoted by the green star. The standard deviations and maximum fluctuations~M.F.! are indicated on
the top of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.
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j 51

M

s j
2~v!GSMF

~ j ! ~ys!, ~7!

wheres j
2(v) is the singular value corresponding to the s

gular vectorÛj (v) and

GSMF
~ j ! ~ys!5

uÛj
H~v!ĝ0~ys,v!u2

uĝ0~ys,v!u2
. ~8!

If there is a small number of targets and these targets do
differ significantly in strength at the central frequency~as is
the case in our simulations!, then there is no essential diffe
ence between the two imaging functionals. If, for examp
we want to identify only the strongest scatterer, then we m
consider only the first term in either sum, since the singu
J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
-

ot

,
y
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vectors are ordered according to their corresponding sing
values from largest to smallest.

B. MUSIC—central frequency

For the MUSIC algorithm, we compute

GMUSIC~ys!5uPNĝ0~ys,v!u2, ~9!

with PNĝ0(ys,v) defined by~3!. We display the objective
functional

RMUSIC~ys!5
minys GMUSIC~ys!

GMUSIC~ys!
, ~10!

for pointsys in the target domain.
Examples for MUSIC with one or two targets in hom
FIG. 4. Similar to Fig. 3 but with two targets.
1513Berryman et al.: Ultrasonic imaging in random media



f the
FIG. 5. The matched field time estimate@MFT estimate~12!# of the location of one target in random media with different strength of the fluctuations o
sound speed. The exact location of the target is denoted by the green star. The standard deviations and maximum fluctuations~M.F.! are indicated on the top
of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.
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geneous and random media are displayed in Figs. 3 and
When there is only one target in a homogeneous m

dium, then there is only one significant eigenvector of
array response matrix and it is proportional toĝ0(yt,v),
whereyt is the target location. It is clear in this case that bo
the MF and the MUSIC functionals have only a single te
which peaks whenys5yt. Similarly, in the case of severa
targets in a homogeneous medium, the significant eigen
tors are linear combinations ofĝ0(yj

t ,v), whereyj
t are the

target locations and the functionals will have local maxima
the target locations.

In both of these frequency domain examples, it is cl
1514 J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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from the figures that no range information is obtained fro
these objective functionals in random media, and even
cross-range information is often quite haphazard. Indeed
the random fluctuations in the velocity increase, there
false peaks and the functionals may not peak at the targe
all. ~Note that MUSIC does provide the correct range for t
zero variance case.! Lack of statistical stability prevents
these imaging approaches from being useful in random
dia with significant multipathing considered here. When t
realization of the random medium is changed, the ima
obtained typically change also—which is what we mean
the phrase ‘‘lack of statistical stability’’ for these methods
FIG. 6. Similar to Fig. 5 but with two targets.
Berryman et al.: Ultrasonic imaging in random media
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FIG. 7. The DOA estimate@DOA estimate~15!# of the location of one target in random media with different strength of the fluctuations of the sound s
The exact location of the target is denoted by the green star. The standard deviations and maximum fluctuations~M.F.! are indicated on the top of each view
The horizontal axis is the range in mm and the vertical axis is the cross range in mm.
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IV. STATISTICALLY STABLE TIME DOMAIN METHODS

Next we consider the same two methods of the prec
ing section, but now we transform back to the time dom
to take advantage of the statistical stability that can be ga
this way.

A. Matched field in time

For matched-field processing, we compute

GMFT

~ j ! ~ys,t !5E e2 ivts j~v!uÛj
H~v!ĝ0~ys,v!u2 dv. ~11!

Since the factor multiplyinge2 ivt in the integrand is real and
nonnegative, this integral clearly takes its maximum va
for t50—which is also, therefore, the location of the peak
J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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n
d

e
f

the corresponding pulse in the time domain. We then disp
the objective functional

RMFT
~ys!5(

j 51

M GMFT

~ j ! ~ys,t50!

maxys GMFT

~ j ! ~ys,t50!
, ~12!

for pointsys in the target domain.
Examples of matched-field processing in the time d

main with one or two targets are displayed in Figs. 5 and

B. DOA „time-domain MUSIC …

The next method is a time-domain variant of MUSI
which we will label DOA, because it gives very good es
FIG. 8. Similar to Fig. 7 but with two targets.
1515Berryman et al.: Ultrasonic imaging in random media
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mates of the direction of arrival.~Note that matched field in
time also gives good estimates of the direction of arrival!

To define a time variant of MUSIC, we first normaliz
the projectionPNĝ0(ys,v) @given by ~3!# by the singular
value s j (v) and then take the inverse Fourier transform
go to the time domain,

F~ j !~ys,t !5E e2 ivts j~v!ĝ0~ys,v!dv2E e2 ivts j~v!

3(
r 51

M

@Ûr
H~v!ĝ0~ys,v!#Ûr~v!dv. ~13!

Theoretical analysis shows that the functionalsF( j )(ys,t) are
statistically stable, i.e., they behave like deterministic qu
tities, and thus it seems natural to evaluate them at deter
istic times ~i.e., simple geometrical spreading times!. We
then form the sum

G~ j !~ys!5 (
p51

N

uF~ j !~ys,tp~ys!!u2, ~14!

and display the objective functional

RDOA~ys!5(
j 51

M
minys G~ j !~ys!

G~ j !~ys!
, ~15!

for pointsys in the target domain.
The arrival timetp(ys) is the deterministic travel time

from thepth transducer to the search point,

tp~ys!5
uxp2ysu

c0
. ~16!

Examples for time-domain MUSIC with one or two ta
gets are displayed in Figs. 7 and 8.

The cross-range results are now dramatically impro
in both methods. Range information is still not to be fou
here, but the statistical stability of the universal ‘‘com
tails’’ is now easily observed. The images shown are
specific realizations, but the results do not change sign
cantly when the underlying realization of the random m
dium is changed. This fact has been repeatedly shown in
simulations, and is the main characteristic of statistica
stable methods.

V. TIME DOMAIN PROCESSING AND RANGE
ESTIMATION METHODS

To complete the localization of the targets, we also ne
an estimate of the range. Good range estimates can be
tained in the near field either from amplitude moveout inf
mation or from arrival time information. In the far field, onl
the arrival time information is useful, and we will conce
trate on arrival times in the present analysis.

One commonly used range estimator is Synthetic Ap
ture Imaging or SAI. Another alternative that arises in t
time-reversal approach is the use of arrival time informat
in the singular vectors. This arrival time information can a
be averaged for random media—see Ref. 20—to obtain v
stable estimates of arrival times. Both of these methods
1516 J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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now be combined with the time-domain methods of the p
ceding section to obtain well-localized images of the targe

A. Matched field in time combined with SAI

The SAI objective function is

RSAI~ys!5 (
p51

N

Ppp~2tp~ys!!. ~17!

At a search pointys in the domain of interest, we comput
the deterministic arrival time for diagonal entryPpp(t). That
is, the time to go from thepth transducer to the search poi
ys and then come back to thepth transducer. This is twice the
arrival time tp(ys) given by ~16!. Note that the SAI func-
tional gives good range information even in random me
~see Ref. 20!.

The idea here is to combine the functional SAI whi
gives good range information with the functional MFT which
provides good cross range resolution in order to get g
images. One way of doing this combination is to display

RMFT– SAI~ys!5(
j 51

M GMFT– SAI
~ j ! ~ys!

maxysGMFT– SAI
~ j ! ~ys!

, ~18!

where

GMFT– SAI
~ j ! ~ys!5U(

p51

N

Ppp~2tp~ys!!UGMFT

~ j ! ~ys,t50!. ~19!

Examples of time-domain matched-field processing w
Synthetic Aperture Imaging as the range estimator for one
two targets are displayed in Figs. 9 and 10. The metho
statistically stable and gives good estimates of the targe
cations.

B. Matched field in time combined with times from
averaged singular vectors

We would like to use the singular vectorsÛj (v) to es-
timate the travel times from targetj to the array. Remark
though that the singular vectorsÛj (v) which are normalized
(iÛj (v)i51) carry an arbitrary, frequency depende
phase. Because of thisUj (t) look incoherent in the time
domain. We can, however, calculateN, coherent in time, ver-
sions of singular vectors by projecting the columns of t
response matrix onto them

Ûj
~p!~v!5@Ûj~v!HP̂~p!~v!#Ûj~v!,

p51,...,N, j 51,...,M . ~20!

Here P̂(p) is the pth column of the response matrixP̂(v).
Clearly Ûj

(p)(v) are singular vectors ofP̂(v) and carry the
phase of itspth column. We use these various versions of t
singular vectors to estimatetp

( j ) , for j51,...,M, and p
51,...,N, the travel times for targetj to the array elementp
as the minimizers of

min
tp

~ j !
E

0

T

(
p51

N UUj
~p!~ t2tp

~ j !!2
1

N (
q51

N

Uj
~q!~ t2tq

~ j !!U2

dt.

~21!
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tions
FIG. 9. Combined MFT and SAI@MFT– SAI estimate~18!# estimation of the location of one target in random media with different strength of the fluctua
of the sound speed. The exact location of the target is denoted by the green star. The standard deviations and maximum fluctuations~M.F.! are indicated on
the top of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.
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The ATSV ~Arrival Times from averaged Singular Vector!
functional is defined by

RATSV~ys!5(
j 51

M minys GATSV
~ j ! ~ys!

GATSV
~ j ! ~ys!

, ~22!

where

GATSV
~ j ! ~ys!5 (

p51

N

@tp
~ j !22tp~ys!#2. ~23!

We combine MFT with ATSV to obtain

RMFT– ATSV~ys!5(
j 51

M GMFT– ATSV
~ j ! ~ys!

maxys GMFT– ATSV
~ j ! ~ys!

, ~24!
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where

GMFT– ATSV
~ j ! ~ys!5GMFT

~ j ! ~ys!/GATSV
~ j ! ~ys!. ~25!

Examples of time-domain matched-field processing w
arrival-time estimates from the averaged singular vectors
one or two targets are displayed in Figs. 11 and 12. T
method is also statistically stable and gives good estimate
the target locations. The results look somewhat better t
those in Figs. 9 and 10, and considerably better for stron
fluctuations.
FIG. 10. Similar to Fig. 9 but with two targets.
1517Berryman et al.: Ultrasonic imaging in random media



tions
FIG. 11. Combined MFT and ATSV@MFT– ATSV estimate~24!# estimation of one target location in random media with different strength of the fluctua
of the sound speed. The exact location of the target is denoted by the green star. The standard deviations and maximum fluctuations~M.F.! are indicated on
the top of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.
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C. DOA combined with SAI

The DOA–SAI estimator is

RDOA–SAI~ys!5(
j 51

M GDOA–SAI
~ j ! ~ys!

maxys GDOA–SAI
~ j ! ~ys!

, ~26!

where

GDOA–SAI
~ j ! ~ys!5U(

p51

N

Ppp~2tp~ys!!UY G~ j !~ys!, ~27!

andG( j )(ys) is given by~14!.
Examples of time-domain MUSIC with Synthetic Ape

ture Imaging estimates as range estimator for one or
1518 J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
o

targets are displayed in Figs. 13 and 14. This method is
statistically stable and gives good estimates of the targe
cations.

D. DOA combined with arrival times from averaged
singular vectors

For each search pointys , we compute the objective
functional

RSAT~ys!5(
j 51

M minysGSAT
~ j ! ~ys!

GSAT
~ j ! ~ys!

, ~28!

where
FIG. 12. Similar to Fig. 11 but with two targets.
Berryman et al.: Ultrasonic imaging in random media



s of
FIG. 13. Combined DOA and SAI@DOA–SAI estimate~26!# estimation of one target location in random media with different strength of the fluctuation
the sound speed. The exact location of the target is denoted by the green star. The standard deviations and maximum fluctuations~M.F.! are indicated on the
top of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.
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GSAT
~ j ! ~ys!5 (

p51

N

uF~ j !
„ys,tp~ys!…u2@tp

~ j !2tp~ys!#2. ~29!

HereF( j )(ys,t) is defined by~13!, tp(ys), for p51,...,N, are
the deterministic arrival times given by~16! andtp

( j ) , for p
51,...,N, and j 51,...,M , are the arrival times computed i
~21!. We call ~28! the Subspace Arrival Time~SAT! estima-
tor.

Examples of SAT or time-domain MUSIC with arriva
time estimates from the averaged singular vectors for on
two targets are displayed in Figs. 15 and 16. This metho
again statistically stable and gives good estimates of the
get locations. The results again look somewhat better t
those in Figs. 13 and 14. These localization results have
J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
or
is
r-
n
p-

parently degraded the least of all those considered here a
highest values of the random fluctuations.

VI. CONCLUSIONS

For imaging applications in randomly inhomogeneo
acoustical media, the foregoing results lead us to the follo
ing conclusions:~1! Single frequency methods~including
MUSIC and D.O.R.T.! are not statistically stable, and ther
fore cannot be used without modification in the presence
significant amounts of spatial heterogeneity in the acou
wave speed distribution.~2! In contrast, time-domain meth
ods are statistically stable for any objective functional hav
the characteristic that the random Green’s functions appea
FIG. 14. Same as Fig. 13 with two targets.
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tion of
xis
FIG. 15. The SAT estimate@estimate~28!# of one target in random media with different strength of the fluctuations of the sound speed. The exact loca
the target is denoted by the green star. The standard deviations and maximum fluctuations~M.F.! are indicated on the top of each view. The horizontal a
is the range in mm and the vertical axis is the cross range in mm.
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Hermitian conjugate pairs ofgg* .20 This result has been
shown here to be true for DOA and Matched Field, and
expected to be true more generally.~Of course, statistica
stability is a necessary, but not a sufficient, condition
optimal imaging in random media, so satisfaction of this c
terion is not enough in itself.! ~3! The DOA estimates seem
superior to those of Matched Field, but a careful analy
shows that this is only superficially so because of the qu
tity chosen for display in these plots. In the homogene
case, exact calculations show that this superficial differe
is just related to shapes~not the locations! of the peaks in
each of the objective functionals, and therefore is only
display issue and not fundamental.~4! Both DOA and
Matched Field give only cross-range or bearing informati
Range information must be obtained separately.
1520 J. Acoust. Soc. Am., Vol. 112, No. 4, October 2002
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To locate the targets in random media, we need eit
multiple views~using multiple arrays! so we can triangulate
or we need to extract a direct measure of range from the d
Both arrival time and amplitude moveout~i.e., changes in
peak arrival time and amplitude correlated directly with t
array element locations! contain sufficient information to ex
tract range. Usefulness of amplitudes is limited by the ran
itself; if the range is so large that the arrivals appear as pla
across the array aperture then only the plane-wave arr
time is useful. In the examples chosen here, we concentr
on arrival time and this information was obtained by co
bining MF with either SAI or ATSV~arrival times from av-
eraged singular vectors!. As anticipated, results obtained a
ter intersection with SAI are not as good as the ones obta
after intersection with ATSV. But the results were show
FIG. 16. The SAT estimate as in Fig. 15 for two targets.
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nevertheless to be a good compromise because this me
does not require a separate arrival time analysis~recall that
SAI is not statistically stable20!.

Our main conclusion is that there is no essential diff
ence in imaging with MF or DOA when either SAI or ATSV
are used.
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