Statistically stable ultrasonic imaging in random media
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Analysis of array data from acoustic scattering in a random medium with a small number of isolated
targets is performed in order to image and, thereby, localize the spatial position of each target.
Because the host medium has random fluctuations in wave speed, the background medium is itself
a source of scattered energy. It is assumed, however, that the targets are sufficiently larger and/or
more reflective than the background fluctuations so that a clear distinction can be made between
targets and background scatterers. In humerical simulations nonreflective boundary conditions are
used so as to isolate the effects of the host randomness from those of the spatial boundaries, which
can then be treated in a separate analysis. It is shown that the key to successful imaging is finding
statistically stable functionals of the data whose extreme values provide estimates of scatterer
locations. The best ones are related to the eigenfunctions and eigenvalues of the array response
matrix, just as one might expect from prior work on array data processing in complex scattering
media having homogeneous backgrounds. The specific imaging functionals studied include
matched-field processing and linear subspace methods, such as MU08UEple Slignal
Classification. But statistical stability is not characteristic of the frequency domain, which is often
the province of these methods. By transforming back into the time domain after first diagonalizing
the array data in the frequency domain, one can take advantage of both the time-domain stability and
the frequency-domain orthogonality of the relevant eigenfunctions2002 Acoustical Society of
America. [DOI: 10.1121/1.1502266

PACS numbers: 43.60.Pt, 43.60.Gk, 43.30[\J4M]

I. INTRODUCTION tions except when they are not well separated or when they
are placed in some special, symmetric positions relative to
Imaging in ultrasonics is closely related to recent studieshe array*? Such degeneracies are, however, not important in
of time-reversal acoustics that have been experiencing a vepandom media.
rapid grOWth in interest and research aCtiVity since the early After decomposing the array response matrix using
work of Fink et al, Jackson and Dowlingand Prada and  eigenfunctions(this is normally done in the frequency do-
Fink® In particular, a series of review articfeS has ap- main), two alternatives are available for us to pursue. Either
peared recently that, when taken altogether, largely SUMM@ge can use the eigenfunctions to refocus acoustic energy
rizes t'he. current state-'offthe-'art- o back onto the scattering targéor purposes either of com-
It is important to distinguistphysicaltime-reversal and 1, nication or medical ultrasound treatments—see, for ex-
re-emission _of the acqustlc signals by the array, so as tgmple, Refs. 9 and 130r we can try to make use of them to
produce optimal focusing on a target, frasgnthetictime- localize or form an image of the scatterers’ spatial distribu-

rever;al processing in which the acoustic array data are US%%n. Both of these applications are relatively straightforward
to estimate the location of the scatterers. The work of Pradﬁ the background medium is itself homogenedfiBut, if

and Fink® and Pradaetal!* on the D.O.R.T. method M . .
. o the background medium is heterogene@iss., the acoustic
(French acronym for a diagonalization of the array responssv v d varies randomlv with itiothen the difficul-
matrix) has clarified the connection between individual scat- ave speed varies randomiy with posiiothen the cu
ties rapidly mount for both applications even if there are no

tering objects and the eignfunctions of the time-reversal op- dditional complications. Such complications might, for ex-

erator. Scatterers can be associated directly with eigem‘un(’?l ) . )
ample, include(1) near/close boundaries as will commonly

. — occur in wave guidés* (including the ocean bottom and

, Electronic mail: berrymanl@Iinl.gov surface for ocean acousttés (2) drift of the actual acoustic
Electronic mail: borcea@caam.rice.edu . . . . . .

9Electronic mail: papanico@math.stanford.edu medium itself or just its physical properties due to currents

9Electronic mail: tsogka@Ima.cnrs-mrs.fr or temperature fluctuatiort, (3) periodic changes such as
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expansion and contraction due to the breathing of a patiergingular value. When the full response/transfer matrix has
while being diagnosed or treated with ultrasound. been measured for a multistatic active array, the resulting
Our focus in this paper will be to ignore any additional data matrix can be analyzed directly by SVD to determine
complications, and concentrate instead on what diffiCU'tie%ot on|y the Singu|ar vector having the |argest Singu|ar value,
are introduced just by the spatial heterogeneity of the acougsyt all singular vectors and singular values—simultaneously.
tic medium, and what can be done with acoustic array data t§nhere remain some issues about signal-to-noise ratios sug-
achieve _rehable images or maps of any significant scatterer&esting that the physical iterative approach of finding these
present in such media. One companion pefmidresses the same singular vectors can be preferable to the purely com-

issues of refocusing sound at a target in the presence of tational alternative both in acousftésand also in other

heterogeneous acoustic background with significant multiz 5 o . .
. . ) . inverse problem#’ But it is also important to recognize that
pathing(multiple scatteringg and some of the results on im-

aging presented here are an outgrowth of another companicﬂqe SVD of the trangfer matrix does not require .spemallzed
papef® on acoustic imaging in random media. ardwarglany acoustic array can be used to do)thighereas

It is beyond our current scope to review the literature onthe physical time-reversal approach for ultrasound does re-
acoustics in random media, but we will mention a few rel-duire very specialized and often quite expensive hardware.
evant references. Early work by Kefféf? and Karal and Thus, SVD may have a distinct advantage in some time-
Keller’®?* has shown that the averaged Green’s function inreéversal imaging applications.
random media is a well-behaved quantity and how the effec- For acoustical imaging purposes, we do not need to
tive wave speed and apparent attenuation due to multiplpropagate the actual time-reversed signal back into the
scattering both depend on the statistics of the fluctuatingphysical random medium, whereas for either communication
acoustic wave speed. These and many other topics are prer target retrofocusing applications, such real-space back-
sented in Ref. 25. Wave front stabilization in complex andpropagation is always required. From this point of view,
especially in layered media has been obsefvadd studied  time-reversal imaging can also be seen as a relatively inex-
extensively in Refs. 27-33. o pensive process. The drawback is that imaging is always

_There have been many methods of estimating target 10g5ne ysing a fictitious medium for the simulated backpropa-
catlon_usmg acoustic array data. _Some of the most pom_“aaation that produces these images since the real medium is
Of:fes"gmrgfir;t yearf/lLT sa?/g Cont'(nl\ljlﬁﬁti t(l) be mz;tlc he?—flel ot known. Its large scale features could be estimated from
P ' pie gnal - Giher information, such as geological data obtained by seis-

Classification,*?3%° and  other linear  subspace . o 8
method<~3We will be discussing necessary modifications "'© methods. For example, migration methids® can be

of these methods here, since the randomness we consider d, where ve_ry large arrays—mgch larger than those we
a different character than that usually envisioned in thes§Ontemplate using here—are required. However, the small-
traditional analyses of acoustic array data, because it com&§ale random inhomogeneities are not known and cannot be
from multipathing that is generated by the random mediumé&ffectively estimated, so the simplest thing to do is ignore
Typical array processing methods assume that a sourd@em when imaging.
is located at a great distance from the array, while the propa- The following results are based in part on another ana-
gating medium is homogeneous, so that from the point ofytical and computational study of time-reversal in random
view of the array of the target looks like a point source. Themedia by the present authdfsin the first section, we briefly
incident sound arriving at the array takes the form of a planepresent the problem to be studied and then elucidate the no-
wave having no measurable curvature across the array apeaation to be used in the following sections. Then, we present
ture and, furthermore, has no measurable amplitude variatioa series of examples—in order to compare and contrast the
across that aperture. Array noise has usually been treated assults. Section Il focuses on the standard matched-field and
due either to diffuse sources of white noise coming simultajyusIC objective functionals in the frequency domain.
neously from all directions, or to isolated “noise” sources These methods daot provide statistically stable results and,
having the same types of source characteristics as the targgfRsrefore, are not useful for imaging in media with randomly

o ) . r1"?1ay be transformed into the time domain in order to produce
first introduced for such passive data collection and process-,_". . . .
statistically stable and, therefore, useful images that localize

ing problems. But, for time-reversal methods, it quickly be- o :
. the target cross ranger bearing in a satisfactory manner.
comes clear that virtually the same methods—except for

some obvious minor technical differences—should be con>€¢tion IV then goes further to show how range information

sidered for both active and passive arrays. may be obtained from the time-domain arrival data after

Time-reversal processing of the array response data jgareful processing and subsequent averaging of multiple cop-
most naturally based from the outset on the Singular Valuées of the pertinent singular vectors contained in the multi-
Decomposition(SVD). This approach is consistent with the static array data. Synthetic Aperture Imagif®8Al) is also
concept of real-space time-reversal—involving an iterativeused to provide another source of comparison to a familiar
procedure that amounts to using the power method for finddata processing scheme. Our conclusions are summarized in
ing the singular vector of the data matrix having the largesSec. V.
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Il. PROBLEM STATEMENT AND NOTATION where Go(y®,%; ,») is the deterministic two-point Green’s
function, andx; is the location of thgth array element.

We also define the projectioPygo(Y, ) of go(y®, )
onto the null-space dPP"(w) by

An array hasN transducers located at spatial positions
Xp, for p=1,..N. When used in active mode, the array
probes the unknown acoustic medium containMgsmall
scatterers by emitting pulses and recording the time traces of M
the back-scattered echoes. We call the resulting data set the p, g (yS w)=g,(y5, 0)— >, [Uf'(w)go(ys,w)]or(w),
multistatic array response(or transfey matrix P(t) r=1
=(Ppq(1)), wherep and q both range over all the array ()
elements. For our simulations, we consider a linear arra¥ ) , -
where two adjacent point transducers are a distan@e 'Of €ach frequency in the support of the probing puige).
apart, with\ being the carriefcentra) wavelength of the Our simulations assume thats £ <a=(N—1)\/2<L,
probing pulses. Such an arrangement ensures that the colldkhere is the central wavelengtif,is a characteristic length

tion of transducers behaves like an array having aperure Sc@le of the inhomogeneitfike a correlation length a is
=(N—1)\/2 and not like separate entities, while keepingthe array aperture, and is the approximate distance to the

the interference among the transducers at a miniffu@ur targets from the array. This is the regime where multipathing,

goal is to detect and then localize Mi of the targets in the  ©F multiple scattering, is significant even when the standard
random medium, if possible. deviation of sound speed fluctuations is only a few percent.

The array response matrR(w) in the frequency do- We solve the wave_equqtioq in 2D with a numerigal
main is, in our linear acoustics simulations, symmetric butmEthOd based on the dlscretlgatlon of the m|>§ed yeloc!ty-
not Hermitian. The singular value decompositiBVD) of pressure formulation for acoustics. For the spatial discretiza-
the response .matrix is given explicitly by tion we use a new finite element metttfayhich is compat-

ible with mass-lumping techniqudse., it leads to explicit
|5(w)=0(w)2(w)\7H(w) (1) time discretization schemeand for the time discretization
' we use a centered second order finite difference scheme. In

The eigenvectors d’i)(w)ISH(w) having unit norm, denoted the numerical simulations, we have statistically homoge-
by 0 (w), for r=1,...N, are the columns of matrilZJ(w) neous Gaussian random velocity fields generated using a ran-
(o), N, .

The eigenvalues oP(w)PH(w) arearz(w), with o, () be- dom Fourler serles,'wnh con;tant meegr= 1.5 km/s, and

ina the singular val o that form the diagonal m exponential correlation function having correlation length
-g € singu a. a_ges _(w) at form the 6_190 alMma- »_0.3 mm and standard deviation ranging from 1% to 5%.

trix %(w). The significant singular vectots, (w) [i.e., those

. X The probing pulse is given by
in the range ofP(w)] correspond to singular values (w)

>0 for 1=r=<M, whereM is either the number of targets, or 1 )5 )

the size of the arrayN)—whichever is smaller. For definite- f(t)= —27721/2('[— S (=), (4)
ness, we usually assume that the number of targets is smaller
than the array siz&\, so thatM is in fact the number of . cantral frequency is=3 MHz andf(w), (0=2mv) is

distinguishable targets. In our setup, the left singular VeCt°r§upported over the band of frequencies 0.159—7.958 MHz.
U, (w) are the complex conjugates of the right singular vec-the carrier wavelength is=0.5 mm and the aperture of the
tors Vi(w), for r=1,...N. Most physical arrays, however, array isa=2.5 mm. Then, the targets, which are soft scatter-
are not constructed with isotropic point transducers and, furgrs, are modeled by small squares. The size of a small target
thermore, the amplitude respon@specially in transmission s \/30x /30, while the size of a larger one Mg15x\/15.
mode does not have to be linedwith strong deviations  sjmulations are done on individual realizations, to be consis-
from linearity generally occurring at both high and very low tent with what happens in practice; there is no averaging of
amplitudes, so measured response matrices are not necessggsults from many realizations here. Furthermore, the same
ily symmetric. We assume symmetry here for simplicity, andrealization is typically used for the tests of all the imaging
this is fully consistent with our linear acoustics simulations.methods. Whenever the paramete@rand M.F) (M.F., maxi-
All of our analysis nevertheless carries over to the nonsymmum fluctuationsare fixed, the realization is also fixed; but
metric case. R when the parameters change, the realization necessarily has
We denote bygy(y®, ) the vector observed at the array changed. More details concerning the simulations may be
for a source located af in a deterministic mediunii.e., the  found in Refs. 20 and 50.
medium with the wave speet} given by the averaged ve- We purposely present all the formulas in their most gen-
locity of the random mediuinIn our simulationsg is con-  eral form in terms of Green’s functions. Thus, these formulas
stant but, in general, it could vary in space—assuming priogre valid either in 2D, as is relevant specifically to our simu-

knowledge of the environment. Thegy(y,w) is given by lations, or in 3D. The comparisons shown here use the
- Hankel-function fields in free space for the 2D simulations,
Go(y® /X1, ) but these functions would be replaced by point source
A éo(ys,xz,w) Green’s functions of the forre™"/4sr for realistic data ap-
QoY w) = . , (2 plications in 3D. Due to the high cost of numerically simu-
~ : lating wave propagation in random medium, with significant
Go(Y® XN, o) multipathing, we only did 2D simulations up to now.
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sa= 0% MF. = 0% 8= 2.36%, MF. = 409%

< g

0 ] 10 15 20 0 5 10 15 20
5=4E67% MF. = 8.10% 5= 4.53%, MF. = 7.84%

FIG. 1. The matched field central frequeriéyF estimate(6)] estimate of the location of one target in random media with different strength of the fluctuations
of the sound speed. The exact location of the target is denoted by the green star. The standard slevidtioaximum fluctuation@Vl.F.) are indicated on
the top of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.

IIl. FREQUENCY DOMAIN METHODS: NOT

& Gy
S\ —
STATISTICALLY STABLE Rue(YS) le e G (6)
Two well-known frequency-domain imaging methods,
matched-field processifity 3685t and MUSIC!239-42:52.53
will be presented next to show how these methods behave

the types of random media we are considering. for a discrete set of poini{@sually regularly spaced on a grid

which then aids in the ultimate computer display in the
A. Matched field—central frequency target domain.

Examples of matched-field processing with one or two
targets are displayed in Figs. 1 and 2.

The standard-matched-fielMF) processintf uses a

For matched-fieldMF) processing, we compute

GiL(y9) =0 (@) Go(y® )2, (5  somewhat different functional operating directly on
P(w)P"(w). In our notation, the Bartlett-type objective
and display the objective functional functional of Ref. 38 is
s=0% MF. = 0% 5= 253% MF. =438%

8 = 5.96%, MF. = 12.05%

FIG. 2. Similar to Fig. 1 but with two targets.
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§=0% MF. = 0% § = 2.36%, M.F. = 4.09%

] 5 10 15 20 ] 5 1a 15 20
s = 4.67%, MF. = 8.10% s =4.53% MF. = 7.84%

0 5 0 1 20 0 5 v 15 20

FIG. 3. The MUSIC central frequency estim@lUSIC estimateg9)] of the location of one target in random media with different strength of the fluctuations
of the sound speed. The exact location of the target is denoted by the green star. The standard slevidtinaximum fluctuationéV.F.) are indicated on
the top of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.

M _ vectors are ordered according to their corresponding singular
RSMF(yS):jzl o) Gdue(y®), (7)  values from largest to smallest.

Whereajz(w)Ais the singular value corresponding to the sin-g \ysic—central frequency

gular vectorU;(w) and .
For the MUSIC algorithm, we compute

H A (S 2 N
Gd(y®) = Y7 (@) Goly Z))| . (8) Guusic(Y®) = Pndo(y®, @) |, ©)

A S

|Go(y*, @) with Pydo(yS,w) defined by(3). We display the objective
If there is a small number of targets and these targets do ndgnctional
differ sigqificantly in str_ength at the cgntral freque.r(ajs_is minys Gyusic(Y®)
the case in our simulationsthen there is no essential differ- Ruusic(Y?) = o)
ence between the two imaging functionals. If, for example, music(y”)

we want to identify only the strongest scatterer, then we mayor pointsy?® in the target domain.
consider only the first term in either sum, since the singular  Examples for MUSIC with one or two targets in homo-

(10

Stu%.MF'u“ 5= 2.53%, MF. = 438%

0 2 4 & 8 10 12 0 2 4 & 8 10 12

s = 4.84%, M.F. = 8.38% 5= 6.96%, M.F. = 12.068%

FIG. 4. Similar to Fig. 3 but with two targets.
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5= 0% MF. = 0% s 2.36%, MF. = 4.09%

0 5 10 15 20 0 - 10 15 20
5= 4.67% MF. = 8.10% s = 453%, MF. = 7.84%

a 5 10 15 20 0 5 10 18 20

FIG. 5. The matched field time estimdfdF; estimate(12)] of the location of one target in random media with different strength of the fluctuations of the
sound speed. The exact location of the target is denoted by the green star. The standard dendtimaximum fluctuation@.F.) are indicated on the top
of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.

geneous and random media are displayed in Figs. 3 and 4from the figures that no range information is obtained from
When there is only one target in a homogeneous methese objective functionals in random media, and even the
dium, then there is only one significant eigenvector of thecross-range information is often quite haphazard. Indeed, as
array response matrix and it is proportional Gg(y', ), the random fluctuations in the velocity increase, there are
wherey!' is the target location. It is clear in this case that bothfalse peaks and the functionals may not peak at the targets at
the MF and the MUSIC functionals have only a single termall. (Note that MUSIC does provide the correct range for the
which peaks whery®=y'. Similarly, in the case of several zero variance caselack of statistical stability prevents
targets in a homogeneous medium, the significant eigenvethese imaging approaches from being useful in random me-
tors are linear combinations @,(y} W), wherey} are the dia with significant multipathing considered here. When the
target locations and the functionals will have local maxima atealization of the random medium is changed, the images
the target locations. obtained typically change also—which is what we mean by
In both of these frequency domain examples, it is cleathe phrase “lack of statistical stability” for these methods.

s=0% MF. = 0% s=253% MF. = 438%

FIG. 6. Similar to Fig. 5 but with two targets.
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5= 0% MF = 0% 8= 236% MF. =4.09%

0 5 10 15 20 0 5 10 15 20
8=467% MF =810% s = 453%, MF. = 7.84%

a 5 10 15 20

FIG. 7. The DOA estimatgDOA estimate(15)] of the location of one target in random media with different strength of the fluctuations of the sound speed.
The exact location of the target is denoted by the green star. The standard devatdmaximum fluctuationgvl.F.) are indicated on the top of each view.
The horizontal axis is the range in mm and the vertical axis is the cross range in mm.

IV. STATISTICALLY STABLE TIME DOMAIN METHODS the corresponding pulse in the time domain. We then display

. the objective functional
Next we consider the same two methods of the preced- :

ing section, but now we transform back to the time domain M QEJ.)FT(yS,t=0)

to take advantage of the statistical stability that can be gained RMFT(yS) = () (S ,
. i=1m ,t=0
this way. =1 maxs Gur (Y )

A. Matched field in time for pointsy® in the target domain. o .

_ . Examples of matched-field processing in the time do-

For matched-field processing, we compute main with one or two targets are displayed in Figs. 5 and 6.

(12

i (Y50 = f e gj(0)|U (@) Go(y*,0)|2 dw. (11)
Since the factor multiplying ! in the integrand is real and B. DOA (time-domain MUSIC )
nonnegative, this integral clearly takes its maximum value  The next method is a time-domain variant of MUSIC
for t=0—which is also, therefore, the location of the peak ofwhich we will label DOA, because it gives very good esti-

5 = 0%, M.F. = 0% 5= 2.53% MF. = 438%

5= 4.84% MF. = 8.38%

FIG. 8. Similar to Fig. 7 but with two targets.
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mates of the direction of arriva{Note that matched field in now be combined with the time-domain methods of the pre-
time also gives good estimates of the direction of arrjval. ceding section to obtain well-localized images of the targets.
To define a time variant of MUSIC, we first normalize

the projectionP\go(y®,w) [given by (3)] by the singular A Matched field in time combined with SAI
value oj(w) and then take the inverse Fourier transform to

go to the time domain, The SAI objective function is
N
FI(y5t)= J e “'o(@)Go(y®, ) dw— J e “oj(w) Realy*)= 2, Poo(2p(y)). (17)
M At a search poiny® in the domain of interest, we compute

X Z [Ul'(0)8(Y%®)lU(w)do. (13 the deterministic arrival time for diagonal entRy,(t). That

=t . is, the time to go from theth transducer to the search point
Theoretical analysis shows that the functionaf8(ys,t) are y® and then come back to thpth transducer. This is twice the
statistically stable, i.e., they behave like deterministic quanarrival time t,(y%) given by (16). Note that the SAI func-
tities, and thus it seems natural to evaluate them at determinional gives good range information even in random media
istic times (i.e., simple geometrical spreading time$Ve (see Ref. 2D
then form the sum The idea here is to combine the functional SAI which

gives good range information with the functional Mwhich

(Drus N s 12 provides good cross range resolution in order to get good
gty >=p§1 |70ty 2, (14 images. One way of doing this combination is to display
and display the objective functional Mo G —sa(YY)

Rue,-salY) = 2, (18)

; (]) Sy’
_ =1 maxsGur. _saly”)
R =2, —r
poa(Y) 121 g(])(yS)
for pointsy® in the target domain.
The arrival timet,(y®°) is the deterministic travel time
from the pth transducer to the search point,

(15  where

N
QW:T—SAKVS): pgl Pop(2tp(y®%) g,(\}'l;:T(yS,t=0). (19

Examples of time-domain matched-field processing with

s Synthetic Aperture Imaging as the range estimator for one or
to(y®) = M (16  two targets are displayed in Figs. 9 and 10. The method is
Co statistically stable and gives good estimates of the target lo-

Examples for time-domain MUSIC with one or two tar- cations.
gets are displayed in Figs. 7 and 8.

The cross-range results are now dramatically improved. Matched field in time combined with times from
in both methods. Range information is still not to be foundaveraged singular vectors
here, but the statistical stability of the universal “comet . . ~
tails” is now easily observed. The images shown are for We would like to use the singular vectai(w) to es-

specific realizations, but the results do not change signifi'-[Imate the travel times from targétto the array. Remark

cantly when the underlying realization of the random me_thgugh that the singular VethUEJ(“’) which are normalized
dium is changed. This fact has been repeatedly shown in o Ui(@)|=1) carry an arbitrary, frequency dependent,

simulations, and is the main characteristic of statisticallyPhase. Because of thigj(t) look incoherent in the time
stable methods. domain. We can, however, calculdtecoherent in time, ver-

sions of singular vectors by projecting the columns of the

response matrix onto them
V. TIME DOMAIN PROCESSING AND RANGE

ESTIMATION METHODS UlP (@) =[U;(0)"PP(0)]0;(),

To complete the localization of the targets, we also need p=1,..N, j=1,.M. (20
n estimate of the range. ran timat n -2 2
an estimate of the range. Good range estimates can be oy, . 5p) jg the pth column of the response matrX(w).
tained in the near field either from amplitude moveout infor- learly U(P) inaul - h
mation or from arrival time information. In the far field, only Cl€arly Uj™ () are singular vectors dP(w) and carry the
the arrival time information is useful, and we will concen- Phase of itsth column. We use these various versions of the

. . . . i ; () .
trate on arrival times in the present analysis. singular vectors to estimate,’, for j=1,.M, and p

One commonly used range estimator is Synthetic Aper— 1N, the travel times for targgtto the array elemer

ture Imaging or SAI. Another alternative that arises in the@S the minimizers of
time-reversal approach is the use of arrival time information T N

in the singular vectors. This arrival time information can also ~ min E
be averaged for random media—see Ref. 20—to obtain very - 0p=1
stable estimates of arrival times. Both of these methods will (21

N 2
oo .
UP(t=r) - qzl U@ (t—70) dt.
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5= 0% MF. = 0% 8= 2.36% MF. = 409%

0 B 10 15 20 1] 5 10 15 20
5= 4.6/, MF. = 8.10% 3 =453% MF. = 7.84%

a 5 10 15 20 0 5 10 15 20

FIG. 9. Combined Mirand SAI[ MF;—SAl estimatg18)] estimation of the location of one target in random media with different strength of the fluctuations
of the sound speed. The exact location of the target is denoted by the green star. The standard slevidtioaximum fluctuationév.F.) are indicated on
the top of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.

The ATSV (Arrival Times from averaged Singular Vectprs where
functional is defined by
v minys ggf)sv(ys)

R (y%)= i
ATsvY =) QXT)SV(YS)

' (22 gE\JII):T—ATSV( y®)= QF\M:T(yS)/ Gllsu(y®). (25
where

N
() (yS)= () _ )72 Examples of time-domain matched-field processing with
Garsv(Y") ,Z‘l [75 = 2t(y)]" 23 arrival-time estimates from the averaged singular vectors for
one or two targets are displayed in Figs. 11 and 12. This

We combine Mir with ATSV to obtain method is also statistically stable and gives good estimates of

M G arsv(YY) the target locations. The results look somewhat better than
RMFT_ATSV(yS)= D g (24)  those in Figs. 9 and 10, and considerably better for stronger
=1 maXs Gue_arsy’) fluctuations.
5 = 0%, M.F. = 0% 5= 2.53% M.F. = 4 38%

4 B B 10 12 0 2 4 B 8 10 12

=]
(%]

s = 4.84%, M.F. = B.38% s = 6.96%. M.F. = 12.05%

0 2 4 6 a8 10 12

FIG. 10. Similar to Fig. 9 but with two targets.
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5= 0% MF. = 0% 8=236% MF. = 409%

10 10

=} 5

0 o
0 5 10 15 20 0 5 10 15 20

s = 4.67%, MF. = 8.10% s = 4.53% MF. = 7.84%

10 10
5 =
0 0
0 5 10 15 20 0 8 10 15 20

FIG. 11. Combined MFand ATSV[MF;—ATSV estimatg24)] estimation of one target location in random media with different strength of the fluctuations
of the sound speed. The exact location of the target is denoted by the green star. The standard slevidtinaximum fluctuation@Vl.F.) are indicated on
the top of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.

C. DOA combined with SAI targets are displayed in Figs. 13 and 14. This method is also
The DOA—SAI estimator is staltlstlcally stable and gives good estimates of the target lo-
cations.
M (j) s
Gpoa-salY’)
Rooa_saly) = 2, D ~ (26)
=1 maxs Gpoa-sally’) _ . R
D. DOA combined with arrival times from averaged
where singular vectors
_ N For each search poing;, we compute the objective
GBoa-saly) = le Pop(2tp(Y%) / g(y®), (27)  functional
- M i gl) (s
. o minysGsar(y°)
andGU)(y®) is given by(14). Rear(y®) = >, —h s (28
=1 Gsarly)

Examples of time-domain MUSIC with Synthetic Aper-
ture Imaging estimates as range estimator for one or twavhere

s = 0% MF. = 0% 5= 253% MF. = 4.38%

0 2 4 & 8 10 12 0 2 4 6 8 10 12

5= 484% MF. = 8.38% s = 6.96%, M.F. = 12.06%

0 2 4 & 8 10 12

FIG. 12. Similar to Fig. 11 but with two targets.
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= 0% MF = 0% s 236% MF. = 409%

1] 5 10 15 20 1] 5 10 15 20
5= 4E67% MF. = 8.10% s = 453% MF. = 7.84%

10

o i
(] 5 10 15 20 ] 5] 10 15 20

FIG. 13. Combined DOA and SADOA-SAI estimatg(26)] estimation of one target location in random media with different strength of the fluctuations of
the sound speed. The exact location of the target is denoted by the green star. The standard slevidtinaximum fluctuation@.F.) are indicated on the
top of each view. The horizontal axis is the range in mm and the vertical axis is the cross range in mm.

, N _ ‘ parently degraded the least of all those considered here at the
Q%Z\T(yS)=pzl | FDQE ()7 —to(y) 1% (29 highest values of the random fluctuations.

Here F)(ys,t) is defined by(13), t,(y®), for p=1,...N, are

Sl . . . i VI. CONCLUSIONS
the deterministic arrival times given k) and 7\’ for p

=1,..N, andj=1,...M, are the arrival times computed in For imaging applications in randomly inhomogeneous
(21). We call (28) the Subspace Arrival TImESAT) estima-  acoustical media, the foregoing results lead us to the follow-
tor. ing conclusions:(1) Single frequency methodéncluding

Examples of SAT or time-domain MUSIC with arrival MUSIC and D.O.R.7). are not statistically stable, and there-
time estimates from the averaged singular vectors for one dore cannot be used without modification in the presence of
two targets are displayed in Figs. 15 and 16. This method isignificant amounts of spatial heterogeneity in the acoustic
again statistically stable and gives good estimates of the tawave speed distributio2) In contrast, time-domain meth-
get locations. The results again look somewhat better thaads are statistically stable for any objective functional having
those in Figs. 13 and 14. These localization results have aphe characteristic that the random Green'’s functions appear in

5=0% MF. = 0% s = 253%, MF. = 4.38%

0 z2 4 6 8 10 12 0 2 4 E 8 10 12
s = 4.84% MF. = 8.38% s = 5.96%, MF. = 12.058%

FIG. 14. Same as Fig. 13 with two targets.
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s=0% MF. = 0% 5= 236%, MF. = 4.09%

0 5 10 15 20 0 ] 10 15 20
5= 467% MF. = 810% s = 453% MF. = 7.84%

10 10

1] 0

a ] 10 15 20 0 5 10 15 20

FIG. 15. The SAT estimatgestimate(28)] of one target in random media with different strength of the fluctuations of the sound speed. The exact location of
the target is denoted by the green star. The standard deviasind maximum fluctuationéV.F.) are indicated on the top of each view. The horizontal axis
is the range in mm and the vertical axis is the cross range in mm.

Hermitian conjugate pairs ofg*.2° This result has been To locate the targets in random media, we need either
shown here to be true for DOA and Matched Field, and ismultiple views(using multiple arraysso we can triangulate,
expected to be true more general(pf course, statistical or we need to extract a direct measure of range from the data.
stability is a necessary, but not a sufficient, condition forBoth arrival time and amplitude moveodte., changes in
optimal imaging in random media, so satisfaction of this cri-peak arrival time and amplitude correlated directly with the
terion is not enough in itse)f(3) The DOA estimates seem array element locationgontain sufficient information to ex-
superior to those of Matched Field, but a careful analysidract range. Usefulness of amplitudes is limited by the range
shows that this is only superficially so because of the quaniself; if the range is so large that the arrivals appear as planar
tity chosen for display in these plots. In the homogeneousicross the array aperture then only the plane-wave arrival
case, exact calculations show that this superficial differencéme is useful. In the examples chosen here, we concentrated
is just related to shapgsiot the locationsof the peaks in  on arrival time and this information was obtained by com-
each of the objective functionals, and therefore is only aining MF with either SAI or ATSV(arrival times from av-
display issue and not fundamentd4) Both DOA and eraged singular vectorsAs anticipated, results obtained af-
Matched Field give only cross-range or bearing informationter intersection with SAl are not as good as the ones obtained
Range information must be obtained separately. after intersection with ATSV. But the results were shown

5= 0% MF. = 0% s= 2.53% MF. = 4.38%

0 2 4 & 8 10 12 a 2 4 g 8 10 12
s =4.84%, MF. = 8.38% 5 = 6.96%, M.F. = 12.06%

0 s 4 & 8 10 12
FIG. 16. The SAT estimate as in Fig. 15 for two targets.
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