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Abstract: Double-porosity materials were introduced as models for oil and gas reservoirs having both storage and transport p
and were at first usually treated as static mechanical systems in order to study the flow patterns of fluids during reservoir pum
Because fluid withdrawal normally increases the effective stress acting on the reservoir, it also turns out to be important to s
geomechanics of the reservoir and how changing fluid pressure affects the solid compaction and fluid permeability of these sy
the microscale, the mechanical properties of the solid constituents and their distribution in space determine the overall macrom
of the reservoir system. For systems containing two porosities and two types of solid constituents, exact results for all but one~which may
be taken as the overall drained bulk modulus of the system! of the mechanical constants can be derived when the constitutents’ prop
are known using methods developed in this paper. For multiporosity systems, closure of the system of equations remains an ope
although it is clear that the system can always be closed by the addition of further macroscale measurements.
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Introduction

The subject of ‘‘geomechanics’’ includes such topics as the st
of rock mechanics, soil mechanics, and engineering geology,
has overlaping interests in some cases with ‘‘hydrogeolo
when the mechanical behavior of the earth system of intere
strongly affected by the presence of water. We will use the te
‘‘microgeomechanics’’ to mean the study of the effects of mic
mechanics on earth systems. Our main interest here will be in
interaction of fluid pressure changes~usually induced by reservoi
depletion! with the mechanical properties of the reservoir.

Terzaghi’s~1925! early work on effective stress—accountin
for the observed fact that pore pressure tends to counterac
effects of confining pressure in a porous fluid-satura
medium—was expanded into a theory of consolidation, both
himself and through the work of Biot~1941!; Gassmann~1951!;
Skempton~1954!; and many others. Biot~1941! is usually given
credit for the first comprehensive theory of consolidation, at le
in the case of simple, single porosity systems. Gassmann~1951!
was the first to obtain one of the fundamental results of
theory—sometimes called the fluid-substitution formula, relat
the dry or drained bulk modulusK* to the undrained~or satu-
rated! modulusKu by Ku5K* /(12aB), where the pore-pressur
buildup coefficientB is Skempton’s second coefficient~Skempton
1954; Carroll 1980!. Early laboratory measurements~Biot and
Willis 1957; Fatt 1958, 1959! of the constants in Biot’s equation
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helped to establish the theory. Early engineering solutions of
equations of poroelasticity were given by Rice and Cleary~1976!
and Cleary~1977! which helped to make it a standard tool in civ
engineering. Some fundamental extensions of the theory to
tems having multiple solid constituents have been given
Brown and Korringa~1975!; Rice ~1975!; Berryman and Milton
~1991!; Berryman~1992!; Norris ~1992!. Poroelasticity is now a
well-established subject having recent technical reviews by
tournay and Cheng~1993!; Wang ~1993!; Pride and Berryman
~1998!; Berryman~1999!, and books by Bourbie´ et al.~1987! and
Wang ~2000! describing the current state of our understanding

Biot’s original single-porosity, microhomogeneous theory
poroelasticity has significant limitations when the porous medi
of interest is very heterogeneous. One important generalizatio
poroelasticity that has been studied extensively started with
work on double-porosity dual-permeability systems by Barneb
and Zheltov~1960! and Warren and Root~1963!. These papers
take explicit note of the fact that real reservoirs tend to be v
heterogeneous in both their porosity and permeability charac
istics. In particular, the two types of porosity normally treated a
storage and transport porosities. Storage porosity holds mo
the volume of the fluid underground but may have rather a l
permeability, while the transport porosity is low volume but hi
permeability. The transport porosity is usually treated as bein
the form of fractures in the reservoir, or joints in the rock ma
The theory of double-porosity dual-permeability media has b
expanding in both volume and scope during the last 20 years,
now includes work by Wilson and Aifantis~1982!; Elksworth and
Bai ~1992!; Bai et al. ~1993a,b!; Berryman and Wang~1995!;
Tuncay and Corapciaglu~1995!; Bai ~1999!; and Berryman and
Pride ~2002!. Computations of transport and subsidence
double-porosity dual-permeability media include work by Khal
et al. ~1984!; Nilson and Lie~1990!; Cho et al.~1991!; Lewallen
and Wang~1998!; and Bai et al.~1999!.

Some technical details follow on the single-porosity poroel
ticity needed in the main arguments of the paper. Then equat
are formulated for double-porosity systems, and finally mu

-
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porosity systems are discussed. The focus will be on determi
how the coefficients of the resulting equations depend on
physical properties of the microstructural constituents’ of th
complex geomechanical systems. The main results are obta
using new techniques in micromechanics that permit a rathe
ementary analysis of these complex systems to be carried thr
exactly. For systems containing two porosities and two types
solid constituents, exact results for all but one~which may be
taken as the overall drained bulk modulus of the system! of the
macroscopic geomechanical constants are derived.

Single-Porosity Geomechanics

In the absence of external driving forces that can maintain flu
pressure differentials over long time periods, double-porosity
multiporosity models must all reduce to single-porosity mode
This reduction occurs in the long-time limit when the matrix flu
pressure and joint fluid pressure become equal. It is there
necessary to remind ourselves of the basic results for sin
porosity models in poroelasticity~Biot 1941; Detournay and
Cheng 1993; Wang 2000!, as the long-time behavior may b
viewed as providing limiting temporal boundary conditions~for
t→`! on the analysis of multiporosity coefficients. Further, in t
specific models we adopt for the geomechanical constants in
multiporosity theory, extensive use of the single-porosity res
will be made.

The volume changes of any isothermal, isotropic material
only be created by hydrostatic pressure changes. The two fu
mental pressures of single-porosity poroelasticity are the con
ing ~external! pressurepc and the fluid~pore! pressurepf . The
differential pressure~or Terzaghi effective stress! pd[pc2pf is
often used instead of the confining pressure. The volumetric
sponse of a sample due to small changes inpd and pf take the
form @e.g., Brown and Korringa~1975!#

2
dV

V
5

dpd

K*
1

dpf

Ks
(1)

for the total volumeV,

2
dVf

Vf
5

dpd

Kp
1

dpf

Kf
(2)

for the pore volumeVf5fV ~wheref is the porosity!, and

2
dVf

Vf
5

dpf

K f
(3)

or the fluid volumeVf . Eq. ~1! serves to define the drained~or
‘‘jacketed’’! frame bulk modulusK* and the unjacketed bulk
modulusKs for the composite frame. Eq.~2! defines the jacketed
pore modulusKp and the unjacketed pore modulusKf . Similarly,
Eq. ~3! defines the bulk modulusK f of the pore fluid.

Treatingdpc anddpf as the independent variables, we defi
the dependent variables to bede[dV/V and dz[(dVf

2dVf)/V, which are termed, respectively, the total volume di
tation ~positive when a sample expands! and the increment of
fluid content~positive when the net fluid mass flow is into th
sample during deformation!. Then, it follows directly from these
definitions and from Eqs.~1!, ~2!, and~3! that

S de

2dz D 5S 1/K* 1/Ks21/K*

2f/Kp f~1/Kp11/K f21/Kf!
D S 2dpc

2dpf
D (4)

Now we consider two well-known thought experiments: t
drained test and the untrained test~Gassmann 1951; Biot an
d
-
h

-

e

-
-

-

Willis 1957; Geertsma 1957; Wang 2000!. In the drained test, the
porous material is surrounded by an impermeable jacket and
fluid is allowed to escape through a conduit penetrating the jac
Then, in a long duration experiment, the fluid pressure remain
equilibrium with the external fluid pressure~e.g., atmospheric!
and sodpf50. Hence,dpc5dpd . So changes of total volume
and pore volume are given by the drained constants 1/K* and
1/Kp as defined in Eqs.~1! and~2!. In contrast, for the undrained
test, the jacketed sample has no connection to the outside w
so pore pressure responds only to the confining pressure cha
With no way out, the total fluid content cannot change, so
incrementdz50. Then, the second equation in Eq.~4! shows that

052f/Kp~dpc2dpf /B! (5)

where Skempton’s pore pressure buildup coefficientB ~Skempton
1954! is defined by

B[
dpf

dpc
U
dz50

5
1

11Kp~1/K f21/Kf!
(6)

It follows immediately from this definition that the undraine
modulusKu is determined by@also see Carroll~1980!#

Ku5
K*

12aB
(7)

where a5combination of moduli known as the Biot-Willis pa
rameter, or the total volume effective-stress coefficient. The p
cise definition ofa follows immediately from the form of Eq.~1!,
by substitutingdpd5dpc2dpf and rearranging the equation int
the form

2
dV

V
5

dpc2adpf

K*
(8)

with a512K* /Ks . The result~7! was apparently first obtained
by Gassmann~1951! ~though not in this form! for the case of
microhomogeneous porous media~i.e., Ks5Kf5Km , the bulk
modulus of the single mineral present! and by Brown and Kor-
ringa ~1975! and Rice~1975! for general porous media with mul
tiple minerals as constituents. We will sometimes use the t
‘‘Gassmann material’’ when making reference to a microhomo
neous porous medium.

Next, to clarify the structure of Eq.~4! further, note that Betti’s
reciprocal theorem~Love 1927!, shows that the drained and und
rained pressures and strains satisfy a reciprocal relation, f
which it follows that

1

Ku
5

1

K*
2

fB

Kp
(9)

Comparing Eq.~7! with Eq. ~9!, we obtain the general reciprocit
relation ~Brown and Korringa 1975!

f

Kp
5

a

K*
(10)

This reciprocity relation and the form of the compressibility law
~4! also follow directly from general thermodynamic argumen
@e.g., Pride and Berryman~1998!#. Then, Skempton’s pore
pressure buildup coefficient~Skempton 1954! may be written al-
ternatively as

B5
1/K* 21/Ks

1/K* 21/Ks1f~1/K f21/Kf!
(11)
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Finally, the condensed form of Eq.~4!—incorporating the reci-
procity relations—is

S de

2dz D 5
1

K*
S 1 2a

2a a/BD S 2dpc

2dpf
D (12)

where the Biot-Willis~1957! parametera can now be expresse
asa5(12K* /Ku)/B. The parametera is also known as the tota
volume effective-stress coefficient@see Berryman~1992! for
elaboration#. This form of the compressibility laws is especial
convenient because all the coefficients are simply related to
three moduliK* , Ku , andB that have the clearest physical inte
pretations. This now completes our review of the standard res
concerning the single-porosity compressibility laws.

Double-Porosity Geomechanics

In this section, we present the fundamental governing equat
controlling the low-frequency~inertial effects being neglected!
response of a double-porosity geomechanical system. See B
man and Wang~1995! for details left out of the following brief
summary.

Macroscopic Governing Equations

In the double-porosity formulation, two distinct phases are
sumed to exist at the macroscopic level:~1! a porous matrix phase
with the effective propertiesK (1),Km

(1) ,f (1) occupying volume
fraction V(1)/V5v (1) of the total volume and~2! a macroscopic
crack or joint phase occupying the remaining fraction of the v
umeV(2)/V5v (2)512v (1). In earlier work~Berryman and Pride
2002!, methods were developed to determine the coefficient
this system within a set of specific modeling assumptions. But
general laws presented in this section are independent of all
modeling assumptions, and the analysis to be presented in
sections is also independent of them as well.

The main difference between the single-porosity and dou
porosity formulations is that we allow the average fluid press
in the matrix phase to differ from that in the joint phase~thus the
term ‘‘double porosity’’! over relatively long time scales. Alto
gether we have three distinct pressures: confining~external! pres-
sure dpc , pore-fluid pressuredpf

(1) , and joint-fluid pressure
dpf

(2) . ~See Fig. 1.! Treatingdpc ,dpf
(1) , anddpf

(2) as the inde-
pendent variables in the double-porosity theory, we define
dependent variables to bede[dV/V, dz (1)5(dVf

(1)2dVf
(1))/V,

and dz (2)5(dVf
(2)2dVf

(2))/V, which are, respectively, the tota
volume dilatation, the increment of fluid content in the mat
phase, and the increment of fluid content in the joints. Finally,
assume that the fluid in the matrix is the same kind of fluid as
in the joints.

Linear relations among strain, fluid content, and pressure t
take the general form

S de

2dz~1!

2dz~2!
D 5S a11 a12 a13

a21 a22 a23

a31 a32 a33

D S 2dpc

2dpf
~1!

2dpf
~2!
D (13)

By analogy with the single-porosity result~12!, it is easy to see
that a125a21 and a135a31. The symmetry of the new off-
diagonal coefficients may be demonstrated using Betti’s recip
cal theorem in the form
842 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2002
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~de 2dz~1! 2dz~2!!S 0

2d p̄f
~1!

0
D 5~dē 2dz̄~1! 2dz̄~2!!

3S 0

0

2dpf
~2!
D (14)

where nonoverlined quantities refer to one experiment and o
lined to another experiment to show that

dz~1!d p̄f
~1!5a23dpf

~2!d p̄f
~1!5a32d p̄f

~1!dpf
~2!5dz̄~2!dpf

~2!

(15)

Hence,a235a32. Thus, we have established that the matrix in E
~13! is completely symmetric, so we need to determine only
independent coefficients.

Constraints on the a ij Coming From Long-Time Limit

Before passing on to the specific models for the various coe
cients, we state here several general constraints~independent of
any modeling assumptions! on the geomechanical constantsai j .
Note that in order to measure theai j ’s in the laboratory, we need
only consider an isolated sample immersed in a ‘‘reservoir’’ ch
acterized by three control parameters:pc , pf

(1) , and pf
(2) ; i.e.,

gradients in these quantities and the subsequent flow induce
those gradients do not enter the definition of theai j ’s.

The constraints are obtained from the limiting case in wh
the rate at whichpc , pf

(1) , and pf
(2) are all changing is much

slower than the rate at which internal fluid equilibration can ta
place. In this ‘‘long-time limit,’’ we are always in the quasistat
state wherepf

(1)5pf
(2) . Left to itself, any system having finite

permeability will achieve this state ast→`.

Drained Test, Long Time
The long-time drained~or ‘‘jacketed’’! test for a double-porosity
system should thus correspond to the conditiondpf

(1)5dpf
(2)50

so that the total volume obeysde52a11dpc . It follows therefore
that

Fig. 1. Elements of double porosity model are: porous rock ma
intersected by fractures. Three types of macroscopic pressure are
tinent in such a model: external confining pressurepc ; internal pres-
sure of the matrix pore fluidpf

(1) ; and internal pressure of the frac
ture pore fluidpf

(2) .
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a11[
1

K*
. (16)

Undrained Test, Long Time
The long-time undrained test for a double-porosity system sho
also produce the same physical results as a single-porosity sy
~assuming only that it makes sense at some appropriate la
scale to view the medium as homogeneous!. The conditions for
this test are that

dpf
~1!5dpf

~2!5dpf (17)
dz[dz~1!1dz~2!50

from which follow

de52a11dpc2~a121a13!dpf (18)
052~a211a31!dpc2~a2212a231a33!dpf

These require that the overall pore-pressure buildup coefficien
given by

B[
]pf

]pc
U
dz50

52
a211a31

a2212a231a33
(19)

and that the undrained bulk modulus be given by

1

Ku
[

de

dpc
U
dz50

5a111~a121a13!B (20)

Fluid Injection Test, Long Time
The conditions required to measure the three-dimensional sto
coefficientR in the long-time limit are thatdpf

(1)5dpf
(2)5dpf ,

while dpc50. It follows therefore from Eqs.~4! and ~21! that

R[
]z

]pf
U
dpc50

5a2212a231a335
a

K*
1fS 1

K f
2

1

Kf
D (21)

Generalized Biot-Willis Parameters
Eq. ~16! has already determined the coefficienta11. Thus, Eq.
~20! shows that

a121a1352
1/K* 21/Ku

B
52a/K* (22)

This relation provides a constraint on the sum of the two gen
alized Biot-Willis parameters for the double-porosity problem.

Not all of these long-time results are independent. In fa
there are only three independent equations among the five g
above expressing theai j in terms of the single-porosity~long-
time! moduli.

Double-Porosity Thought Experiment

Several of the main results obtained previously can be derive
a more elegant fashion by using a new self-similar~uniform ex-
pansion! thought experiment. The basic idea we are going to
troduce here is analogous to, but nevertheless distinct from, o
thought experiments used in thermoelasticity~Cribb 1968! and in
single-porosity poroelasticity by Berryman and Milton~1991! and
Berryman and Pride~1998!. Cribb’s method provided an indepen
dent and simpler derivation of Levin’s~1967! results on ther-
moelastic expansion coefficients. The present results also pro
an independent and simpler derivation of results obtained rece
m
r

e

e

n

r

e
y

by Berryman and Pride~2002! for the double-porosity coeffi-
cients. Related methods in micromechanics are called ‘
method of uniform fields’’ by some authors~Dvorak and Ben-
veniste 1997!.

We have already shown thata1151/K* . We will now show
how to determine the remaining five constants in the case
binary composite system, such as that illustrated in Fig. 2.
components of the system are themselves porous materials 1
2, but each is assumed to be what we call a ‘‘Gassmann mate
satisfying@in analogy to Eq.~12!#

S de~1!

2dz~1!/v ~1!D 5
1

K ~1!S 1 2a~1!

2a~1! a~1!/B~1!D S 2dpc
~1!

2dpf
~1!D (23)

for material 1 and a similar expression for material 2. The n
constants appearing on the right are the drained bulk mod
K (1) of material 1, the corresponding Biot-Willis parametera (1),
and the Skempton coefficientB(1). The volume fractionv (1) ap-
pears here to correct the difference between a global fluid con
and the corresponding local variable for material 1. The m
special characteristic of a Gassmann porous material is that
composed of only one type of solid constituent, so it is ‘‘micr
homogeneous’’ in its solid component, and in addition, the por
ity is randomly, but fairly uniformly, distributed so there is
well-defined constant porosityf (1) associated with material 1
etc.

For our new thought experiment, we ask the question: I
possible to find combinations ofdpc5dpc

(1)5dpc
(2) ,dpf

(1) , and
dpf

(2) such that the expansion or contraction of the system
spatially uniform or self similar? This is the same as asking if
can find uniform confining pressuredpc , and pore-fluid pressure
dpf

(1) anddpf
(2) , such thatde5de(1)5de(2). If these conditions

can all be met simultaneously, then results for system const
can be obtained purely algebraically without ever having to so
the equilibrium equations for nonconstant stress and strain.
have initially setdpc5dpc

(1)5dpc
(2) , as the condition of uniform

Fig. 2. Composite porous medium is composed of two distinct typ
of porous solid~1,2!. In one version of this model, fractures ma
result from presence of misfit porosity between different types
solid, since they are assumed to be only weakly bonded at poin
contact. In another version, two types of materials are well bon
but themselves have very different porosity types, one being a sto
porosity and the other being a transport porosity~and therefore frac-
turelike or tubelike!.
JOURNAL OF ENGINEERING MECHANICS / AUGUST 2002 / 843
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confining pressure is clearly necessary for this self-sim
thought experiment to achieve a valid solution of the equilibriu
equations.

So, the first condition to be considered is the equality of
strains of the two constituents

de~1!52
1

K ~1!
(dpc2a~1!dpf

~1!)

5de~2!52
1

K ~2! ~dpc2a~2!dpf
~2!! (24)

If this condition can be satisfied, then the two constituents
expanding or contracting at the same rate and it is clear that
similarity will prevail. If we imagine thatdpc and dpf

(1) have
been chosen, then we only need to choose an appropriate val
dpf

(2) , so that Eq.~24! is satisfied. This requires that

dpf
~2!5dpf

~2!~dpc ,dpf
~1!!5

12K ~2!/K ~1!

a~2!
dpc1

a~1!K ~2!

a~2!K ~1!
dpf

~1!

(25)

which shows that, except for some very special choices of
material parameters~such asa (2)50!, dpf

(2) can in fact always be
chosen so the uniform expansion takes place.~We are not consid-
ering long-term effects here. Clearly, if the pressures are lef
themselves, they will tend to equilibrate over time so thatdpf

(1)

5dpf
(2) . We are considering only the ‘‘instantaneous’’ behav

of the material permitted by our system of equations and find
what internal consistency of this system of equations implies m
be true.!

Using formula ~25!, we can now eliminatedpf
(2) from the

remaining equality so that

de52[a11dpc1a12dpf
~1!1a13dpf

~2!~dpc ,dpf
~1!!]

5de~1!52
1

K ~1!
~dpc2a~1!dpf

~1!! (26)

wheredpf
(2)(dpc ,dpf

(1)! is given by Eq.~25!. Making the substi-
tution and then noting thatdpc anddpf

(1) were chosen indepen
dently and arbitrarily, we see that the resulting coefficients
these two variables must each vanish. The equations we obta
this way are

a111a13@12K ~2!/K ~1!#/a~2!51/K ~1! (27)

and

a121a13@a~1!K ~2!/a~2!K ~1!#52a~1!/K ~1! (28)

Since a11 is known, Eq. ~27! can be solved directly fora13,
giving

a1352
a~2!

K ~2!

12K ~1!/K*

12K ~1!/K ~2!
(29)

Similarly, sincea13 is now known, substituting into Eq.~28! gives

a1252
a~1!

K ~1!

12K ~2!/K*

12K ~2!/K ~1!
(30)

Thus, three of the six coefficients have been determined.
To evaluate the remaining three coefficients, we must cons

what happens to the fluid increments during the same self-sim
expansion thought experiment. We will treat only material 1,
844 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2002
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the equations for material 2 are completely analogous. From
preceding equations, it follows that

dz~1!5a12dpc1a22dpf
~1!1a23dpf

~2!~dpc ,dpf
~1!!

5
v ~1!

K ~1!
@2a~1!dpc1~a~1!/B~1!!dpf

~1!# (31)

Again substituting fordpf
(2)(dpc ,dpf

(1)! from Eq.~25! and noting
once more that the resulting equation contains arbitrary value
dpc anddpf

(1) , so that the coefficients of the terms must van
separately, gives two equationsa121a23(12K (2)/K (1))/a (2)

52a (1)v (1)/K (1), and a221a23(a
(1)K (2)/a (2)K (1))

5a (1)v (1)/B(1)K (1). Solving these equations in sequence as
fore, we obtain

a235
K ~1!K ~2!a~1!a~2!

~K ~2!2K ~1!!2 F v ~1!

K ~1!
1

v ~2!

K ~2!
2

1

K*
G (32)

and

a225
v ~1!a~1!

B~1!K ~1!

2S a~1!

12K ~1!/K ~2!D 2F v ~1!

K ~1!
1

v ~2!

K ~2!
2

1

K*
G (33)

Performing the corresponding calculation fordz (2) produces
formulas fora32 anda33. Since the formula in Eq.~32! is already
symmetric in the component indices, the formula fora32 provides
nothing new. The formula fora33 is easily seen to be identical in
form to a22, but with the 1 and 2 indices interchanged eve
where.

This completes the derivation of all five of the needed coe
cients of double porosity for the two constituent model.

These results can now be used to show how the constit
propertiesK, a, and B average at the macrolevel for a two
constituent composite. We find

a52
a121a13

a11
5

a~1!~K* 2K ~2!!1a~2!~K ~1!2K* !

K ~1!2K ~2!
(34)

and

1

B
52

a2212a231a33

a121a13

5
K*
a S v ~1!a~1!

B~1!K ~1!
1

v ~2!a~2!

B~2!K ~2!

2S a~1!K ~2!2a~2!K ~1!

K ~2!2K ~1! D 2F v ~1!

K ~1!
1

v ~2!

K ~2!
2

1

K*
G D (35)

It should also be clear that parts of the preceding analy
generalize easily to the multiporosity problem. We discuss so
of these remaining issues in the final section.

Example

To illustrate the use of the formulas derived for the coefficients
the double-porosity system, we will now compute and plot
coefficients for a realistic system. We will use data of Coyn
~1984! for Navajo sandstone, and modify it somewhat to produ
a plot that will highlight the results obtained from the equatio
The first problem we encounter in doing so is that, although
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can make reasonable direct estimates of the bulk and s
moduli of the constituents, we also must have an estimate of
overall bulk modulusK* of the composite double-porosity me
dium. And more than that, we need it as a function of the volu
fractions of the two constituents. Our analysis has assumed
K* was given or measured independently. For present purpos
is sensible to use an effective medium theory such as the s
metric self-consistent method@or CPA5coherent potential
approximation—see Berryman and Berge~1996! for a discussion
and references therein for elaboration# to estimateK* . The CPA
has the advantage that it treats both constituents equally~i.e.,
symmetrically! and therefore does not assume that one constitu
always surrounds the other—so there is no host material@see
Berge et al.~1993! for further discussion#. With this addition to
the theory, we can proceed to the calculations.

The parameters used for Navajo sandstone are listed in T
1. Although Poisson’s ration does not appear explicitly in the
equations here, it is required in the CPA~or any but the most
elementary! effective medium calculation for the overall bul
modulusK* . The results are shown in Fig. 3.

Note that the off-diagonal coefficienta23, which couples the
fluid in the storage porosity to the fluid in the transport porosity
very close to zero for all values of storage material volume fr
tion. This behavior has been observed previously~Berryman and
Wang 1995!, and is believed to be a strong indication that t
double-porosity approach is appropriate for the system studie
this coefficient is not small, then the fluids in the two types
porosity are strongly coupled and therefore should not be tre
as a double-porosity system.

The behavior of the other coefficients is as one would exp
All the coefficients for the transport porosity tend to vanish as
volume fraction of this phase vanishes, and the medium a
reduces to a single-porosity system in this limit.

Discussion of Multiporosity Systems

Micromechanical analysis provides definite answers to the q
tion of how the coefficients in double-porosity systems are to
computed from knowledge of the constituents’ properties. T
question then naturally arises whether this analysis can be ge
alized to multiporosity systems. Certainly, multiporosity syste
are the ones most likely to represent realistic systems occurrin
nature, for example, oil and gas reservoirs. And, therefore,
need to address these issues. Transport in triple-porosity and
tiporosity systems have already been studied by some aut
~Bai et al. 1993b; Bai and Roegiers 1997!, hence, it is timely to
consider the geomechanical aspects of these problems. We
set up the problem and describe its general characteristics
but the full solution will be left to future work.

The resulting coefficient matrices will clearly take a for
analogous to the ones already studied. For example, in a tr
porosity system, the macroscopic governing equations are

Table 1. Input Parameters for Navajo Sandstone Model of Doub
Porosity System.

Ks

~GPa!
Ks

(1)

~GPa!
K (1)

~GPa! n (1) f (1)
Ks

(2)

~GPa!
K (2)

~GPa! n (2) f (2)

34.0 34.5 16.5 0.15 0.118 34.5 1.65 0.017 0.3

Note: Poisson’s ration and porosityf are dimensionless.
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2dz~1!

2dz~2!

2dz~3!

D 5S a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

D S 2dpc

2dpf
~1!

2dpf
~2!

2dpf
~3!

D (36)

The meanings of all the coefficients follow immediately from th
discussion of Eq.~13!. The matrix is again symmetric, so ther
are four diagonal and six off-diagonal coefficients to be det
mined, for a total of ten unique coefficients. The leading coe
cient a1151/K* as before, but the remaining coefficients requi
further analysis.

In general, for anN-porosity system of the form considere
here, the total number of coefficients to be determined in theN
11)3(N11) system of equations isN11 diagonal andN(N
11)/2 unique off-diagonal coefficients, for a total ofG5(N
11)(N12)/2 coefficients. And the nature ofa11 remains un-
changed for anyN. If we assume that each of the unique poros
ties can be associated with a Gassmann~microhomogeneous! ma-
terial, then we have equations of the same form as Eq.~23! for
each of these constituents, and therefore three mechanical co
cients plus the porosity of each constituent is assumed to
known, at least approximately, in order for this analysis to pr
ceed. The uniform expansion/contraction scenario carries ove
the multiporosity system, but does not supply enough equation
close the system by itself forN.2. To see this, note that once
dpc anddpf

(1) are chosen, then all the remainingdpf ’s are deter-
mined by the uniform strain condition and Gassmann’s relatio
Then, substituting these values into the multiporosity syst
@e.g., Eq.~36!#, we see there are always two equations for ea
row of the matrix. This results inS52(N11) equations just from
this self-similar thought experiment. These two sets of numb
are compared in Table 2. In addition to these equations, we
ways have the three conditions from the long-time limits, and
can also find other equations as needed by considering other
periments on the system@e.g., see Berryman and Wang~1995!#.
However, it is important to remember that it is the number
linearly independent equations that is pertinent, and determin

Fig. 3. Values of double-porosity coefficientsai j for a system similar
to Navajo sandstone. Values used for the input parameters are li
in Table 1.
JOURNAL OF ENGINEERING MECHANICS / AUGUST 2002 / 845
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this number has so far not proven to be an easy task for
general case. At the present writing, closure of the system
equations for the multiporosity coefficients whenN.2 is an open
question.

The analysis presented here has been strictly for isotropic
stituents, and an isotropic overall multiporosity system. Gener
zation to anisotropic systems is both possible and desirable
the analysis obviously becomes more complex because of
proliferation of coefficients that results.

Conclusions and New Directions

The preceding results show how a micromechanical anal
based on poroelasticity and Gassmann’s equations can be us
compute the geomechanical double-porosity coefficients in a v
elegant manner. This makes use of all the information availa
and produces reasonable estimates of all the coefficients ne
in reservoirs modeled by double-porosity geomechanics. Tri
and multiporosity geomechanics can also be studied using sim
methods, but some work remains to be done on closure of
increasingly larger systems of equations involved. For mu
porosity systems, closure of the system of equations can ne
theless always be achieved by the addition of further macros
measurements. Analysis and solution of these systems of e
tions to eliminate the need for such additional measuremen
therefore one subject of future work in this area of research.

Extension of this work in other directions is also possible.
particular, the applications presented here have been restricte
the sake simplicity to isotropic macroscopic systems. But i
known that the methods employed are not restricted to isotro
systems—as has already been shown in other micromecha
studies by Dvorak and Benveniste~1997!. So careful extensions
of these ideas to anisotropy due to oriented fractures will per
us to provide more realistic models of reservoir geomechan
including effects of overburden, tectonic stresses, hydrofrac
etc.
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Table 2. Growth of NumberG5(N11)(N12)/2 of Geomechanica
Coefficients and NumberS52(N11) of Equations from Self-
Similar Thought Experiment as NumberN of Distinct Porosities
within the System Increases

N 1 2 3 4

G 3 6 10 15

S — 6 8 10
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Notation

The following symbols are used in this paper:
ai j 5 double-porosity orN-porosity coefficients;
B 5 Skempton’s coefficient;
e 5 volume strain;
G 5 number of distinctai j coefficients;

K* 5 bulk modulus of drained porous frame~jack-
eted!:

K f 5 fluid bulk modulus;
Km 5 material~or grain! bulk modulus;
Kp 5 effective pore bulk modulus~jacketed!, equal

to fK/a;
Ks 5 effective solid bulk modulus~unjacketed!;
Ku 5 bulk modulus of undrained~confined! porous

frame;
Kf 5 effective pore bulk modulus~unjacketed!;

N 5 number of distinct porosity types;
pc 5 confining pressure;
pd 5 differential pressure, equal topc2pf ;
pf 5 fluid pressure;

pf
(1) ,pf

(2) 5 matrix and fracture fluid pressures;
R 5 storage coefficient;
S 5 number of distinct equations obtained from

self-similar thought experiment;
V 5 total volume;

V(1),V(2) 5 total matrix and fracture material volumes:
Vf 5 fluid volume;
Vs 5 solid volume, equal to (12f)V;
Vf 5 pore volume, equal tofV;

v (1),v (2) 5 volume fractions occupied by matrix and frac-
tures withv (1)1v (2)51;

a 5 Biot-Willis parameter;
z 5 increment of total fluid content;

z (1),z (2) 5 increments of matrix and fracture fluid content;
n (1),n (2) 5 Poisson’s ratios for matrix and fracture phases;

f 5 total porosity, equal tov (1)f (1)1v (2)f (2); and
f (1),f (2) 5 matrix and fracture phase porosities.

References

Bai, M. ~1999!. ‘‘On equivalence of dual-porosity poroelastic param
eters.’’J. Geophys. Res.,104, 10461–10466.

Bai, M., Elsworth, D., and Roegiers, J.-C.~1993a!. ‘‘Modeling of natu-
rally fractured reservoirs using deformation dependent flow mec
nism.’’ Int. J. Rock Mech. Min. Sci. Geomech. Abstr.,30, 1185–1191.

Bai, M., Elsworth, D., and Roegiers, J.-C.~1993b!. ‘‘Multiporosity/
multipermeability approach to the simulation of naturally fractur
reservoirs.’’Water Resour. Res.,29, 1621–1633.

Bai, M., Meng, F., Elsworth, D., Abousleiman, Y., and Roegiers, J.
~1999!. ‘‘Numerical modelling of coupled flow and deformation i
fractured rock specimens.’’Int. J. Numer. Analyt. Meth. Geomech.,23,
141–160.

Bai, M., and Roegiers, J.-C.~1997!. ‘‘Triple-porosity analysis of solute
transport.’’J. Contam. Hydrol.,28, 247–266.

Barenblatt, G. I., and Zheltov, Yu. P.~1960!. ‘‘Fundamental equations of
filtration of homogeneous liquids in fissured rocks.’’Sov. Phys. Dokl.,
5, 522–525@Engish translation ofDok. Akad. Nauk (SSSR),132,
545–548.

Berge, P. A., Berryman, J. G., and Bonner, B. P.~1993!. ‘‘Influence of
microstructure on rock elastic properties.’’Geophys. Res. Lett.,20,
2619–2622.

Berryman, J. G.~1992!. ‘‘Effective stress for transport properties of in
homogeneous porous rock.’’J. Geophys. Res.,97, 17409–17424.



titu

om-

titu-

.’’

ore

us
n-

m,

.,

us

on
a-

se

-

,
am

-

oir

c

a-

us

y

ous

nd

d

-
on-

d-

eir

,

Berryman, J. G.~1999!. ‘‘Origin of Gassmann’s equations.’’Geophysics,
64, 1627–1629.

Berryman, J. G., and Berge, P. A.~1996!. ‘‘Critique of explicit schemes
for estimating elastic properties of multiphase composites.’’Mech.
Mater., 22, 149–164.

Berryman, J. G., and Milton, G. W.~1991!. ‘‘Exact results for generalized
Gassmann’s equations in composite porous media with two cons
ents.’’ Geophysics,56, 1950–1960.

Berryman, J. G., and Pride, S. R.~1998!. ‘‘Volume averaging, effective
stress rules, and inversion for microstructural response of multic
ponent porous media.’’Int. J. Solids Struct.,35, 4811–4843.

Berryman, J. G., and Pride, S. R.~2002!. ‘‘Models for computing geo-
mechanical constants of double-porosity materials from the cons
ent’s properties.’’J. Geophys. Res., in press.

Berryman, J. G., and Wang, H. F.~1995!. ‘‘The elastic coefficients of
double-porosity models for fluid transport in jointed rock.’’J. Geo-
phys. Res.,100, 24611–24627.

Biot, M. A. ~1941!. ‘‘General theory of three-dimensional consolidation
J. Appl. Phys.,12, 155–164.

Biot, M. A., and Willis, D. G. ~1957!. ‘‘The elastic coefficient of the
theory of consolidation.’’J. Appl. Mech.,24, 594–601.
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