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Abstract: Double-porosity materials were introduced as models for oil and gas reservoirs having both storage and transport porosities
and were at first usually treated as static mechanical systems in order to study the flow patterns of fluids during reservoir pump down
Because fluid withdrawal normally increases the effective stress acting on the reservoir, it also turns out to be important to study the
geomechanics of the reservoir and how changing fluid pressure affects the solid compaction and fluid permeability of these systems. A
the microscale, the mechanical properties of the solid constituents and their distribution in space determine the overall macromechanic
of the reservoir system. For systems containing two porosities and two types of solid constituents, exact results for givbitlormey

be taken as the overall drained bulk modulus of the syst#rthe mechanical constants can be derived when the constitutents’ properties
are known using methods developed in this paper. For multiporosity systems, closure of the system of equations remains an open questic
although it is clear that the system can always be closed by the addition of further macroscale measurements.
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Introduction helped to establish the theory. Early engineering solutions of the
equations of poroelasticity were given by Rice and Cl€¢agj76
The subject of “geomechanics” includes such topics as the study and Cleary(1977 which helped to make it a standard tool in civil
of rock mechanics, soil mechanics, and engineering geology, andengineering. Some fundamental extensions of the theory to sys-
has overlaping interests in some cases with “hydrogeology” tems having multiple solid constituents have been given by
when the mechanical behavior of the earth system of interest isBrown and Korringa(1979; Rice (1979; Berryman and Milton
strongly affected by the presence of water. We will use the term (1991); Berryman(1992; Norris (1992. Poroelasticity is now a
“microgeomechanics” to mean the study of the effects of micro- ell-established subject having recent technical reviews by De-
mechanics on earth systems. Our main interest here will be in thetournay and Chen@1993; Wang (1993; Pride and Berryman
interaction of fluid pressure changesually induced by reservoir  (1998; Berryman(1999, and books by Bourbiet al.(1987 and
depletion with the mechanical properties of the reservoir. Wang (2000 describing the current state of our understanding.
Terzaghi's(1929 early work on effective stress—accounting Biot’s original single-porosity, microhomogeneous theory of
for the observed fact that pore pressure tends to counteract thgyoroelasticity has significant limitations when the porous medium
effects of confining pressure in a porous fluid-saturated of interest is very heterogeneous. One important generalization of
medium—was expanded into a theory of consolidation, both by poroelasticity that has been studied extensively started with the
himself and through the work of Biat1941); Gassmanr{1951); work on double-porosity dual-permeability systems by Barneblatt
Skempton(1954; and many others. Biot194]) is usually given  and zheltov(1960 and Warren and Roatl963. These papers
credit for the first comprehensive theory of consolidation, at least take explicit note of the fact that real reservoirs tend to be very
in the case of simple, single porosity systems. Gassnia®5i) heterogeneous in both their porosity and permeability character-
was the first to obtain one of the fundamental results of the jstics. In particular, the two types of porosity normally treated are
theory—somet_imes called the fluid-substitution f_ormula, relating storage and transport porosities. Storage porosity holds most of
the dry or drained bulk modulug™ to the undrainedor satu- the volume of the fluid underground but may have rather a low
rated modulusk,, by K, =K*/(1—aB), where the pore-pressure  permeability, while the transport porosity is low volume but high
buildup coefficienB is Skempton’s second coefficietBkempton permeability. The transport porosity is usually treated as being in
1954; Carroll 1980 Early laboratory measuremen(8iot and  the form of fractures in the reservoir, or joints in the rock mass.
Willis 1957; Fatt 1958, 1959%f the constants in Biot's equations  pe theory of double-porosity dual-permeability media has been
expanding in both volume and scope during the last 20 years, and
IPhysicist, Univ. of California, Computational Physics, Lawrence Liv- now includes work by Wilson and Aifantig€982; Elksworth and
ermore National Laboratory, P.O. Box 808 L-200, Livermore, CA 94551- Bgaj (1992; Bai et al. (1993a,h; Berryman and Wang1995;
9900. E-mail: berryman1@linl.gov _ _ _ Tuncay and Corapciagl(1995; Bai (1999; and Berryman and
Note. Associate Editor: Franz-Josef Ulm. Discussion open until Janu- Pride (2002. Computations of transport and subsidence in

ary 1, 2003. Separate discussions must be submitted for individual pa- } . _ . R
pers. To extend the closing date by one month, a written request must bedOUbIe porosity dual-permeability media include work by Khaled

filed with the ASCE Managing Editor. The manuscript for this paper was et al.(1984; NiIspn and ITie(199C); Cho et al.(1991); Lewallen
submitted for review and possible publication on March 25, 2002; ap- and Wang(1998; and Bai et al(1999.

proved on March 25, 2002. This paper is part of floeirnal of Engi- _ .Some tech_nical deta_ils follow on the single-porosity p0r09|§3'
neering Mechanics Vol. 128, No. 8, August 1, 2002. ©ASCE, ISSN ticity needed in the main arguments of the paper. Then equations
0733-9399/2002/8-840—847/$8:68.50 per page. are formulated for double-porosity systems, and finally multi-

840 / JOURNAL OF ENGINEERING MECHANICS / AUGUST 2002



porosity systems are discussed. The focus will be on determiningWillis 1957; Geertsma 1957; Wang 2000n the drained test, the
how the coefficients of the resulting equations depend on the porous material is surrounded by an impermeable jacket and the
physical properties of the microstructural constituents’ of these fluid is allowed to escape through a conduit penetrating the jacket.
complex geomechanical systems. The main results are obtainedrhen, in a long duration experiment, the fluid pressure remains in
using new techniques in micromechanics that permit a rather el-equilibrium with the external fluid pressuife.g., atmospherjc
ementary analysis of these complex systems to be carried througtand sodp;=0. Hence,dp.=dpy4. So changes of total volume
exactly. For systems containing two porosities and two types of and pore volume are given by the drained constarks® land
solid constituents, exact results for all but ofvehich may be 1/K, as defined in Eqg1) and(2). In contrast, for the undrained
taken as the overall drained bulk modulus of the systefrthe test, the jacketed sample has no connection to the outside world,
macroscopic geomechanical constants are derived. S0 pore pressure responds only to the confining pressure changes.
With no way out, the total fluid content cannot change, so the
incremen® {=0. Then, the second equation in E4) shows that

. L . 0=—b/Kp(3p.—3ps/B) (5)
In the absence of external driving forces that can maintain fluid-
pressure differentials over long time periods, double-porosity and where Skempton’s pore pressure buildup coefficRBkempton
multiporosity models must all reduce to single-porosity models. 1954 is defined by
This reduction occurs in the long-time limit when the matrix fluid 5p 1
pressure and joint fluid pressure become equal. It is therefore = = (6)
necessary to remind ourselves of the basic results for single- dPc 8(=0 1+ Kp(1Ks=1/Ky)
porosity models in poroelasticityBiot 1941; Detournay and
Cheng 1993; Wang 2000as the long-time behavior may be
viewed as providing limiting temporal boundary conditioffigr
t—o0) on the analysis of multiporosity coefficients. Further, in the K*
specific models we adopt for the geomechanical constants in the Ky= 1—aB @)
multiporosity theory, extensive use of the single-porosity results
will be made.

The volume changes of any isothermal, isotropic material can
only be created by hydrostatic pressure changes. The two funda
mental pressures of single-porosity poroelasticity are the confin-
ing (external pressurep, and the fluid(pore pressurep;. The
differential pressurgor Terzaghi effective strespy=p.—p; is SV dpe—adp
often used instead of the confining pressure. The volumetric re- -—— =t f
sponse of a sample due to small changeg4jrand p; take the

form [e.g., Brown and Korring&1973] with a« =1—-K*/K;. The result(7) was apparently first obtained
3V 3py . dpy by Gassmanrn(1951) (though not in this form for the case of

Single-Porosity Geomechanics

It follows immediately from this definition that the undrained
modulusK,, is determined byalso see Carrol{1980]

where a=combination of moduli known as the Biot-Willis pa-
rameter, or the total volume effective-stress coefficient. The pre-
cise definition ofx follows immediately from the form of Eq1),

by substitutingd py=93p.—dp; and rearranging the equation into
the form

V2R — 8

Vo + K (1) microhomogeneous porous mediee., K=K,=K,,, the bulk
s modulus of the single mineral presgmind by Brown and Kor-
for the total volumeV, ringa (1975 and Rice(1975 for general porous media with mul-
tiple minerals as constituents. We will sometimes use the term
— % = % + % ) “Gassmann material” when making reference to a microhomoge-
Vo Ky Ky neous porous medium.
for the pore volume/, =V (whered is the porosity, and Next, to clarify the structure of Eq4) further, note that Betti's
reciprocal theorenfLove 1927, shows that the drained and und-
_ % _ % 3) rained pressures and strains satisfy a reciprocal relation, from
Vi K which it follows that
or the fluid volumeV;. Eq. (1) serves to define the drainédr 1 1 B
“jacketed”) frame bulk modulusK* and the unjacketed bulk K=oy Ko 9)
modulusK for the composite frame. E@2) defines the jacketed u K P
pore modulus<,, and the unjacketed pore modukig . Similarly, Comparing Eq(7) with Eq. (9), we obtain the general reciprocity
Eq. (3) defines the bulk moduluk; of the pore fluid. relation (Brown and Korringa 1976
Treatingdp. anddp; as the independent variables, we define
the dependent variables to b&e=3V/V and 3{=(3V, ) «
—3dV;)/V, which are termed, respectively, the total volume dila- K_p: K_* (10)

tation (positive when a sample expandsnd the increment of

fluid content(positive when the net fluid mass flow is into the This reciprocity relation and the form of the compressibility laws
sample during deformationThen, it follows directly from these  (4) also follow directly from general thermodynamic arguments
definitions and from Eqg1), (2), and(3) that [e.g., Pride and Berrymari1998]. Then, Skempton’s pore-
pressure buildup coefficiefiSkempton 1954may be written al-

* — * —
Se _ 1/K 1K= 1K ch) @ ternatively as
-3¢ |\ —d/K, (UK, +1Ki—1K,) /| —dpy
UK* —1/K
Now we consider two well-known thought experiments: the = > (11)
drained test and the untrained té@assmann 1951; Biot and 1K* = 1Ks+ & (1K= 1K)

JOURNAL OF ENGINEERING MECHANICS / AUGUST 2002 / 841



Finally, the condensed form of EGl)—incorporating the reci-
procity relations—is

el all e

= 12)

=3¢/ K*\—a af/B/\—3p;

where the Biot-Willis(1957) parameteix can now be expressed
asa=(1—-K*/K,)/B. The parametex is also known as the total
volume effective-stress coefficierisee Berryman(1992 for
elaboration. This form of the compressibility laws is especially
convenient because all the coefficients are simply related to the
three moduliK*, K,,, andB that have the clearest physical inter-
pretations. This now completes our review of the standard results
concerning the single-porosity compressibility laws.

Fig. 1. Elements of double porosity model are: porous rock matrix
Double-Porosity Geomechanics intersected by fractures. Three types of macroscopic pressure are per-
tinent in such a model: external confining presspye internal pres-
In this section, we present the fundamental governing equationssure of the matrix pore fluig{¥) ; and internal pressure of the frac-
controlling the low-frequencyinertial effects being neglected  ture pore fluidp{® .
response of a double-porosity geomechanical system. See Berry-
man and Wand1995 for details left out of the following brief

summary.
0

Macroscopic Governing Equations (de —dL® —sr@)| —opiM | =8 —srM —3(®)

In the double-porosity formulation, two distinct phases are as- 0

sumed to exist at the macroscopic levd). a porous matrix phase 0

with the effective propertiek ™, K}, $® occupying volume 0

fraction VW/V=v® of the total volume and2) a macroscopic X (14

crack or joint phase occupying the remaining fraction of the vol- —Sp?)

umeV@/V=y@=1-y@_In earlier work(Berryman and Pride
2002, methods were developed to determine the coefficients of
this system within a set of specific modeling assumptions. But the o
general laws presented in this section are independent of all such ~ 8{(V3pl =a,dp|?spit =azdpispi? =53¢ @sp}?
modeling assumptions, and the analysis to be presented in later (15)
sections is also independent of them as well.

The main difference between the single-porosity and double-
porosity formulations is that we allow the average fluid pressure
in the matrix phase to differ from that in the joint pha#eus the
term “double porosity) over relatively long time scales. Alto-

where nonoverlined quantities refer to one experiment and over-
lined to another experiment to show that

Hencea,;=as,. Thus, we have established that the matrix in Eq.
(13) is completely symmetric, so we need to determine only six
independent coefficients.

gether we have three distinct pressures: confili@gerna) pres- Constraints on the a ;; Coming From Long-Time Limit

. (1) . . . . . .
surg)&pc, pore-fluid pressuredp; (,1)and jOIn(t£;°|UId pressuré  pefore passing on to the specific models for the various coeffi-
dp;” . (See Fig. 1. Treatingdp,dp;™, anddp;™ as the inde-  gients, we state here several general constraintiependent of

pendent variaples in the double-poroslity thecz?)/, we(gefine the any modeling assumptionsn the geomechanical constats.
depend;ant van(z;)bles 'f((;)tffEES\{/V, 3¢ )=(3V¢. —3Vi)IV, Note that in order to measure thg’s in the laboratory, we need
and 5¢®=(3V{—8V{?)/Vv, which are, respectively, the total  only consider an isolated sample immersed in a “reservoir” char-
volume dilatation, the increment of fluid content in the matrix acterized by three control parameteps:, p(Y, andp{?; ie.,

phase, and the increment of fluid content in the joints. Finally, we gradients in these quantities and the subsequent flow induced by
assume that the fluid in the matrix is the same kind of fluid as that those gradients do not enter the definition of thes.

in the joints. o The constraints are obtained from the limiting case in which
Linear relations among strain, fluid content, and pressure thene rate at whichp,, p{’, and p{?) are all changing is much
take the general form slower than the rate at which internal fluid equilibration can take
5 “sp place. In this “long-time limit,” we are always in the quasistatic
€ an 42 3 i state wherep{t=p{?. Left to itself, any system having finite
=3 | =| ax ap axg —8p§ ) (13) permeability will achieve this state &s-o.
-5(®@ az azp ass/ \ —dpf?

Drained Test, Long Time

By analogy with the single-porosity resylt2), it is easy to see  The long-time drainedor “jacketed”) test for a double-porosity
that a;,=a,; and a;3;=ay;. The symmetry of the new off-  system should thus correspond to the conditigy®)=38p{?=0
diagonal coefficients may be demonstrated using Betti’s recipro- so that the total volume obege= —a;dp. . It follows therefore
cal theorem in the form that
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1
a| = K_* . (16)

Undrained Test, Long Time

The long-time undrained test for a double-porosity system should
also produce the same physical results as a single-porosity system
(assuming only that it makes sense at some appropriate larger
scale to view the medium as homogengoUhe conditions for

this test are that

dpit=3pi? =5py

17
d3(=d(W+5(?=0
from which follow
de=—adp;— (a2t as3)dPs (18) Pe
0= —(ay+asy)dp.— (ax+ 2ay3+a33) dp; Fig. 2. Composite porous medium is composed of two distinct types

of porous solid(1,2). In one version of this model, fractures may

These require that the overall pore-pressure buildup coefficient beresult from presence of misfit porosity between different types of

given by solid, since they are assumed to be only weakly bonded at points of
Ips ay+ag contact. In another version, two types of materials are well bonded
BEE T @t 28t A (19) but themselves have very different porosity types, one being a storage
clar=0 22 237 733 porosity and the other being a transport porosigd therefore frac-
and that the undrained bulk modulus be given by turelike or tubelike.
1 3de
P =ayt(aptanB (20)
Ku™ 3Pcly, o
by Berryman and Prid€2002 for the double-porosity coeffi-
Fluid Injection Test, Long Time cients. Related methods in micromechanics are called “the
The conditions required to measure the three-dimensional storagenethod of uniform fields” by some author®vorak and Ben-
coefficientR in the long-time limit are thabp{!=8p{@=3p;, veniste 199%.
while 8p.=0. It follows therefore from Eqg4) and (21) that We have already shown that;=1/K*. We will now show
how to determine the remaining five constants in the case of a
g _ o« binary composite system, such as that illustrated in Fig. 2. The
Rza_pf = At 2851 A5 K* té Ki Kg (21) components of the system are themselves porous materials 1 and

3p.=0 . « T
P 2, but each is assumed to be what we call a “Gassmann material

Generalized Biot-Willis Parameters satisfyinglin analogy to Eq(12)]

Eqg. (16) has already determined the coefficient. Thus, Eq. e 1 1 —a® _5p<cl>
(20) shows that ( —8§<1)/v<1)) = W( L a(l)/B(l)) Y (23)
1K* —1/K,, _ . . .
aptap=— — B - —a/K* (22) for material 1 and a similar expression for material 2. The new

constants appearing on the right are the drained bulk modulus
This relation provides a constraint on the sum of the two gener- K*) of material 1, the corresponding Biot-Willis parametél,
alized Biot-Willis parameters for the double-porosity problem.  and the Skempton coefficie®®). The volume fractiorv*) ap-

Not all of these long-time results are independent. In fact, pears here to correct the difference between a global fluid content
there are only three independent equations among the five giverand the corresponding local variable for material 1. The main
above expressing tha;; in terms of the single-porosityiong- special characteristic of a Gassmann porous material is that it is
time) moduli. composed of only one type of solid constituent, so it is “micro-
homogeneous” in its solid component, and in addition, the poros-
ity is randomly, but fairly uniformly, distributed so there is a

Double-Porosity Thought Experiment well-defined constant porosity?) associated with material 1,
etc.

Several of the main results obtained previously can be derived in ~ For our new thought experiment, wg)ask t(g)e qu((f)stion: Is it

a more elegant fashion by using a new self-similamiform ex- possible to find combinations @p.=dp;~’=dp;~,5p;~, and

pansion thought experiment. The basic idea we are going to in- 8p$2’ such that the expansion or contraction of the system is
troduce here is analogous to, but nevertheless distinct from, otherspatially uniform or self similar? This is the same as asking if we
thought experiments used in thermoelasti¢{lyibb 1968 and in can find uniform confining pressuda., and pore-fluid pressures
single-porosity poroelasticity by Berryman and Milttd991) and 3pt anddp!?, such thabe=5eM=3e?. If these conditions
Berryman and Pridé1998. Cribb’s method provided an indepen- can all be met simultaneously, then results for system constants
dent and simpler derivation of Levin’61967 results on ther- can be obtained purely algebraically without ever having to solve
moelastic expansion coefficients. The present results also providethe equilibrium equations for nonconstant stress and strain. We
an independent and simpler derivation of results obtained recentlyhave initially setd p.= Sp(cl)= Sp(cz) , as the condition of uniform
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confining pressure is clearly necessary for this self-similar
thought experiment to achieve a valid solution of the equilibrium
equations.

So, the first condition to be considered is the equality of the
strains of the two constituents

ae(l): — i

5 (OPc—aVopit)

1
=de?=—1 7 (3pe—a®5p?) (24)

If this condition can be satisfied, then the two constituents are

the equations for material 2 are completely analogous. From the
preceding equations, it follows that

8N =a1,0pc+adpit+adpi? (8pc,dpiY)

o

=l apct («M/BE)opiY)

(31)
Again substituting fob p$? (8 p.,5ptt) from Eq.(25) and noting
once more that the resulting equation contains arbitrary values of
dp. andspﬁl), so that the coefficients of the terms must vanish
separately, gives two equationa;,+a,y(1—K@/K®)/a(?

= oWy DK@, and gyt Ay DK@ DK (DY

expanding or contracting at the same rate and it is clear that self=a®v™/BUKM. Solving these equations in sequence as be-

similarity will prevail. If we imagine thatsp, and 3p{") have

been chosen, then we only need to choose an appropriate value of

5pi?), so that Eq(24) is satisfied. This requires that

a VK@)
+
OPet G OP1

(25)

which shows that, except for some very special choices of the
material parametersuch asx(®=0), 3p!? can in fact always be
chosen so the uniform expansion takes pl@éée are not consid-
ering long-term effects here. Clearly, if the pressures are left to
themselves, they will tend to equilibrate over time so thpf®
=3p{?. We are considering only the “instantaneous” behavior
of the material permitted by our system of equations and finding
what internal consistency of this system of equations implies must
be true)

Using formula(25), we can now eliminatésp{®) from the
remaining equality so that

Se=—[a¥pc+ardpit +aidpi? (3pc.op)]

1-K®@/K®

3pi*=3pi(3pe dp!) = ——7

Be(l): — i

@ (3Pc—aP3pi?)

(26)

fore, we obtain

KOK2oWg@ [, @
8377 @Ky | KW KDk (32)
and
INERANEY
8227 c
o 2v<1>+v<2> 1 2
1-KO/KD| [k k@ k* (33)

Performing the corresponding calculation ¢ produces
formulas foras, andas;. Since the formula in Eq32) is already
symmetric in the component indices, the formuladgs provides
nothing new. The formula foas; is easily seen to be identical in
form to a,,, but with the 1 and 2 indices interchanged every-
where.

This completes the derivation of all five of the needed coeffi-
cients of double porosity for the two constituent model.

These results can now be used to show how the constituent
propertiesK, «, and B average at the macrolevel for a two-
constituent composite. We find

a12+a13 OL(l)(K*_K(Z))+OL(2)(K(1)_K*)

wheredp{?(5p.,dpit) is given by Eq.(25). Making the substi- 0= (34)
tution and then noting thatp, and3p{* were chosen indepen- an KL —-K@
dently and arbitrarily, we see that the resulting coefficients of ;4
these two variables must each vanish. The equations we obtain in
this way are 1 axpt2axtag
B +
aytad 1-K@/KD]/a@=1/KD (27) B2t s
and K* [ pMWa D N 0@ (2
o | Rk (A 2K (2

a12+alg[a(l)K(z)/a<2)K<1)]=—a(1>/K(1) (28) a | gbk@  BRK(E®)
Since a;; is known, Eq.(27) can be solved directly fom,s, a DK@ = q@KDW\ [ @) 5@
giving I Txe—ko | |ko ke ke ¥

a® 1-K@/K*

K@ 1-KW/K® (29)

a1z~

Similarly, sincea; s is now known, substituting into E@28) gives

al® 1-K@/K*

KD 1-K@KD (30)

1=

Thus, three of the six coefficients have been determined.

It should also be clear that parts of the preceding analysis
generalize easily to the multiporosity problem. We discuss some
of these remaining issues in the final section.

Example

To illustrate the use of the formulas derived for the coefficients of
the double-porosity system, we will now compute and plot the
coefficients for a realistic system. We will use data of Coyner

To evaluate the remaining three coefficients, we must consider (1984 for Navajo sandstone, and modify it somewhat to produce

what happens to the fluid increments during the same self-similara plot that will highlight the results obtained from the equations.
expansion thought experiment. We will treat only material 1, but The first problem we encounter in doing so is that, although we
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Table 1. Input Parameters for Navajo Sandstone Model of Double-

Porosity System. Double-Porosity Coefficients for Navajo Sandstone

K KO k@ K@ K® 0.08 ‘ ;
(GPa (GPa (GPa +®  ¢W (GPa (GPa @  ¢®
340 345 165 015 0118 345 165 0.017 0.354 0.06] 7

Note: Poisson’s rati@ and porosityd are dimensionless.

can make reasonable direct estimates of the bulk and sheal
moduli of the constituents, we also must have an estimate of the
overall bulk modulusk* of the composite double-porosity me-
dium. And more than that, we need it as a function of the volume
fractions of the two constituents. Our analysis has assumed thai
K* was given or measured independently. For present purposes, i
is sensible to use an effective medium theory such as the sym- ‘
metric self-consistent methodor CPA=coherent potential 10.85 09 ' 0.95 1
approximation—see Berryman and Berd®96 for a discussion Volume Fraction of Storage Phase

and references therein for elaborafida estimateK*. The CPA '

has the advantage that it treats both constituents equiatly Fig. 3. Values of double-porosity coefficients; for a system similar
symmetrically and therefore does not assume that one constituentto Navajo sandstone. Values used for the input parameters are listed
always surrounds the other—so there is no host matésied in Table 1.

Berge et al.(1993 for further discussioh With this addition to
the theory, we can proceed to the calculations.

The parameters used for Navajo sandstone are listed in Table N —3p
X ) ) o € 411 a2 a1z A ¢
1. Although Poisson’s ratio does not appear explicitly in the D _sp
equations here, it is required in the CR&r any but the most —O0 | [az; Az A A Pi (36)
elementary effective medium calculation for the overall bulk -5¢@ a3, Aagp Az Aagy —5p<f2)
modulusK*. The results are shown in Fig. 3.
9 -3¢ a1 A, Az Al | —3pi¥

Note that the off-diagonal coefficiemt,;, which couples the
fluid in the storage porosity to the fluid in the transport porosity, is The meanings of all the coefficients follow immediately from the
very close to zero for all values of storage material volume frac- discussion of Eq(13). The matrix is again symmetric, so there
tion. This behavior has been observed previouBlgrryman and are four diagonal and six off-diagonal coefficients to be deter-
Wang 1995, and is believed to be a strong indication that the mined, for a total of ten unique coefficients. The leading coeffi-
double-porosity approach is appropriate for the system studied. Ifcienta,;=1/K* as before, but the remaining coefficients require
this coefficient is not small, then the fluids in the two types of further analysis.
porosity are strongly coupled and therefore should not be treated In general, for anN-porosity system of the form considered
as a double-porosity system. here, the total number of coefficients to be determined in Mhe (

The behavior of the other coefficients is as one would expect: +1)x (N+1) system of equations isl+1 diagonal andN(N
All the coefficients for the transport porosity tend to vanish as the +1)/2 unique off-diagonal coefficients, for a total &= (N
volume fraction of this phase vanishes, and the medium again+1)(N+2)/2 coefficients. And the nature @f;; remains un-
reduces to a single-porosity system in this limit. changed for anW. If we assume that each of the unique porosi-

ties can be associated with a Gassm@nitrohomogeneoysna-

terial, then we have equations of the same form as(E8g). for
Discussion of Multiporosity Systems each of these constituents, and therefore three mechanical coeffi-

cients plus the porosity of each constituent is assumed to be
Micromechanical analysis provides definite answers to the ques-known, at least approximately, in order for this analysis to pro-
tion of how the coefficients in double-porosity systems are to be ceed. The uniform expansion/contraction scenario carries over to
computed from knowledge of the constituents’ properties. The the multiporosity system, but does not supply enough equations to
question then naturally arises whether this analysis can be generelose the system by itself fdi>2. To see this, note that once
alized to multiporosity systems. Certainly, multiporosity systems dp. andBp%l) are chosen, then all the remainibg;’s are deter-
are the ones most likely to represent realistic systems occurring inmined by the uniform strain condition and Gassmann’s relations.
nature, for example, oil and gas reservoirs. And, therefore, we Then, substituting these values into the multiporosity system
need to address these issues. Transport in triple-porosity and mulfe.g., Eq.(36)], we see there are always two equations for each
tiporosity systems have already been studied by some authorgow of the matrix. This results i8=2(N+ 1) equations just from
(Bai et al. 1993b; Bai and Roegiers 199Fence, it is timely to this self-similar thought experiment. These two sets of numbers
consider the geomechanical aspects of these problems. We willare compared in Table 2. In addition to these equations, we al-
set up the problem and describe its general characteristics hereways have the three conditions from the long-time limits, and we
but the full solution will be left to future work. can also find other equations as needed by considering other ex-

The resulting coefficient matrices will clearly take a form periments on the systefe.g., see Berryman and Wai(g995].
analogous to the ones already studied. For example, in a triple-However, it is important to remember that it is the number of
porosity system, the macroscopic governing equations are linearly independent equations that is pertinent, and determining
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Table 2. Growth of NumbeiG=(N+1)(N+2)/2 of Geomechanical Notation
Coefficients and NumbeiS=2(N+1) of Equations from Self-
Similar Thought Experiment as Numb& of Distinct Porosities The following symbols are used in this paper:

within the System Increases a;; = double-porosity oiN-porosity coefficients;
N 1 5 3 4 B = Skempton’s_coefﬁcient;
e = volume strain;
G 3 6 10 15 G = number of distinc;; coefficients;
S — 6 8 10 K* = bulk modulus of drained porous frantgck-

eted:
K; = fluid bulk modulus;
K., = material(or grain bulk modulus;
K

this number has so far not proven to be an easy task for the » = effective pore bulk modulu§acketed, equal

general case. At the present writing, closure of the system of to pK/a;

equations for the multiporosity coefficients whidi»2 is an open K, = effective solid bulk modulugunjacketeg

question. K, = bulk modulus of undraine¢confined porous
The analysis presented here has been strictly for isotropic con- frame;

stituents, and an isotropic overall multiporosity system. Generali- K, = effective pore bulk modulutunjacketeg

zation to anisotropic systems is both possible and desirable, but N = number of distinct porosity types;

the analysis obviously becomes more complex because of the p. = confining pressure;

proliferation of coefficients that results. pqy = differential pressure, equal {m.— ps;

¢ = fluid pressure;
pit p{® = matrix and fracture fluid pressures;

Conclusions and New Directions R = storage coefficient;
S = number of distinct equations obtained from
The preceding results show how a micromechanical analysis self-similar thought experiment;
based on poroelasticity and Gassmann’s equations can be used to V = total volume;
compute the geomechanical double-porosity coefficients in a very VP, V(?) = total matrix and fracture material volumes:
elegant manner. This makes use of all the information available V; = fluid volume;
and produces reasonable estimates of all the coefficients needed Vs = solid volume, equal to (+ ¢)V;
in reservoirs modeled by double-porosity geomechanics. Triple- V, = pore volume, equal tdV;
and multiporosity geomechanics can also be studied using similar v¥,v(® = volume fractions occupied by matrix and frac-
methods, but some work remains to be done on closure of the tures withvM+p@=1:
increasingly larger systems of equations involved. For multi- o = Biot-Willis parameter;
porosity systems, closure of the system of equations can never- { = increment of total fluid content;

theless always be achieved by the addition of further macroscale {(),{(?> = increments of matrix and fracture fluid content;
measurements. Analysis and solution of these systems of equa-v(¥),»(® = Poisson’s ratios for matrix and fracture phases;
tions to eliminate the need for such additional measurements is ¢ = total porosity, equal to VP +@$?); and
therefore one subject of future work in this area of research. oM, $@ = matrix and fracture phase porosities.

Extension of this work in other directions is also possible. In
particular, the applications presented here have been restricted for
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