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Chapter 8

Other Nonlinear Inversion
Problems

Although traveltime inversion has been the main thrust of these lecture notes, I want to
make it clear that the ideas involving the feasibility constraints are very general. In fact,
they apply to any inversion problem where the data are the minima of one of the variational
problems of mathematical physics.

So in this final section of these notes, I present two other inversion problems that lead
to convex feasible sets and then show the general structure needed to guarantee convex
global feasibility. Finally, I present another example that leads to a nonconvex feasibility
set and discuss the consequences of this difference for computing the solution to the inverse
problem.

8.1 Electrical Impedance Tomography

Electrical impedance tomography [Dines and Lytle, 1981; Berryman and Kohn, 1990] at-
tempts to image the electrical impedance (or just the conductivity) distribution inside a
body using electrical measurements on its boundary. See Fig. 8.1. The method has been
used successfully in both biomedical [Barber and Brown, 1986] and geophysical applications
[Wexler, Fry, and Neuman, 1985; Daily, Lin, and Buscheck, 1987; Daily and Owen, 1991],
but the analysis of optimal reconstruction algorithms is still progressing [Yorkey, Webster,
and Tompkins, 1987; Kohn and McKenney, 1990]. The most common application is moni-
toring the influx or efflux of a conducting fluid (such as brine in a porous rock) through the
body whose conductivity is being imaged. This method does not have high resolving power
like radiological methods, but it is comparatively inexpensive and it therefore provides a
valuable alternative when continuous monitoring is desired.

First, we review some facts about this problem that play an important role in the
analysis that follows. Recall that the power dissipated into heat is [Jackson, 1962]

j /J(x) E(x) d%, (8.1)
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Figure 8.1: Experimental setup for electrical impedance tomography.

where

J(x) = o (x)E(x), (8.2)

E(x) = -V&(x), (8.3)
and the current distribution satisfies
V- Jx)=0 (8.4)

away from all current sources. The quantities displayed are the current distribution J, the
isotropic conductivity o, the electric field E, and the potential ®. Substituting (8.2) and
(8.3) into (8.4) gives Poisson’s equation

V. (0V®) = 0. (8.5)

Substituting (8.3) into (8.1) and using (8.4), we have

P:-/J-Vcbd%:—/v-(m)d%. (8.6)
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Then, the divergence theorem shows that
p= —/<I>J -#da, (8.7)

where n is a unit outward normal vector and da is the infinitesimal surface area on the
boundary. If current is injected through metallic electrodes, the potential takes a constant
value ®; on the kth electrode of surface area ag. If there are K electrodes, then (8.7)
becomes

K
P=> &I, (8.8)
k=1
where
1k=—/ J-ida (8.9)
ag

is the total current injected (Iy > 0) or withdrawn (I; < 0) at the kth electrode. Since
these are the only sources and sinks, we also have the sumrule

K
Y I =0. (8.10)
k=1

If there are only two injection electrodes, then (8.8) reduces to
P=(®;—®2)[; = ADI, (8.11)

so the power is the product of the measured potential difference A® across the injection
electrodes and the injected current I.

The data for electrical impedance tomography have most often been gathered by inject-
ing a measured current between two electrodes while simultaneously measuring the voltage
differences between pairs of other electrodes placed around the boundary of the body being
imaged. This process is then repeated, injecting current between all possible (generally
adjacent) pairs of electrodes, and recording the set of voltage differences for each injection
pair ¢. This data set has normally not included the voltage difference across the injection
electrodes, because these voltages cannot be measured as reliably. A substantial contact
impedance develops at the interface between the body and the injection electrodes when
large currents are present. This problem can be reduced by using large electrodes or small
currents. In this lecture, we will assume that voltage differences (and therefore the powers
dissipated) across the injection electrodes are known, but it is not necessary that they be
known to high accuracy.

Dirichlet’s principle [Courant, 1950; Courant and Hilbert, 1953] states that, given a
conductivity distribution o(x) and a potential distribution ®(x), the power dissipation p;
realized for the ith current injection configuration is the one that minimizes the integral
[ o|V®|2d3z so that

pi(o) = /a(x)|v¢;(x)|2d3m — r%iin/a(x)|v<bi(x)|2d3m. (8.12)
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The trial potential field for the ¢th injection pair is ®;(x), while the particular potential
field that actually minimizes the the power is ®}(x), and this one also satisfies Poisson’s
equation V - (6V®}) = 0 within the body. Furthermore, if the effective power dissipation
associated with the trial potential ®;(x) is defined as

5%)(0) = / o (x)|V P (x) 2 &3z, (8.13)
then the measured powers P; must satisfy
P; = pi(o*) < 5 (o), (8.14)

if 0*(x) is the true conductivity distribution. Note that if we vary the trial power dissipation
(8.13) with respect to the trial potential, we find

2/av¢ - VEd d3x = —2fv (V@) d3z =0 (8.15)

at a stationary point. We integrated once by parts to obtain (8.15). Since the volume
variation 8@ is arbitrary, its coefficient inside the integral must vanish, so we just recover
Poisson’s equation, as expected.

Now we begin to see the analogy developing between the seismic traveltime tomography
problem and the electrical impedance tomography problem. If we consider the following set
of correspondences:

s(x) — o(x),
ti(s) — pi(o),

HOREO!

T; — P,
dif — |V®,(x)|? d*,

dif" — |Vei(x)| dz,

then we see that the analysis of convex functionals and feasibility sets presented for seis-
mic traveltime tomography carries over directly to the electrical impedance tomography
problem when it is formulated this way. For example, the scale invariance property holds
for electrical impedance tomography, so multiplying o by a scalar v does not change the
optimum potential distribution.

The feasibility constraints for electrical impedance tomography now take the form

Ké > p, (8.16)
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T

where & O1y.050n), PT = (p1,.-.,pm), and the E-squared matrix is given by

K = / Ve, |2 d3z. (8.17)
cell;

Least-squares methods may be applied to this problem in much the same fashion as in
traveltime tomography [Kallman and Berryman, 1992].

A thorough analysis of the electrical impedance tomography problem would require
another set of lectures. Lucky for you, I will not try to present them here. However, to
excite your curiosity, I will mention another feature of the electrical impedance tomography
problem not shared by the seismic tomography problem. So far we have discussed only
Dirichlet’s principle (8.12). In fact, there are two distinct variational principles for the
conductivity problem: Dirichlet’s principle and its dual, known as Thomson’s principle
[Thomson, 1848; Thomson, 1884; Maxwell, 1891; Courant and Hilbert, 1953] The second

variational principle takes the form
P < [0 R/o(x) d', (5.18)

where J;(x) is a trial current distribution vector for the i¢th current injection pair that
satisfies the continuity equation V-J; = 0. The trial current distribution J;(x) and the trial
gradient of the potential V®;(x) are generally unrelated except that, when the minimum
of both variational functionals is attained, then J}(x) = —oV®}(x). Then, of course, the
current equals the conductivity times the electric field.

The existence of dual variational principles is a general property whenever the primal
variational principle is a true minimum principle. Fermat’s principle is only a stationary (not
a minimum) principle, and so traveltime tomography does not possess this dual property.
(If we attempt to formulate a dual for Fermat’s principle as we did in the lecture on linear
and nonlinear programming, we find the content of the dual results are essentially trivial.)
The existence of the dual variational principles for electrical impedance tomography is
important because it means that there are two independent sets of feasibility constraints
for the conductivity model o(x). Furthermore, as illustrated in Fig. 8.2, these two sets
of constraints allow us (in some sense) to obtain upper and lower bounds on the region
of the conductivity model space that contains the solution to the inversion problem. See
Berryman and Kohn [1990] for more discussion of this point.

8.2 Inverse Eigenvalue Problems

Inverse eigenvalue problems arise in the earth sciences during attempts to deduce earth
structure from knowledge of the modes of vibration of the earth [Dahlen, 1968; Wiggins,
1972; Jordan and Anderson, 1974; Hald, 1980; Hald, 1983; Anderson and Dziewonski, 1984;
McLaughlin, 1986; Dziewonski and Woodhouse, 1987; Lay, Ahrens, Olson, Smyth, and
Loper, 1990; Snieder, 1993].

Consider the typical forward problem associated with the inverse eigenvalue problem

—V2u(x) + ¢(x)u(x) = \u(x) (8.19)
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Figure 8.2: Dirichlet’s principle and Thomson’s principle provide upper and lower bounds
on the dual feasibility region for electrical impedance tomography.

on a finite domain with some boundary conditions on u. This is known as a Sturm-Liouville
equation to mathematicians and as the Schroedinger equation to physicists. In quantum
mechanics, the time-independent wave function is given by u(x) and ¢(x) is the potential.
The eigenvalue is A.

Now it is well-known that a Rayleigh-Ritz procedure may be used to approximate the
eigenvalues A [Courant and Hilbert, 1953]. In particular, the lowest eigenvalue is given in
general by

f(|Vu|2 + qu2) d3z
Ju?d3z ’

Ao = min (8.20)
u
where admissible us satisfy the boundary conditions of (8.19) and have no other constraints,
except being twice differentiable. The ratio on the right to be minimized is known as the
Rayleigh quotient, and the denominator [ u?d3z serves to normalize the wave function w.
Define the Rayleigh-quotient functional as

J(Vuil® + qui) d°z
A(Qa uz) = f ’U,2 A3z )

(8.21)
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where u; is a trial wave function subject to ¢ constraints. Taking the variation of A with
respect to u;, we find that the stationary points of A satisfy

f[—V2ui + qu; — A(q, ui)u;ilbu; d3z
=0. 8.22
Ju? d3a (8:22)

We integrated once by parts to obtain (8.22) using the fact that the variations of éu vanish
on the boundary. So, since the variations éu within the domain may be arbitrary, the term
in brackets must vanish and the stationary points of the Rayleigh quotient therefore occur
for u;s that satisfy (8.19) with \; = A(q, u;).

Clearly, we may define feasibility constraints for this problem in a manner analogous to
that for the traveltime tomography problem and for the electrical impedance tomography
problem. If the eigenvalues )\; are our data, then for the correct potential ¢* we must have

Xi = Aq",uilg"]) < Aq",w), (8.23)

where u}[q] is the eigenfunction associated with eigenvalue A; of the potential ¢. Thus,
feasible gs satisfy

i < Alg,u) (8.24)

for all admissible u;s.
To show that this problem leads to a convex feasibility set, consider two potentials that
satisfy the feasibility constraints for some fixed choice of u;. Then,

/\i S A(ql,ui) and )\z S A(qg,ui) (825)
and
Ai < eA(q1,u;) + (1 —€)A(qo,u;) (8.26)
2 1— 2) 43
_ L0V + ey + (1 ) 82
Ju? d3z
= A(ge,u;), (8.28)

where the convex combination g = eq1 + (1 — €)ga. Thus, local (fixed w;s) feasibility follows
simply from the linearity of the Rayleigh quotient (except for the shift at the origin) with
respect to the potential ¢q. Global feasibility follows from the variational properties of A
with respect to u;. (See the next section for the proof.)

Note that there is no scale invariance property for A similar to the one for the traveltime
functional. However, it is true that wave functions are invariant to a constant shift in the
potential, since it is easy to see that

A(g+v,u) = A(q,u) + 7. (8.29)

In our analysis, we can also make use of other members of the invariance group of (8.19)
[Ames, 1972].



134 CHAPTER 8. OTHER NONLINEAR INVERSION PROBLEMS

This inverse eigenvalue problem can be reformulated in terms of a different set of vari-
ational functionals. In particular, one such set of generalized Rayleigh-Ritz quotients has
been constructed by Berryman [1988]; however, these functionals have a more complicated
dependence on the potential ¢. Without linearity or shifted linearity in ¢, we cannot prove
the convexity of the feasibility set and the structure of the inversion problem becomes less
certain and possibly more complex.

8.3 General Structure for Convex Inversion Problems

The feasibility analysis presented in these lectures applies to a wide class of inverse problems
that can be formulated so the data are minima of an appropriate variational problem. To
see the general structure, consider a set of functionals I';(g,u) of two variables ¢ and wu.
Then, if each functional is linear in one variable so that

Ii(aq1 + bge,u) = al';(q1,u) + b (g2, u), (8.30)
and if the data 7; bound I';(q1,«) and T';(g2,u) from below for any second argument u, then
7 < Ti(q1,u) and v; <Ti(g2,u) forall i=1,...,m, (8.31)

and we have
v < AT(q1,u) + (1 — MT5(g2,u) = T;(Ag1 + (1 — N)ga,u). (8.32)

Therefore, I'; evaluated at the convex combination gy = Ag1 + (1 — A)g2 is also bounded
below by the data. Thus, linearity for fixed w is sufficient to prove that feasible gs for the
linear problem form a convex set. We call this the local convex feasibility property.

Then, when we consider variations of the second argument and assume that the data
are minima of the variational functional over all possible us, we have

v = Li(q*,u*[¢"]) < Ti(q",u), (8.33)

where u*[g] is the particular function that minimizes the the functional I'; when ¢ is the
first argument. Then, we have

v < Tilq1,v*[q1]) < Tilgr,w*[]), (8.34)
¥i < Ti(g2,u*[g2]) < Tilge,u™[]), (8.35)

where u*[] is the correct (minimizing) u for some yet to be specified q. Combining (8.34)
and (8.35) using the linearity property of I'; for its first argument, we have

v < AT5(g1,w*[q1]) + (1 — M)T5(g2, u*[g2]) (8.36)

< ALi(g1,u*[]) + (1~ MLi(gz,u"[) (8.37)
= Tilgr,u*[), (8.38)
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where gy = Ag1 + (1 — A\)g2 is again the convex combination of ¢; and g2. Now we are free
to choose the - to be any permissible g, so we choose it for convenience to be ¢). Then, we
have the final result that

v < Tilgn, w*[gn])- (8.39)

The conclusion from (8.32) is that there are local convez feasibility sets and from (8.39) that
there is a global conver feasibility set for the full nonlinear inversion problem, just as in the
case for traveltime tomography.

The only properties used in the derivation were the linearity of the variational functional
I'; for fixed u and the concavity of the functional that results from its variational nature.

The preceding proof is appropriate for Fermat’s, Dirichlet’s, and Thomson’s principles.
However, the proof must be modified for the inverse eigenvalue problem because the Rayleigh
quotient is a shifted linear functional of the potential q. We can fix this minor difficulty by
considering

AA(@,u) = Alg,u) ~ AOw) = L22EE, (5.40)
which is linear in ¢. If
Ai A0, ui) + AA(g1,u4), (8.41)
i < A0, u;) + AA(g2,us), (8.42)
then we carry through the analysis as before and conclude that
Ai < A0, u;) + AA(egr + (1 — €)g2,u) = A(ge, wi)- (8.43)

This proves the local convex feasibility property for problems with variational functionals
linear in the first argument except for a constant. The proof of global convex feasibility
follows the proof already presented step by step and will be left as an exercise.

PROBLEM

PROBLEM 8.3.1 Prove global convez feasibility for the inverse eigenvalue problem.

8.4 Nonconvex Inversion Problems with Feasibility Con-
straints

Although we expect the idea of using feasibility constraints in inversion problems with
variational structure to be a very general method, it may not always be true that the
variational functional is a concave functional of its arguments. If not, then the resulting
nonlinear programming problem will not be convex.
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As an example, consider the electrical impedance tomography problem again, but this
time for complex (still isotropic) conductivity ¢ = or + io7. The dissipative part of o is
the real part o, while the reactive part (proportional to the dielectric constant) is the
imaginary part oy.

The current is proportional to the conductivity and the electric field, but now all quan-
tities are complex so

J=0cE (8.44)
becomes
Jr+ 1= (O'R+icrj)(eR+ieI). (8.45)

The power dissipation for this problem is given by

1
p= 5/(J-la*Jr.I*-E) & (8.46)
:/(jR-eR—l—jI-eI)d3m (847)
= /UR(eR-eR+eI -e]) d3z. (8.48)

Rewriting (8.45) in matrix notation we have

()= 2 )(2) ®49)
i o OR er

Now we want to reformulate this problem as a variational principle in order to apply the
ideas of feasibility constraints, but to do so we need a positive scalar functional. The power
dissipation is a good choice again, but (8.49) is inconvenient for this purpose since the

matrix is not positive definite [Milton, 1990; Cherkaev and Gibiansky, 1994]. Performing a
Legendre transform on (8.49), we find that an alternative equation is

0'2 o
(JR) _ (Rt on ~om (eR) zz(eR). (8.50)
er _or L ir ir

OR

Then, the matrix ¥ is positive definite (for og > 0), since

> <jf) =2 (UOR 1/OUR) (jf) (8.51)

implies that

1 o?
A+ =241 52
Y=t (8.52)

which guarantees that the eigenvalues A and 1/) are positive.
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So now the power is given by

P = [Gr-en+ir-end® (8.53)
= /(eR in = (jR> d’x (8.54)
I
1
= /[UR|9R|2 + —lir — orer|* d*a. (8.55)
OR

This is the final expression for the power. In this form, we have a valid variational principle.
Also, note that the term j; — cregr = orer so the second term in the final expression for P
is just opler|?.

To check the conditions for stationarity of this integral, we find that, if we vary with
respect to eg, then

2f[UReR_ ﬂ(jJ—CT]eR)]-(Selr.;»,dsaz =0. (8.56)
OR
If we vary with respect to jr, we find that
1. . 3
2 /[_(JI —oreg)] - 8jrd’z = 0. (8.57)
OR
Since the electric field is the gradient of a potential, (8.56) implies that
or ,.
V-locrer — — (1 — orer)] = 0. (8.58)
OR

Similarly, since the current distribution is divergence free, (8.57) implies that

L(‘]‘7 - O’]eR) =-Vo (8.59)
OR
for some scalar potential function ®. Thus, the expression in (8.59) acts like an electric
field (in fact, it is ey) at the stationary point, while the quantity whose divergence is zero
in (8.58) acts like a current distribution (in fact, it is jg). This completes the proof that
(8.55) is a legitimate variational principle for the complex conductivity problem.
We can still talk about feasibility constraints for this problem, since

P; Epi(aE,U;aeE,j?) Spi(a;iao'?aeR,jI) (8'60)
with the trial power dissipation given by
_ . 2, L. 2 13
pi(or,01,er,j1) = [[orler|” + ahl —orer|]d’z. (8.61)
The starred quantities in (8.60) are the true ones for the experimental configuration. If we

can find os that violate the constraints implied by (8.60), then those os are infeasible and
the rest form the feasible set. However, p is not linear in its dependence on o, so we cannot
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prove that this functional is concave. ! Therefore, we lack a proof of the convexity of the
feasible set.

For fixed oy, jr, and eg, the minimum of (8.61) is achieved, for a model of constant
conductivity cells, when the real conductivity in the jth cell is given by

fcellj |jI - UIeR|2 dgm

2
fce]]j |eR|2 d3x
This minimum value is
n 1
minp; = 2 / e 2d3m/ i1 — orer|? d3z]z. 8.63
nin p; j;[ CeH]_| R| el lir — orer|" d°z] (8.63)

Since the imaginary part of the conductivity may still be viewed as a variable, we can
further minimize (8.63) by finding the minimum with respect to ;. This minimum occurs
when

fce]]j jr-er d3z

fce]lj erp-ep d3z

o1 (8.64)

for the imaginary part of the conductivity in the jth cell. Substituting into (8.63), we have
the minimum power

min p; = 2 / egp-e d3a:/ j -'d?’m—/ ir - epdiz)?)s. 8.65
o-R,o'Ip J;l[ Cellj R = Cel].jJI 1 ( Ce]lj I R ) ] ( )

It follows from the Schwartz inequality for integrals that

(/a-bd3m)2g/a-ad3m/b-bd3m (8.66)

with equality applying only when b is proportional to a, that each bracket in (8.65) is
positive unless there is an exact solution such that

ir =er, (8.67)

for some scalar ~.

If the nonlinear programming problem is nonconvex but feasibility constraints are still
applicable, what are the consequences for numerical solution of the inversion problem? For
convex feasibility sets, the convex combination of any two points on the feasibility boundary
is also feasible and therefore either lies in the interior or on the boundary of the feasible set.
This property implies a certain degree of smoothness for the boundary itself. Clearly, if the

!Looking at (8.54) we see that the power is a linear functional of the matrix elements of 3. However,
this apparent linearity unfortunately does not help the analysis, because a physical constraint on the matrix
elements is that det ¥ = 1. It is not difficult to show that the convex combination of two matrices with
unit determinant does not preserve this property. So the nonlinearity cannot be avoided by the trick of
considering convex combinations of the matrix elements.
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feasible set is nonconvex, then the convex combination of two points on the boundary may
or may not lie in the feasible set; thus, the boundary itself may be jagged. Since the solution
of the inversion problem still lies on the boundary (just as it did in the convex case), the
lack of smoothness of the boundary may have important computational consequences: the
boundary is still expected to be continuous, of course, but sharp local jumps could occur
that might make convergence of an iterative method difficult to achieve.

As an iterative scheme progresses, the absolute minimum of the trial power (8.65) de-
creases towards zero. Thus, the feasibility constraints become more important for this
problem as the scheme progresses to convergence.



