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Chapter 7

Nonlinear Seismic Inversion

The introduction of feasibility constraints into the traveltime inversion problem offers a
unique opportunity to develop a variety of new reconstruction algorithms. A few of the
ones that have been explored so far will be discussed in this Chapter.

7.1 Linear and Nonlinear Programming

We will see that linear tomography maps easily onto linear programming, and nonlinear
tomography onto nonlinear programming [Strang, 1986; Fiacco and McCormick, 1990].

Recall that, if u” = (1,...,1) is an m-vector of ones and v = (1,...,1) is an n-vector
of ones, then

u'M =vTC, (7.1)

where C is the coverage matriz, i.e., the diagonal matrix whose diagonal elements are the
column sums of the ray-path matrix. We will now define the coverage vector as

c=Cv. (7.2)

7.1.1 Duality

The concept of duality in linear programming leads to some useful ideas both for linear
and nonlinear traveltime inversion. (Actually it is even more useful for electrical impedance
tomography as we will see in Part II.) We will first define the following:

DEFINITION 7.1.1 The primal problem for traveltime tnversion s to find the minimum of
c’'s subject to Ms >t and s > 0.

DEFINITION 7.1.2 The dual problem associated with the primal is to mazimize wlt subject
to wIM < cT and w > 0.

The m-vector w has no physical significance, but plays the role of a nonnegative weight
vector. One of the first consequences of this formulation is that, if we multiply the primal
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Mapping the feasibility boundary

Model s Data t

. feasible

I infeasible

S; t;
Figure 7.1: Mapping the feasibility boundary.

inequality on the right by w’ and the dual inequality on the left by s for feasible s and w,
then

cTs > wiMs > wlt. (7.3)
We introduce a Lagrangian functional

L(s,w) = cT's+wTl(t — Ms) (7.4)
= (cF —w'M)s + wTt. (7.5)

An admissible (feasible) weight vector is w = u. In fact, this is the only weight vector
we need to consider because it saturates the dual inequality, producing equality in all
components following (7.1) and (7.2). Thus, the dual problem in traveltime inversion is
completely trivial. We introduced it here because, despite its apparent triviality, there is
one interesting feature.

In problems with nontrivial duality structure, it is possible to obtain useful bounds with
inequalities equivalent to (7.3). Here we are left with just the condition

s > uft = T, (7.6)

defining the hyperplane of constant total traveltime. Equation (7.6) could have been derived
directly from the feasibility conditions Ms > t for s. The ease of its derivation should not,
however, lead us to think that this equation is trivial. This hyperplane can play an important
role in linear and nonlinear programming algorithms for traveltime inversion.



7.1. LINEAR AND NONLINEAR PROGRAMMING 107

7.1.2 Relaxed feasibility constraints

Given the set of observed traveltimes, ¢; for ¢ = 1,...,m, we define two more types of
feasibility sets.

DEFINITION 7.1.3 (RELAXED LOCAL FEASIBILITY SET) The relazed local feasibility set with
respect to a set of trial ray paths P = {Py,..., Py} and observed traveltimes t1,...,ty is

m m
S CIDIACEDPA? (7.7)
i=1 i=1
DEFINITION 7.1.4 (RELAXED GLOBAL FEASIBILITY SET) The relazed global feasibility set
with respect to a set of observed traveltimes t1, ...ty s
m m
R*={s| ZTZ-*(S) > th} (7.8)
i=1 i=1

PROPOSITION 7.1.1 (SUM OF CONCAVE FUNCTIONS) A (nonnegatively) weighted sum of con-
cave functions is concave.

Proof: Let 1i(s) for i = 1,...,m be a set of concave functions and let w; be a set of
nonnegative weights. Then,

szn Asy + (1 — sz[)n'z (s1) — M) i(s2)] (7.9)
=1
= )\Zwin(sl) + (1 — )\) ZwiTi(S2), (7.10)
=1 =1

so the weighted sum is concave. 1
THEOREM 7.1.1 RP is a convez set.
THEOREM 7.1.2 R* is a convez set.

Proof: Both theorems follow from the proposition and the fact that the unit-weighted
sums in the definitions of the sets R” and R* are respectively sums of the concave functions
7F(s) and 77 (s). 1
THEOREM 7.1.3 Any point s* that lies simultaneously on the boundary of both F¥ and RP
solves the inversion problem.

THEOREM 7.1.4 Any point s* that lies simultaneously on the boundary of both F* and R*
solves the inversion problem.
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Proof: The boundary of R” is determined by the single equality constraint
Z P (s) = Zti =T. (7.11)

The boundary of F¥ is determined by the set of inequality constraints
tP(s)>t;, forall i=1,...,m, (7.12)

with equality holding for at least one of the constraints. Summing (7.12) gives
P
PRAC (7.13)

where the equality applies if and only if 7 (s) = t; for all 7. Therefore, any model s* that
satisfies both (7.11) and (7.12) must solve the inversion problem.

The proof of the second theorem follows the proof of the first, with 7*(s) replacing 7 (s)
everywhere. |

The boundaries of relaxed feasibility sets (either local or global) are easier to compute
than those for unrelaxed feasibility sets. The difference is, for example, a single hyperplane
boundary for a relaxed local feasibility set versus up to m (the number of traveltime mea-
surements) hyperplanes composing the boundary of an unrelaxed local feasibility set. Yet,
the characteristics of the relaxed feasibility sets are very similar to the unrelaxed ones in
other ways.

If the correct ray-path matrix for the inversion problem has been found and the data
are noise free, then we expect that the hyperplane defined by ¢’s = T will intersect the
feasibility boundary exactly at the point or points that solve the inversion problem. If the
correct ray-path matrix has not been found or there is uncorrelated noise in our data t, then
there will be a splitting between the hyperplane of constant total traveltime and the feasible
region. The point (or points) of closest approach between the convex feasible set and the
hyperplane may then be defined as the set of points solving the linear programming prob-
lem for fixed M. An iterative nonlinear programming algorithm may then be constructed
wherein the updated M is determined based on the solution of the last linear programming
problem. This procedure converges if the degree of splitting (Euclidean distance) between
the feasible set and the hyperplane of constant traveltime tends to zero from one iteration
to the next.

PROBLEM

PROBLEM 7.1.1 Consider the following backprojection formulas (see PROBLEMS 1.5.1 and
1.5.3):

1. s=N"1HTL 1t;
2, s=C MTL't.

Does either formula always satisfy the constraint c's = T ? Find another backprojection
formula that does satisfy the constraint.
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7.2 More about Weighted Least-Squares

We learned in Sections 3.5 and 4.3 that a good set of weights for use with weighted least-
squares was L1 for the traveltime errors and C for the smoothing or regularization term
in a damped least-squares method. The arguments were based on assumptions of small
deviations from a constant background or on the desire to precondition the ray-path matrix
so its eigenvalues A were normalized to the range —1 < A < 1.

In a sense the methods used to choose the weights previously were based on ideas of
linear inverston. We should now try to see if these ideas need to be modified for nonlinear
tnverston. Let s be the latest estimate of the slowness model vector in an iterative inversion

scheme. Then, if u’ = (1,...,1) is an m-vector of ones and vI' = (1,...,1) is an n-vector
of ones,

Ms = Tu, (7.14)

MTu = Cv = Ds, (7.15)

where C is the coverage matrix (diagonal matrix containing the column sums of M) defined
previously and the two new matrices (T and D) are diagonal matrices whose diagonal
elements are T;;, the estimated traveltime for the ¢th ray path through the model s,

Ti = lijs;, (7.16)
j=1
and Dj; where
Djj = Cjs/si =D lij/sj. (7.17)
i=1

For the sake of argument, let the inverse of the diagonal traveltime matrix T~! be the
weight matrix, and compute the scaled least-squares point. The least-squares functional
takes the form

¥(7) = (t = Mys) T} (t — Mys), (7.18)

which has its minimum at

_ sTMTT (7.19)
7T IMITIMs '
Equation (7.19) can be rewritten using (7.14) as
ult
= —. 7.20
1= T (7.20)

The factor v that minimizes the least-squares error is therefore the one that either increases
or decreases the total traveltime of the model s so it equals that of the data. If we assume
that the measurement errors in the traveltime data t are unbiased, then it is very reasonable
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to choose models that have this property, because the total traveltime u’t = T will tend
to have smaller error (by a factor of m~1/2) than the individual measurements.

We see that requiring the models s to have the same total traveltime as the data is
equivalent to requiring that the models all lie in the hyperplane defined by

u'Ms =viCs=cTs=T. (7.21)

But this is precisely the same hyperplane (7.6) that arose naturally in the earlier discussion
of linear and nonlinear programming.
To carry this analysis one step further, consider the weighted least-squares problem

du(s) = (t — Ms)T T (t — Ms) + u(s — so)"D(s — sp), (7.22)

where we assume that the starting model sq satisfies ¢Tsqg = 7. Then, the minimum of
(7.22) occurs for s, satisfying

(MTT™'M + uD)(s, — s0) = M7 T (t — Msy). (7.23)
Multiplying (7.23) on the left by s, we find that
(1+ p)c" (s, — s0) = ul (t — Msg) =0, (7.24)

so the solution of the weighted least-squares problem (7.23) also has the property that its
estimated total traveltime for all rays is equal to that of the data

s, =clsg=T. (7.25)

Our conclusion is that the particular choice of weighted least-squares problem (7.23)
has the unique property of holding the total estimated traveltime equal to the total of the
measured traveltimes, ¢.e., it constrains the least-squares solution to lie in the hyperplane
cls = T. Assuming that the traveltime data are themselves unbiased (i.e., uZAt = 0
where At is the measurement error vector), the result s is an unbiased estimator of the
slowness. Moreover, this property is maintained for any value of the damping parameter p.
This result provides a connection between the linear programming approach and weighted
linear least-squares. We can now use weighted least-squares and the formula (7.23) in a
linear program as a means of moving around in the hyperplane ¢’'s = T.

Now, from our general analysis of the eigenvalue structure of weighted least-squares,

recall that (4.108) shows, for F = T and G = D, that we have
LiCjj

A2 7.26
TuDyy 20 (7.26)

which must hold true for all values of ¢, j. From (7.17), we have C;;/Dj; = s; so

L;isj _ LiiSmin 9
> A 7.27
T © L o (7.21)

and from the definition of T};; we have

n
Tii = Y 1ijsj > LiiSmin- (7.28)
=1
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We conclude that this choice of weight matrices also constrains the eigenvalues to be
bounded above by unity, i.e., 1 > 2.

If the matrix M is very large, it may be impractical to solve (7.23) by inverting the
matrix (MTT~'M + uD). Instead, we may choose to use some version of the method we
called “simple iteration” in Section 4.4.3. For example, suppose that the kth iteration yields

(k)

the model vector s;,”. Then, one choice of iteration scheme for finding the next iterate is
Ds{ft) = Dsl¥) + MTT~!(t — Msg) — (M"T'M + uD)(s{) — ). (7.29)

It is not hard to show that this iteration scheme converges as long as the damping parameter
is chosen so that 0 < y < 1. ! Furthermore, if we multiply (7.29) on the left by sg, we find
that

cT(sl(ukH) - sg“)) = (1 + p)cT (s — S;(Lk))- (7.30)
It follows from (7.30) that, if ¢'sq = T" and if SLO) = sg, then
T'st) =, (7.31)

for all k. Thus, all the iterates stay in the hyperplane of constant total traveltime. If we
choose not to iterate to convergence, then this desirable feature of the exact solution s,

(k)

proven in (7.25) is still shared by every iterate s, ’ obtained using this scheme.
PROBLEM

PROBLEM 7.2.1 Use the definition of the pseudoinverse in PROBLEM 4.1.16 to show that,

iof
M =T :MD" 7,
then
X =D 5 (M)IT 2, (7.32)

where X is an approzimate generalized inverse satisfying the first two conditions (MXM =
M and XMX = X). Use (7.32) to show that the SVD of X has the form
X — S()uT

—m+...,

where the terms not shown are for eigenvectors of M' with eigenvalues A < 1. Apply this
result to the inversion problem to show that

s~Xt=sg+...,

where in this case the terms not shown are contributions orthogonal to sg.

!The reader may want to check this result using the methods of this section and the ones developed in
Section 4.4.3 on simple iteration.
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7.3 Stable Algorithm for Nonlinear Crosswell Tomography

Here we combine several ideas from the previous sections into an algorithm for nonlinear
traveltime tomography. We recall that such algorithms are inherently iterative. In the
general iterative algorithm posed earlier, the questionable step was how to update the
current model § to obtain an improved model. Here we propose a method for choosing this
step [Berryman, 1989b; 1990].

Let s(*) be the current model. An algorithm (see Figure 7.2) for generating the updated
model s*11) js as follows:

1. Set s; to the scaled least-squares model:
S1 = Spg[s(h)]-
2. Set s3 to the damped least-squares model with respect to s;:
S2 = SL3[sy -
3. Define the family of models
s(A) = (1 — A)sy + Aso,

where X € [0,1].

4. Solve for \*, defined so that s(A*) yields the fewest number of feasibility violations.
The number of feasibility violations is defined as the number of ray paths for which
t; > 1*(s(N)).

5. If A* is less than some preset threshold (say 0.05 or 0.1), reset it to the threshold
value.

6. Set skt = s(\*).

The feasibility structure of the algorithm is illustrated in Fig. 7.3. The model labeled
s3 is a scaled version of s(A\*), scaled so that s3 is on the boundary of the feasible region
(F*). The iteration sequence stops when the perimeter of the triangle formed by s;, sy and
s3 drops below a prescribed threshold.

This algorithm has been tested on several problems both with real and with synthetic
data and compared with a traditional damped least-squares algorithm (i.e., setting A\* =1
on each iteration). The new algorithm was found to be very stable and avoids the large
oscillations in slowness often found in traditional least-squares methods.

Example 7.3.1 Reconstructions were performed on models having 16 x 8 cells using 320
rays —including 256 rays (16 sources X 16 receivers) from left to right and 64 rays (8
sources X 8 recewers) from top to bottom. This measurement configuration was chosen
to manimize the effects of ghosts, since the main focus of the exercise is to evaluate the
usefulness of the feasibility constraints in stabilizing the algorithm.
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The traveltime data were generated with a bending method using the simplex search
routine [Prothero et al., 1988; Nelder and Mead, 1965].

Three examples of typical results from the nonlinear algorithm BST (Borehole Seismic
Tomography) are displayed on the following pages. The basic structure of the test problems
has this form:

These slowness models have a low speed anomaly on top and a high speed anomaly on the
bottom in each case. The first ezample has 20% anomalies; the second has 50% anomalies;
the third 100% anomalies. EXAMPLE 7.3.1.1A shows the target model, i.e., the model that
used to generate the traveltime data; EXAMPLE 7.3.1.1B shows the reconstructed values
using bent rays and feasibility constraints. The other two examples are presented simalarly,
progressing from smaller anomalies to larger ones.

The reconstructions were found to converge after 15 or 20 iterations, and did not vary
significantly if the iteration sequence was continued. In general, we expect slow anomalies
to be harder to reconstruct than fast anomalies, because rays tend to avoid the slow regions
in favor of fast regions. Thus, the coverage of slow anomalies tends to be much less than
for fast anomalies, and therefore the resolution of such regions tends to poorer than for the
fast regions. This effect is observed in all the examples. The reconstructions for 20% and
50% contrasts were quite good, while that for 100% was noticeably worse than the other two.
The main reason for this difference is that in the presence of high contrasts the ray paths
tend to seek out the fastest regions; thus, even the background in the vicinity of a very fast
anomaly can become poorly resolved, since all the rays close to the fast anomaly go through
it and therefore do not sample the surrounding region well. To tmprove the resolution of the
reconstruction in the presence of high contrasts requires a substantial increase in the density
of ray-path sampling.
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1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.20 | 1.20 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.20 | 1.20 | 1.20 | 1.20 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.20 | 1.20 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 0.83 | 0.83 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 0.83 | 0.83 | 0.83 | 0.83 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 0.83 | 0.83 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

EXAMPLE 7.3.1.1A. The double-cross slowness model with 20% contrast.
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0.98 | 0.97 | 1.02 | 1.06 | 1.04 | 1.00 | 0.98 | 0.96

1.02 | 1.00 | 0.98 | 1.01 | 1.02 | 1.00 | 1.01 | 1.02

1.00 | 1.01 | 0.98 | 0.98 | 0.98 | 0.98 | 1.02 | 1.05

1.01|1.00 | 1.03 | 1.15 | 1.14 | 1.04 | 1.02 | 1.03

099 1099 |1.12|1.20|1.18 | 1.14 | 1.02 | 1.02

1.00 | 1.00 | 1.00 | 1.15 | 1.18 | 1.06 | 1.00 | 1.02

0.98 | 1.01 | 1.00 | 1.02 | 1.03 | 0.96 | 1.02 | 1.01

1.00 | 1.01 | 1.00 | 1.01 | 1.00 | 0.99 | 1.01 | 1.01

1.00 | 1.00 | 1.00 | 1.01 | 1.00 | 1.01 | 1.00 | 0.99

0.99 | 1.00 | 0.99 | 0.98 | 0.99 | 1.01 | 1.00 | 0.99

0.99 1099 | 0.99 | 0.89 | 0.87 | 0.95 | 1.04 | 0.97

1.00 | 0.98 | 0.89 | 0.85 | 0.84 | 0.87 | 0.94 | 0.97

1.03 |1 0.96 | 0.95 | 0.87 | 0.85 | 0.95 | 0.94 | 0.99

1.04 | 1.00 | 0.99 | 0.97 | 0.98 | 0.95 | 1.02 | 1.00

1.01 | 1.01 | 1.03 | 0.98 | 0.97 | 1.00 | 1.01 | 0.98

1.00 | 1.04 | 0.97 | 0.98 | 0.98 | 0.99 | 1.01 | 1.02

EXAMPLE 7.3.1.1B. Reconstruction of the double-cross slowness model with 20% contrast
using the BST code with feasibility constraints and noisy data (after 41 iterations).
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1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.50 | 1.50 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.50 | 1.50 | 1.50 | 1.50 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.50 | 1.50 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 0.67 | 0.67 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 0.67 | 0.67 | 0.67 | 0.67 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 0.67 | 0.67 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

EXAMPLE 7.3.1.2A. The double-cross slowness model with 50% contrast.
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0.99

0.94

1.05

1.05

0.92

1.06

1.02

0.98

1.00

1.06

1.04

0.93

1.07

0.99

1.04

0.90

0.96

1.14

1.02

1.01

0.99

1.10

1.23

1.33

1.04

1.02

0.95

1.00

1.42

2.20

1.28

1.23

1.05

1.04

0.97

1.03

0.96

1.21

1.21

1.10

1.07

1.05

0.99

1.06

0.98

1.08

0.98

0.92

1.11

1.03

0.97

1.08

0.98

1.01

0.95

1.03

1.03

1.04

0.99

1.00

1.01

1.04

0.95

1.05

1.03

1.01

0.98

1.00

0.94

0.96

0.91

1.04

1.00

0.94

0.97

1.03

0.93

0.81

0.73

0.90

1.06

0.95

1.00

0.98

0.75

0.68

0.68

0.74

0.88

0.96

1.09

0.91

0.88

0.78

0.71

0.92

0.93

0.94

1.06

1.02

0.92

1.05

0.93

0.93

1.02

0.96

1.01

1.03

1.00

0.98

0.97

0.98

1.04

0.95

0.98

1.14

0.92

0.94

0.96

0.96

1.06

1.01
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EXAMPLE 7.3.1.2B. Reconstruction of the double-cross slowness model with 50% contrast

using the BST code with feasibility constraints and noisy data (after 41 iterations).



118 CHAPTER 7. NONLINEAR SEISMIC INVERSION

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 2.00 | 2.00 | 2.00 | 2.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 2.00 | 2.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 0.50 | 0.50 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 0.50 | 0.50 | 0.50 | 0.50 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 0.50 | 0.50 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00

EXAMPLE 7.3.1.3A. The double-cross slowness model with 100% contrast.
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1.00
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0.81
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1.39

1.05
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1.00
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0.90

1.00

1.70

2.38

1.46

1.23

1.04

1.12

0.91

1.09

0.97

1.28

1.40

1.10

1.02

1.11

1.08

1.16

0.99

1.17

0.93

0.86

1.15

1.09

1.07

1.13
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0.98
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0.97

1.05

1.09

1.09

0.97

1.00

1.02

0.94

1.03

0.98

1.04

0.99

0.95

0.94

0.86

0.88

1.02

1.00

0.94

0.99

1.03

0.89

0.66

0.62

0.82

1.08

0.90

1.08

0.86

0.66

0.56

0.57

0.62

0.80

0.94

1.05

0.83

0.81

0.69

0.62

0.77

0.84

0.84

1.12

1.00

1.01

0.91

0.81

0.90

0.93

1.02

1.01

0.96

1.04

0.97

0.86

0.99

0.97

0.96

0.97

1.12

0.99

0.95

0.92

0.90

1.08

1.01

EXAMPLE 7.3.1.3B. Reconstruction of the double-cross slowness model with 100%
contrast using the BST code with feasibility constraints and noisy data (after 41

iterations).
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7.4 Using Relative Traveltimes

When we do not have control over the seismic source location and timing as in the case of
earthquakes, the absolute traveltimes are not accurately known and it is important to un-
derstand how relative traveltimes may be used in seismic tomography [Aki, Christoffersson,
and Husebye, 1977].

Rigorous application of the feasibility constraints Ms > t requires fairly accurate knowl-
edge of the absolute traveltimes. When such information is sparse or unavailable, we can
use the information known about gross geological structure of the region to estimate the
mean traveltime. Then we remove the physically meaningless mean of the relative data
T/m and add back in the geological mean 7.

The remove-the-mean operator R for an m-dimensional vector space is defined as

1
R=I-u—uT, (7.33)
m

T

where u* = (1,...,1) is an m-vector of ones. Note that RR = R so R is a projection

operator. Then, we see that R applied to the traveltime vector t gives
T
Rt=t— —u, (7.34)
m

where T'/m = u?t/m is the mean traveltime of the data set. Applying R to the ray-path
matrix, we have

T T
RM=M-u—viC=M-u=—c7. (7.35)
m m
The standard procedure for this problem is to solve for s in the equation
M's =t/, (7.36)

where M/ = RM and t' = Rt. To apply the feasibility constraints, we must modify the
problem to

Ms > Rt + 7oL,n. (7.37)

Hidden in this analysis is the fact that the earthquake sources are often far from the region
to be imaged, so the “effective” source locations may be placed at the boundaries of the
region to be imaged.

If we have predetermined the mean for the traveltime data, then it is clearly desirable
to use an inversion procedure that preserves this mean, 7.e., choosing As so that

ulM(s + As)

m

=10 (7.38)

for all As. Preserving the mean is equivalent to preserving the total traveltime along all
ray paths, so

cT (s + As) = mry. (7.39)

In other words, vary s so it stays in the hyperplane determined by (7.39). But we have
studied exactly this mathematical problem using linear programming in (7.6) and also using
weighted least-squares in (7.25). So we do not need to develop any new inversion methods
for this special case.



7.5. PARALLEL COMPUTATION 121

7.5 Parallel Computation

Traveltime inversion algorithms tend to be parallelizable in a variety of ways. The use of
the feasibility constraints only increases the degree of parallelism that is achievable by these
algorithms.

First, the forward modeling may be parallelized. If the forward problem is solved using
either shooting or bending methods, then it is straightforward to parallelize the code because
each ray may be computed independently of the others, and therefore in parallel. If the
forward problem is solved using a finite difference algorithm or a full wave equation method,
then whether the algorithm is parallelizable or not depends on the details of the particular
algorithm. For example, Vidale’s method is not parallelizable, but another related method
by van Trier and Symes [1991] is parallelizable.

Second, the use of the feasibility constraints in inversion algorithms suggests that it
might be advantageous to map the feasibility boundary and then use the information gained
to search for improved agreement between the model and the data. Mapping the feasibility
boundary can be done completely in parallel. Each model s may be treated in isolation,
computing the best ray-path matrix for that model, and then finding the scaled model in the
direction of s that intersects the feasibility boundary. The difficulty with this method is that
it requires a figure of merit (in real problems) to help us determine whether (and to what
degree) one point on the feasibility boundary is better than another. In ideal circumstances
(no data error and infinite precision in our computers), the figure of merit would be the
number of ray paths that achieve equality while still satisfying all the feasibility constraints

Ms > t. (7.40)

When that number equals the number of ray paths, we have found an exact solution and, as
the number increases towards this maximum value during an iterative procedure, the trial
models s must be converging towards this solution. But in real problems, a figure of merit
based on the number of equalities in (7.40) is not useful.

In a series of numerical experiments [joint work with A. J. DeGroot], we have found
that a useful figure of merit for real problems is the nonlinear least-squares functional

U(s) = 3 wilri(s) — ti]2. (7.41)
i=1

If we have found an exact solution s* to the inversion problem, (7.41) will vanish at that
point on the feasibility boundary. As we approach this global minimum, (7.41) is evaluated
at an arbitrary point on the feasibility boundary and the values in a cluster of such points
are compared, our analysis of convex programming shows that the points with the smallest
values of (7.41) form a convex set. The smallest value we find may not actually vanish, in
which case there is no exact solution to our inversion problem. This procedure has been
implemented on a parallel processing machine, and the results obtained using this algorithm
with the figure of merit (7.41) are comparable to those of the stable algorithm discussed
earlier.
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Input sg and t

Sp = So < sg =sp +rAs
7y
Y
Find M - Minimize N (r)
A
Y
t, = Ms;, > Find As
7y
Y
At =t —t
No
Is At small?
Yes

Output sp // :{ Stop )

Figure 7.2: Modified iterative algorithm for traveltime inversion using feasibility constraints.
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Sk

Sy

Figure 7.3: Snapshot of one iteration in a nonlinear inversion algorithm based on feasibility
constraints.
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put so and /

124

Sp = S0 < sg = sp + As
A
Find 1; || Find 1 || Find 135 Find 1,
I
17
M= : > Find As
I
m A
tb = MSb
At =t, —t
No
Is At small?
Yes

()
Output s » Stop
/

Figure 7.4: Computing ray paths for different source/receiver paairs in parallel.
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Choose {s;}

A

Sp = S1 Sp = So Sp = S3 Sb:Sp
Y Y 4 Y
Find M (| Find M || Find M e Find M
y A4 A 4 4
ty = Msy ||ty = Ms ||t = Ms, R t; = Ms,
y Y 4 i
Aty = Aty = Aty = Atp =
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Output s; // :{ Stop )

Figure 7.5: Monte Carlo method of mapping feasibility boundary.




