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Chapter 5

Fast Ray Tracing Methods

The most expensive step in any traveltime inversion or tomography algorithm is the forward
modeling step associated with ray tracing through the current best estimate of the wave
speed model. It is therefore essential to make a good choice of ray tracing algorithm for
the particular application under consideration. Prior to choosing a ray tracing method, a
method of representing the model must be chosen. Three typical choices are: cells or blocks
of constant slowness, a rectangular grid with slowness values assigned to the grid points
and linearly interpolated values between grid points, or a sum over a set of basis functions
whose coeflicients then determine the model. The ray tracing method should be designed
to produce optimum results for the particular model representation chosen.
We will consider three approaches to ray tracing:

1. Shooting methods.
2. Bending methods.
3. Full wave equation methods.

These three methods are based respectively on Snell’s law [Born and Wolf, 1980], Fermat’s
principle [Fermat, 1891], and Huygen’s principle [Huygens, 1690]. We will find that shooting
methods and wave equation methods should generally be used with smooth representations
of the model such as linearly interpolated grids or spline function approximations, while
bending methods are preferred for constant cell representations.

We will study each of these approaches in some detail in this section. But first we
address a question commonly asked about the necessity of using bent rays in traveltime

tomography.

5.1 Why Not Straight Rays?

Straight rays are used in x-ray tomography and the results obtained are very good, so why
not use straight rays in seismic inversion and tomography? For x-rays traveling through
the body, the index of refraction is essentially constant, so the ray paths are in fact nearly
straight. Furthermore, the reconstruction in x-ray tomography is performed on the atten-
uation coefficient, not the wave speed, so the situation is not really comparable to that of

79



80 CHAPTER 5. FAST RAY TRACING METHODS

01

Stationary path

82

Path

Figure 5.1: Snell’s law is a consequence of the stationarity of the traveltime functional.

seismic tomography. Reconstructions in seismic inversion and tomography are most often
performed on the wave speed or wave slowness. Since the earth is not homogeneous, the
speed of sound varies significantly and the effective index of refraction is far from being
constant. Thus, the rays in a seismic transmission experiment really do bend significantly
and this fact should be taken into account in the reconstruction.

Suppose that we use straight rays in a tomographic reconstruction when in truth the rays
whose traveltimes have been measured were actually bent according to Fermat’s principle
or Snell’s law. In a region where the wave speed is quite low, the true rays will tend to go
around the region, but the straight rays go through anyway. So the backprojection along
a straight ray will naturally focus the effects of a slow region into a smaller region than it
should. Similarly, in a region where the wave speed is quite high, the true rays will tend
to accumulate in the fast region, whereas the straight rays are free to ignore this focusing
effect. Thus, the backprojection along a straight ray will tend to defocus the effects of a
fast region into a larger region than it should. If we could train our eyes to look for these
effects in straight ray reconstructions, then it might not be essential to use bent rays. But
until then, it is important to recognize that using straight rays has important effects on the
resolution of the reconstruction. Regions of high wave speed will appear larger than true,
so such regions are poorly resolved. Regions of low wave speed will appear smaller than



5.1. WHY NOT STRAIGHT RAYS? 81

hsin(8; + 66,)

52

h sin(6s)

Figure 5.2: Detail of the stationarity calculation (see preceding Figure).

true, so such regions are poorly defined.

Having said all this, nevertheless there are circumstances where I would recommend
using straight rays in the reconstruction. First, if the region to be imaged contains very
high contrasts so that some of the assumptions normally made to speed up the ray tracing
codes are expected to be violated (e.g., rays double back on themselves), then stable re-
constructions with bent rays may be impossible while a straight ray reconstruction can still
give some useful information. Second, if the desired result is just a low resolution image
showing whether or not an anomaly is present, then straight rays are entirely appropriate.
Third, if a reconstruction for anisotropic wave speed is being attempted, then straight rays
are recommended too, since the nonuniqueness expected in the reconstruction when bent
rays are coupled with anisotropy in the model appears so overwhelming that I think little
can be done to overcome the problem at the present time.l

Straight rays are always computed quickly since they depend only on the source and
receiver locations. So if resolution is not an issue but speed of computation is, then of course
straight rays can and probably should be used. However, using straight rays is limiting the
reconstruction to be merely linear inversion or tomography, but — since our subject is
nonlinear inversion and tomography — we will not consider straight rays further.

!See Jech and P3enéik [1989; 1991].
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5.2 Variational Derivation of Snell’s law

For piece-wise constant slowness models, we consider Snell’s law.

A medium with two regions of constant slowness sy, s3 is separated by a plane boundary.
The ray path connecting two points, A and B, located on either side of the boundary is
stationary, i.e., small deviations from this path make only second order corrections to the
traveltime. Referring to Figures 5.1 and 5.2, we let the solid line denote the ray path having
stationary traveltime and let the dotted line be a perturbed ray path. Each path is assumed
to comprise straight lines within each medium which then bend into a new direction upon
crossing the boundary. We let #; and 8> denote the angles of the stationary path from the
normal to the boundary in the two regions, respectively. A simple geometrical argument
can be used to infer the difference in length between the two paths to first order in A,
the distance between the points where the paths intersect the boundary. We find that the
segment of the perturbed path in region 1 is hsin(#; 4+ 66) units longer than the stationary
path, while in region 2 the perturbed path is A sin 85 units shorter. Therefore, the traveltime
along the perturbed ray differs from that along the stationary ray by At, given by

At = s1hsin 6y — sohsin 65, (5.1)

neglecting the second order effects due to finite 66 and due to the slight differences in the
remainders of these two paths. Since the traveltime is stationary, we set At = 0 and find
that

sysinfy = sosinfs. (Snell’s law) (5.2)

5.3 Ray Equations and Shooting Methods

Let the ray path P between two points A and B be represented by a trajectory x(u), where
u is a scalar parameter that increases monotonically along the ray. We can then write the
traveltime along the path as

t = /P s(x(w)) di(u) (5.3)

u(B)
= / f(X,j() du, (5'4)
u(A)
where x = dx/du and
£, 3%) = sl (55)

Fermat’s principle implies that the stationary variation [Whitham, 1974]

u(B)
6t:/ [Vf - 6%+ Vi f - 6%] du = 0. (5.6)
u(4)



5.3. RAY EQUATIONS AND SHOOTING METHODS

Integrating by parts

u(B) d
6t:/ [fo— —V,-cf] -oxdu = 0.
” du

(4)
Since this must be true for all éx, we can infer

d

vxf - d_vxf =0.
U
Now observe that
X
fo = S(X)m.

Further, we have dl = |X|du, so stationarity of ¢ implies

This is the ray equation.
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(5.9)
(5.10)

(5.11)

In a 2-D application, the ray equation may be rewritten in terms of the angle 6 of the

ray from the z direction. First, note that

d R A e s
gxX=P= cos 0% + sin 0y
and
d, .df o _.dé
P = OE = (—sin 6% + cos QY)E’
so that (5.11) may be rewritten as
ds ~df
ey WU i
VesaP Tl
which implies
A do
6-Vs=s—.
Vs=s 7l
Finally, we obtain
do 1 /0s s
— = —|—=—cosf— —siné
T . (8y cos 55 it ),

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)
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giving an explicit differential equation for the ray angle 6 along a 2-D path.

The ray equations form the basis for shooting methods of ray tracing. Starting at any
source point, we initially choose a set of possible angles. An optimum initial span of angles
can be determined if the range of wave-speed variation is known approximately. Then,
we use the ray equations to trace the rays at each of these angles through the medium to
the vicinity of the receiver of interest. Normally none of the initial angles turns out to
be the correct one (i.e., the one that produces a ray that hits the receiver), but often the
receiver is bracketed by two of these rays. Then, by interpolation, we can find as accurate
an approximation as we like: i.e., choose a new set of angles between the pair that brackets
the receiver, trace the rays for these angles, keep the two closest that bracket the receiver,
and continue this process until some closeness objective has been achieved.

Shooting methods are very accurate, but also relatively expensive. We may have to
shoot many rays to achieve the desired degree of accuracy. Furthermore, there can be
pathological cases arising in inversion and tomography where it is difficult or impossible
to trace a ray from the the source to receiver through the current best estimate of the
slowness model. Such problems are most likely to occur for models containing regions
with high contrasts. Then, there can exist shadow zones behind slow regions, where ray
amplitude is small for first arrivals. Such problems can also arise due to poor choice of
model parametrization. Shooting methods should normally be used with smooth models
based on bilinear interpolation between grid points, or spline function approximations. If
the desired model uses cells of constant slowness, shooting methods are not recommended.

PROBLEMS

PrOBLEM 5.3.1 Verify (5.11).

PROBLEM 5.3.2 Derive Snell’s law (5.2) for the change in ray angle at a plane interface
from the ray equation (5.11).

PROBLEM 5.3.3 Can the ray equation be derwed from Snell’s law?

PROBLEM 5.3.4 Consider a horizontally stratified medium with a sequence of layers having
uniform slownesses s1, sa, s3, .... Use Snell’s law to show that a ray having angle 61 to the
vertical in the first layer will have an associated invariant (called the ray parameter)

p = s;sinf; (5.17)

wn every layer i whose slowness satisfies s; > sysinfy. If the ray encounters a layer (say
the nth layer) whose slowness satisfies s, < s1sinfy, then what happens? Show that the
constancy of the ray parameter is a direct consequence of (5.16).
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5.4 The Eikonal Equation

Consider the wave equation for a field ¥ (x,t) in a medium with slowness s(x):

82
Vi) = 52(x)8—;’2b. (5.18)
Let us assume
Y(x,t) = e wlpX)—t] — o —wSP(x) i [RA(x) 1] (5.19)

where ¢(x) = Rp(x) + iSp(x) is a complex phase. The imaginary part S¢ determines the
amplitude of ¥. Substituting into the wave equation, we get

[inngS ~w¥V¢- Vo + uﬂs?(x)] % = 0. (5.20)
In the limit w — co, ¢ — R, since (5.20) implies that
VRé - VRG — V¢ - VS = 5%(x) (5.21)
and
VR¢ - VS = 0, (5.22)

and the wave equation reduces to the eikonal equation

V| = s(x). (5.23)

5.5 Vidale’s Method

The method of Vidale (1988) uses a finite difference scheme to compute the traveltimes of
waves in an arbitrary medium. The slowness of the medium is represented on the nodes of
a rectilinear grid with bilinear (for 2-D media) interpolation assumed between nodes. The
method approximates the wave field which propagates through a given element as a plane
wave. This approximation is valid for the far field. (A different approach is used for the
near field, but we will not cover this here.)

5.5.1 Algebraic derivation

Figure 5.3 shows one element of the grid. We number the nodes of the element in a
counterclockwise manner, starting with the lower left node. Without loss of generality, we
let the plane wave begin at node 0 with traveltime ?y, assumed known. The traveltime to
the other nodes—t;, t2 and t3—will then be greater than ¢y by an amount which depends

>The term eikonal (from the Greek e:k@v meaning icon or image) was introduced by Bruns [1895].
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Figure 5.3: Diagram of a grid element used in Vidale’s method.

on the direction of propagation and the grid element size h. In general we can write the
Taylor series expansion

t1 = to+ ﬁh, (5.24)
Ox
ty = to+ ﬁh, (5.25)
oy
ot Ot
tg =1 — 4+ —)h 5.26
3 o+ <8m + 8y) ) ( )

valid to first order in h. We can solve these equations for the gradient of ¢, obtaining

ot

2h— =1t t1—ta—1 .2
97 3+1t1 —12 —to, (5.27)
t
2h6— = 13 + 12 — 11 — to. (5.28)
dy

The eikonal equation implies that |Vt|? = s%(x). If we substitute from (5.27) and (5.28) for
Vt and an element average value of s, we get

(ts +t1 — ta — t0)? + (t3 + ta — t1 — t)? = 452h?, (5.29)
where

1
5= Z(SO+81 +52+53). (5.30)
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Figure 5.4: Geometry of plane wavefront incident on a grid element.

From (5.29), we find that the cross terms cancel so
(tg — t0)2 + (tl — t2)2 = 252K2. (5.31)

Solving for t3, we get Vidale’s formula:

t3 =19+ \/2§2h2 - (tl - t2)2. (532)

We can verify (5.32) for two limiting cases. First, for a wave traveling in the +z direction,
we must have tg = t2 and, assuming s is constant, ¢t; = tg + 5h. Substituting these into
(5.32) then yields t3 = tg + 5h, which is intuitively the correct answer. Similarly, Vidale’s
formula implies t3 = tg + v/25h for a wave travel at 45 degrees to z, i.e., when t; = ta.

5.5.2 Geometric derivation

We can gain more insight into the significance of Vidale’s method by deriving the result
another way. Now consider Fig. 5.4. We assume that to a first approximation it is satis-
factory to treat the slowness in the cell as constant. The constant we choose is the average
of the four grid slownesses at the corners of the cell § = 0.25(s; + s2 + s3 + s4). If the
planewave impinges on the cell from the lower left, making angle # with the x-axis, then the
simple geometrical construction in the figure shows that the following identities must hold:

t; — tg = Shcos#, (5.33)

t3 —ta = Shcos#b, (5.34)
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to — tg = Shsin 6, (5.35)

tg3 — t; = 5hsin 6. (5.36)

We see directly from Fig. 5.4 that the right triangle whose hypotenuse is the diagonal of
the cell and whose longest side is proportional to the time difference t3 — #o has its short
side proportional to t3 — t;. The Pythagorean theorem then tells us that

(t3 — t0)2 + (tg — t1)2 = 2§2h2, (5.37)
in agreement with (5.31) and (5.32). Alternatively, we see that (5.33)—(5.36) show
(t3 — t0)? + (t2 — t1)? = 52h?(cos 6 + sin 0)* + 52h%(sin @ — cos )* = 252h2.  (5.38)

From our examination of the geometry for planewaves, we get a bonus. Now we can
also find a simple estimate of the angle 6 if we know the traveltimes. Clearly,

la—1 13—t

tan§ = = (5.39)
t1—1t t3—t
follows from (5.33)—(5.36). It also follows from (5.27) and (5.28) that
t t to—t1—1
tanf = Otjdy _tatta =t =t (5.40)

CO0t)dx  tz3+ty —to—tg

a result that we may also infer from (5.33)—(5.36). Thus, it is possible to determine the
angle 0 to first order just by knowing the traveltimes at the corners of the cell. This fact
suggests several alternatives for adding ray tracing to Vidale’s finite difference traveltime
computation, but we will not pursue that subject here.

Finally, note that (5.33)-(5.36) show that
t3 =tg + 11 — 1. (5.41)

Why is this not a useful identity for computing the traveltimes?

5.6 Bending Methods

Although in principle they can be, in practice bending methods are generally not as sys-
tematic or as accurate as shooting methods. However, they are also much less prone to
convergence failures in the presence of pathological models with high relative contrasts
(which can result in shadow zones occurring behind very slow regions). Bending methods
start with some connected path between the source and receiver (generally a straight line for
borehole-to-borehole tomography) and then use some method to reshape or bend that path
to reduce and (we hope) minimize the overall traveltime along the path. Bending methods
are conceptually based on Fermat’s principle of least time; the minimization over paths in
(1.2) is being performed now essentially using trial and error. This method is just as legiti-
mate as the others discussed previously and can be just as accurate if the search routine is
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sufficiently sophisticated. Also, bending methods are the only ones that I recommend using
when the model is composed of cells of constant slowness. Other methods such as shooting
take the cell boundaries in these models too seriously — trying to satisfy Snell’s law exactly
at these artificial boundaries while the approximate satisfaction of Snell’s law achieved by
the bending method using Fermat’s principle is more consistent with the approximation to
the physics embodied in the model.

5.6.1 The method of Prothero, Taylor, and Eickemeyer

We summarize the bending method of Prothero, Taylor, and Eickemeyer (1988) for the case
of 2-D ray paths.

Let (zs,ys) and (zg,yr) be the given endpoints of the ray. We seek the least time
path between the two points, which we can describe with the function y(z) or z(y). [It is
assumed that one of these functions is single valued.] Let us use y(z) and, with no loss of
generality, we take g =0, xgp = L.

In ray bending, we begin with an initial ray yo(z) and seek a perturbation dy(z) to the
initial ray such that the traveltime along the perturbed ray is reduced. Typically the initial
ray is taken to be a straight line:

yo(z) = ys(l — %) + yR% (5.42)
The perturbed ray is taken to be a harmonic series of the form
K krx
by(z) = Z a sin < (5.43)

k=1

The order of the series is usually kept small (e.g., K = 2). Note that only sine, and not
cosine, terms are used so that the endpoints of the ray remain unperturbed.
In terms of the y(z), the traveltime is given by

t— /OLs(m,y(x))\/1+ (dy/da)? da. (5.44)

Prothero, Taylor, and Eickemeyer (1988) use the Nelder-Mead search procedure [Nelder
and Mead, 1965; Press, Flannery, Teukolsky, and Vetterling, 1988] to find coefficients aj such
that the traveltime is reduced. The Nelder-Mead approach may be used in any number of
dimensions to seek the minimum of a complicated function, especially when local gradients
of the function are difficult or expensive to compute. The main idea is to perform a sequence
of operations on an n-dimensional simplex, so that the vertices of the simplex converge on
the point where the function is minimum. In 2-D, the simplex is a triangle. The complicated
function to be minimized in our problem is the traveltime functional. Using this approach,
the traveltimes associated with three choices of the ordered pairs (aj,as) are compared—
for example, the origin (0,0) and two other points in the ajas-plane. The point with the
largest traveltime is then replaced with a new point found as the mirror reflection of the
point about a line passing through the other two points.
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Figure 5.5: Nlustration of the Nelder-Mead method.

Figure 5.5 illustrates the method. Starting with three points whose corresponding trav-
eltimes are respectively t; < t3 < t3, the algorithm seeks to replace the point with the largest
traveltime by a smaller traveltime t5. The figure shows the first attempt in such a process,
which is usually reflection of the triangle across the line determined by the other two vertices
of the triangle. If the traveltime associated with this point satisfies t; < to, then this point
becomes a point of the new triangle. If t5 > t2, then other moves are made such as checking
values between the original vertex and the reflected vertex or expansion/contraction of the
triangle. When an improved (smaller traveltime) vertex is found, the vertices are relabelled
and the process starts over for the new triangle. If no improvement (or improvement less
than some preset threshold) is attained or some fixed number of iterations is exceeded, the
process terminates for this ray path.

5.6.2 Getting started

One potential pitfall of this method occurs when attempting to choose a set of vertices
for the starting triangle that avoids biasing the final results. Bias in this context means
a tendency to choose rays that bow away from the straight path in the same direction. I
recommend always choosing the origin (a1,a2) = (0,0) as one of the initial vertices, since
this choice corresponds to a straight ray path and is clearly unbiased by definition. The
straight path may be a good approximation to the true path whenever the wave speed
constrasts in the model are low. Then, how should the other two vertices be chosen?
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One rather obvious pairing can be excluded immediately: Suppose that we choose the
point (a1, a2) = (e, 3). Then the mirror image of the path across the source/receiver line is
given by the point (a1,a3) = (—a,—3). However, rather than determining a triangle, these
three points (—a, —(3),(0,0), (o, ) form a straight line in the ajas-plane. Thus, although
pairing (o, ) with (—a,—f) is desirable from the point of view of minimizing bias, this
pairing produces an undesirable degenerate version of the triangle needed in the Nelder-
Mead algorithm. Therefore, we should exclude this possibility.

In general, we should expect the ray bending effect to be dominated by the coefficient
aj. Thus, although there clearly may be exceptions, we generally expect |a1| > |ag| and
very often |a1| >> |aa]. So we try to minimize the bias in the initial choice of vertices
by pairing (a,3) with (—a, ), where |3| is about an order of magnitude smaller than |«|.
This choice of pairing eliminates the major source of bias in the initial simplex while still
producing a usable triangle for the Nelder-Mead algorithm. The precise value to be used
for o depends on the expected range of variation (or contrast) in the wave speed in the
region being imaged. In fact, the initial choice of « for this approach is closely related to
the optimum choice of the maximum initial span of angles needed to start the shooting
methods described earlier.

5.7 Comparison

On average, the method of Prothero et al. (1988) has been found to be as fast and as accu-
rate as Vidale’s method when 100 times fewer cells are used than in Vidale’s modelization.
So the bending method is considerably more accurate on a coarser grid, but also corre-
sponding slower to compute. Vidale’s method is not as accurate as the bending method for
regions that are very slow compared to the background, due to limitations it has in or near
shadow zones. The bending method is not quite as accurate as Vidale’s method for regions
of high wave speed relative to background and comparable computing time, apparently due
to limitations of the ray parameterization embodied in (5.43). The hybrid approach of using
the best (smallest) traveltimes found by either method as the “true” traveltime has been
tested and gives better results than either method alone.



