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Chapter 4

Algorithms for Linear Inversion

In Chapter 3, much of our effort was expended showing that least-squares methods generally
produce infeasible models in traveltime inversion, t.e., models that violate at least one and
often many of the physical constraints imposed on the slowness model by the data through
Fermat’s principle. Having ruined the reputation of least-squares methods in this way, we
try to recover and arrive at a new understanding of the true significance of least-squares
methods for inversion problems in this section. Two main points should be stressed: (1)
The least-squares methods and generalized inverses are intimately related and, in principle,
lead to the same results. (2) Iterative methods for inversion based on least-squares criteria
fall into the class of “exterior” methods for nonlinear programming, i.e., at each step of the
iteration sequence the “best estimate” of the solution is infeasible so this method approaches
the solution (lying on the boundary) from outside the set of feasible models.

In linear inversion with block models, we must solve the linear system of equations given

by

Ms=t (4.1)

?

where we recall that M is a known m X n ray-path matrix, s is an unknown n-vector of
slowness values, and t is a known m-vector of traveltimes.
Three major difficulties arise in solving (4.1):

1. M is not a square matrix;
2. M is often rank deficient;
3. M is often poorly conditioned.

Because of these three difficulties, we cannot simply solve (4.1) in terms of an inverse
matrix of M, because such an inverse does not exist. The inverse of an n X n square matrix
A is defined as the unique matrix X such that

XA =1=AX, (4.2)

where I is the n x n identity matrix. The standard notation for the matrix inverse is
X = A7l Tt is clear from the definition of the inverse (4.2) that X must also be an
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40 CHAPTER 4. ALGORITHMS FOR LINEAR INVERSION

n X n square matrix. Thus, the fact that M is not square is sufficient to guarantee that
the standard definition of an inverse cannot be applied to our problem. It might still be
possible to generalize the concept of inverse so that the equation

XM =1 (4.3)

uniquely defines a meaningful n X m inverse matrix X associated with M. When n < m
and the discretized mathematical problem is overdetermined, setting

X = (MTM>_1 M7 (4.4)

gives a formal solution to (4.3) if the inverse (M M)~! exists. We will see that this approach
may succeed, but its success is tempered by the second and third difficulties: M is usually
rank deficient, or poorly conditioned, or both. The rank of a matrix is the dimension of
the subspace spanned by its columns (or rows) and cannot exceed the smaller of the two
dimensions of the matrix. Letting r be the rank of our m by n matrix M, if » = min(m, n)
we say M has full rank. If r < m,n then M is rank deficient. If M is rank deficient, then
(MTM)~! does not exist and more sophisticated solutions than (4.4) are required. A similar
difficulty arises if m < n, so the discretized problem is underdetermined. A matrix is poorly
conditioned if the ratio of largest to smallest nonzero eigenvalue A1/, >> 1. For example,
this ratio is commonly found equal to 100 or 1000, or even more. Computing an accurate
pseudoinverse for a poorly conditioned matrix is difficult. If M is very poorly conditioned, it
may be difficult to compute the smallest eigenvalues accurately enough to obtain satisfactory
results from the SVD approach for computing M'. Then, other numerical techniques for
iteratively computing the solution of (4.1) may be preferred.

Two techniques for handling the first difficulty (M not square) are completing the square
and Moore-Penrose pseudoinverses [Moore, 1920; Penrose, 1956a]. Two techniques for han-
dling the second difficulty (rank deficiency) are regularization and pseudoinverses. Thus,
the Moore-Penrose pseudoinverse is a common solution for both of these problems. Reg-
ularization is usually accomplished either (z) by altering the rank deficient square matrix
M?”M in a way that produces an invertible matrix, or (i7) by performing a singular value
decomposition on M and using formulas for the SVD of M to construct the pseudoinverse.

There are a number of numerical algorithms for solving the system (4.1) and some of
these are especially useful when M is poorly conditioned. These methods include:

1. standard tomographic reconstruction methods (e.g., ART and SIRT),
2. iterative matrix methods (e.g., Gauss-Seidel and Jacobi’s method),

3. conjugate direction/gradient methods,

4. simple iteration,

5. a “neural network” method.

These methods may be analyzed most conveniently in terms of their convergence to the
pseudoinverse.

Since the pseudoinverse plays such a central role in all these problem/solution pairs,
we begin our discussion by deriving and analyzing Mf. Then, we discuss regularization
techniques and finally analyze various numerical techniques for solving (4.1).
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4.1 Moore-Penrose Pseudoinverse and SVD

Any nonsymmetric (and/or nonsquare) matrix M of real numbers can be decomposed in
terms of a set of positive eigenvalues and two sets of orthonormal eigenvectors. Let r be
the rank of M. There exist r solutions to the eigenvalue problem

Mz = )y, (4.5)
MTy = Az, (4.6)
such that A > 0 and yTy = z7z = 1. Letting \;, y;, 2;, 7 = 1, ..., r, denote the solutions,
then
yi MM"y; = (\y)y; =i (Ajy)), (4.7)
and
z; M"Mz; = (\}z])z; = 2] (A] 2)), (4.8)
so that
(A= X)yly; =0= (A} — D)z z;, (4.9)
for all combinations of 7, j. Furthermore,
\Nyly; = yIMz; = 2X MTy, = Nzl z;, (4.10)
showing that
yi i =12 %, (4.11)

for all 1 <4 < r. Then, after normalizing the eigenvectors, it follows from (4.9) and (4.11)
that

Yiyi =12 zj = bj. (4.12)

The vectors y; and z;, respectively, are left- and right-hand eigenvectors of M corresponding
to the eigenvalue )\;. Multiple eigenvectors associated with the same eigenvalue are not
necessarily orthogonal to each other, but they do form a subspace that is orthogonal to all
other eigenvectors with different eigenvalues.

4.1.1 Resolution and completeness

The model space is n-dimensional while the data space is m-dimensional. Any slowness
vector in the model space can be expanded in terms of a complete orthonormal set of
vectors {z;} as

n T
s = E 0;Z; = Z 0jzj + S0, (4.13)
j=1 j=1
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and similarly for a data vector

t=> miyi=» 7iyi+ to, (4.14)
=1 =1

when expanded in the basis set {y;}. The vectors sg and ty are respectively arbitrary
vectors from the right and left null spaces of M. Completeness implies that the identity
matrix can be represented in terms of these sets of vectors by taking sums of outer products
according to

n
L, =) zjz, (4.15)
j=1
and
L= vyl (416)
i=1
Then, for example,
I,s= sz(z;‘-rakzk) = E 0jZj = S. (4.17)
ik j=1

In each space, only the first r of these vectors can be eigenvectors of M with A > 0. The
remaining n — r and m — r vectors necessarily lie in the right and left null spaces of M.
The completeness relation can be written using any complete set of vectors; using the
eigenvectors of M is a choice made as a convenience for the SVD analysis of M.
Now we define resolution matrices for the two vector spaces based on partial sums of
the completeness relations

Rn =Y z;2] (4.18)
=1
and
Rm =Y Vi¥i. (4.19)
=1

Note that for a real, square, and symmetric matrix, there is only one resolution matrix.
Applying the resolution matrices to s and t, we find

Ras =Y 05z; (4.20)
j=1
and
Rmt =Y Tiyi. (4.21)

i=1
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Thus, the resolution matrices strip off the parts of s and t lying in the right and left null
spaces of M, respectively.

The full significance of the resolution matrices will become apparent as we develop
the generalized inverse, and particularly when we examine the relationship between least-
squares methods and the pseudoinverse.

PROBLEMS
PROBLEM 4.1.1 Show that R2 = R, and R2, = Rum.
PrROBLEM 4.1.2 Show that Tr(R,) = Tr(Rm).

4.1.2 Completing the square

These results are most easily derived and understood by using a technique of Lanczos [1961]
for completing the square. We define a real, square, and symmetric (m+n) X (m+n) matrix

H= <1\ng 1‘(;[) . (4.22)

Then, (4.5)—(4.6) becomes

H(Z’) 2)"@%) (4.23)

Clearly, for each positive eigenvalue \; with eigenvector (y7,z7 )7, there is a correspond-
ing negative eigenvalue —)\; with eigenvector (yI,—z7)7.

PROBLEM

PROBLEM 4.1.3 Show that H s rank deficient if m +n s odd.

4.1.3 Finding the generalized inverse

The singular value decomposition (SVD) of M is given by

M=) \yiz; . (4.24)
i=1

The Moore-Penrose pseudoinverse of M can be expressed as
M =3 A tzyl (4.25)
i=1
Our goal in this section is to derive (4.25). Also, notice that this definition implies

MM =" z;z] =Ra (4.26)
=1
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and
MM = Z yivy = R, (4.27)
i=1

thus making the connection to the resolution matrices.

Completing the square permits us to find a simple and intuitive derivation of the unique-
ness conditions required for a meaningful generalized inverse giving rise to the formula
(4.25). First, we find the generalized inverse for the square matrices appearing in H?Z.
Then, we use these results to derive (4.25).

Let A = M”M so that

A=) Nzgz]. (4.28)
=1

Then, A is real symmetric and therefore has real eigenvalues. Since the z;s are assumed to
be an orthonormal and complete set of vectors, any generalized inverse for A can be written
in the form

Al = Z ozijziz;r, (4.29)
i

where the coeflicients a;; = z;prsz are to be determined and the upper limit on the sum
has been taken as r for the sake of simplifying this derivation. Consistency conditions are

AAT = ATA =) 227 =R, (4.30)
=1

which are the conditions intuition! suggests are the right ones for the generalized inverse of
a square matrix. The final expression in (4.30) is just the completeness relation within the
subspace orthogonal to the null space of A. Equation (4.30) implies that Af is the unique
matrix satisfying the conditions

AATA = A, (4.31)
ATAAT = AT, (4.32)

It follows easily from (4.28)—(4.30) that
i = 6i /3. (4.33)

Thus, the generalized inverse of this symmetric square matrix is just

AT => "2z /)] (4.34)
=1

!Compare (4.2).
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To find the needed relation for the nonsymmetric/nonsquare matrix M, again consider
the square matrix H. We find easily that

H? = (Ml(;/IT M2M> : (4.35)
Then, for consistency we suppose
H' = HH?' = (H*)'H, (4.36)
from which it follows that
H = <MT(1\91MT)T M(MOTM)T) = ((MTI\(/i)’fMT (MMOT)TM> . (4.37)
Equation (4.37) implies that
Mf = MT(MMT)t = MTM)'MT. (4.38)

Using (4.34) in (4.38) then finally yields (4.25). Thus, we have completed one derivation of
the pseudoinverse.

A more direct derivation comes from (4.34) by writing down the equivalent expansion
for Hf. First, expand H in terms of the eigenvectors as

m=s S ((3)or - (%) or ) (4.39)

=3u]() o o+ (%)

[The factor of one-half in (4.39) arises from the fact that the norm of the eigenvectors of H
(as defined here) is 2.] Then, from (4.39) and (4.34), we obtain

£ (907 o+ ()0 D= (o M), e

M0
and (4.25) again follows, thus completing another derivation.

. (4.40)

We observe two special cases in which M is of full rank. If r = n < m so the problem is
either determined or overdetermined but M is of full rank, then s; — the vector from the
right null space — is necessarily zero. Further, we can write

Mf = M™™M)'MT = MT(MMT)1, (4.42)

Second, if r = m < n so the problem is either determined or underdetermined but M is of
full rank, then tg — the vector from the left null space — vanishes and

M = MT(MMT)~! = MTM)IMT. (4.43)

A subcase of both cases is r = m = n so the problem is just determined and M is of full
rank. M is then also square and invertible. Since in this case (M?M)~! = M~}(M7T)~!
and (MMT)~! = (M7T)"!M~1, (4.42) and (4.43) reduce to

Mi=M1 (4.44)

consistent with the intuitive derivation of the generalized inverse given here.
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Example 4.1.1 Consider a 2 X 2 model with the layout

S1 | S2

S3 | S4

Suppose the ray-path matrix is

1.00 1.00 0 0
M_(1.o5 1.05 0 0)’

corresponding to two ray paths going through cells 1 and 2 at slightly different angles. The
SVD of M s

1.00
M_(1'05)(1 1 0 0),

with the single nonzero eigenvalue A = /4.205. Then, the generalized inverse of M s

1
1 1
M= ——— 1.00 1.05).
V4.205 | 0 ( )
0
The corresponding resolution matrices are
1 1/2 1/2 0 0
111 1/2 1/2 0 0
= T = — =
Rs=M'M 5 | o (1 1 0 0) 0 0o o ol (4.45)

0 0 0 0 0

and

1 /1.00 1 (/100 1.05
= = - -
Ra=MM"= 73055 (1.05) (1.00 1.05) = 59555 (1.05 1.1025) - (446)

Equation (4.45) shows that the two ray paths contain equivalent information about the two
cells 1 and 2, but no information about cells 8 and j. Equation (4.46) shows that, even
though the two ray paths do in fact have the same information about the model, the longer
ray path is treated as more reliable simply because it s longer. (It is this sort of contradictory
result that leads us to consider using other weighting schemes in Section 3.5.) Another way
of displaying the information in the resolution matriz Ry is to exhibit the diagonal values
of the matriz on the grid of the slowness cells as

1
2

O ol

; .

This display has nothing to do with the actual slowness values computed in the inversion,
but it does have something to do with the relative reliability of the values computed. We
should have more confidence in the computed values of slowness in those cells with the higher
diagonal resolution.
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Example 4.1.2 Using the same layout as the preceding example, consider the ray-path

matrz
1 1 0 0
M = <1 01 O) )

This matriz corresponds to having one horizontal ray (through cells 1 and 2) and one vertical
ray (through cells 1 and 3). The symmetric matriz

MMT=<? ;>=g(1)(1 1)+%<_11)(1 -1),

showing that the left-eigenvectors of M are (1,1) and (1,—1) with eigenvalues v/3 and 1,
respectively. Thus, M is of full rank. Multiplying M on the left by the left-eigenvectors
determines the right-eigenvectors and shows that

M:%G)(z 11 0)+%(11)(0 1 -1 0),

which is easily verified. The generalized inverse is then

2 0
11 11

Mfzg L@ DS -
0 0

The resolution matrices are therefore

2/3 1/3 1/3 0
1/3 2/3 -1/3 0
= T =
Ra=MM 1/3 -1/3 2/3 0 (447)
0 0 0 0
and
Rg:MMT=<(1) 2) (4.48)

The diagonal values of the model resolution matriz are displayed in

win | wolh
O [l

The data resolution matriz is the identity because the ray-path matriz M is of full rank, and
r=m=2.

Example 4.1.3 Consider a 3 X 2 model with the layout

51| 82

S3 S4 |

S5 | S6
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Consider the ray-path matriz

1 1 0 000
Mo |0 0O 1 100

10 v2 v2 0 0 o}’
0 0 0 0 1 1

corresponding to horizontal rays through the three horizontal pairs of cells and one diagonal
ray cutting through cells 2 and 3. The symmetric matriz

2 0 V2 0

r_ |0 2 V20
MM =\ & 5 % o
0 0 0 2

has the eigenvalues X = 2 (twice) and X\ = 3 = /5, so M is again of full rank. The

corresponding left-eigenvectors of M are

0 1 1 1
0 -1 1 1
0f 1 0 || HA+VE) || 51-V5)
1 0 0 0

Ezcept for normalization, the right-etgenvectors of M for the nonzero eigenvalues are then
found to be

0 1 1 1
0 1 2+5 2-+5
0 -1 245 2-+/5
o’ -1’ 1 ’ 1
1 0 0 0
1 0 0 0

The resolution matrices are

3/4 1/4 —-1/4 1/4 0 0
1/4 3/4 1/4 —-1/4 0 0
v | /4 1/4 3/4 1/4 0 0
Re = MM 1/4 —1/4 1/4 3/4 0 0 (4.49)
0 0 0 0 1/2 1/2
0 0 0 0 1/2 1/2
and
1 00 0
0100
= T:
R4 = MM 00 1 0 (4.50)
000 1

The diagonal elements of the model resolution matriz are displayed in
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N | [l
VLl S [V I [P

The data resolution matriz is again the identity matriz in this example because the ray-path
matriz M s of full rank and r = m = 4.

PROBLEMS
PROBLEM 4.1.4 Using (4.26) and (4.27) show that Tr(R,) = Tr(R.;) = rank(M).

PROBLEM 4.1.5 If {z;}n is an orthonormal, complete set of n-vectors and {y;}m is an
orthonormal, complete set of m-vectors, define the n X n matriz

Z=(z1 22 - 2Zn)
and the m X m matriz
Y=(y1 y2 = ¥m).
Let Opy i be an m X n matriz of zeroes. Then, the matriz A is the m X n
A1
A2
: Orpsr
A= Ar

Om—'r,'r

I
|
|
- — - - = - — - - = _|_ - - — - — =
|
| Om—r,n—'r
|
where the first r components of A along the diagonal are the first rp eigenvalues of M.
Then, if the first v vectors in the two sets are the right and left ergenvectors of M, show
that (4.24) can be rewritten as

M =YAZ".
Show that
Mf = ZATYT,
where the n x m matriz At is given by
At
A5t
Orm—r

|
|
|
Af = o |
|
|
|
|
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Show that
R, =MM = 22"

and

Rm=MM' =YY,
PROBLEM 4.1.6 If A is real and symmetric, prove that its eigenvalues are real.
PROBLEM 4.1.7 Derive (4.25) from (4.24), (4.34), and (4.38).
PROBLEM 4.1.8 Show that (4.38) implies (MMT)T = (MT)tMT,
PROBLEM 4.1.9 It was implicitly assumed in (4.36) that

(H%)T = (H))2 (4.51)

Show that (4.51) follows from (4.34). Then, verify that (4.38) is consistent with (4.51).

PROBLEM 4.1.10 Find the pseudoinverse and the resolution matriz of

A= (n )

PROBLEM 4.1.11 Find the pseudoinverse and the resolution matriz of
5/4 —1/2 —-3/4
A= -1/2 1 -1/2 ].
—-3/4 —-1/2 5/4
PROBLEM 4.1.12 Find the pseudoinverse and the resolution matrices of

/35 6/5 3/5 O
M_(3/5 0 35 6/5)'

PrROBLEM 4.1.13 Suppose that A is nonsingular, w is some normalized vector, and € is a
positive scalar. Show that

A lwwT A1

(At ewwt] a1 ATwwTAT
1+ ewlTA-lw’

(4.52)
Then, use (4.52) to show that, if

B=A - ww! and Bw =0,
then

Bf=A"1- iwa.
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PROBLEM 4.1.14 Suppose A is real and symmetric with SVD given by A = " 4 piz;z}
where p; >0 for 1 <1 <7 and p; =0 forr+1 <1 < n. Show that

Al =

Atp > zizgl | —= ) 2z (4.53)
i=r+1 [ g

for any pu > 0.
PROBLEM 4.1.15 Suppose that (4.29) is replaced by

n
— T
4AJr = Zaijzizj 5
]

where the upper limit on the sum is taken to be the size of the model vector space. Repeat
the derwwation of the pseudoinverse and explain the differing results.

PROBLEM 4.1.16 Show that the four equations

MXM = M,
XMX = X,
(MX)T = MX,
XM)T = XM,

have a unique solution X for any real matric M. Show that X = Mf. Then show directly
that (MTM)T = MH(M*)T. [Penrose, 1955a]

PROBLEM 4.1.17 If A is real, square, and symmetric, then show that the equations
AAT=ATA=R,
are equivalent to the set of uniqueness conditions in PROBLEM 4.1.16 for Af.

PROBLEM 4.1.18 Show that, if X is a real, square, and symmetric matriz satisfying X2 =
X, then XT = X. Does Xt =X imply X2 =X?

PROBLEM 4.1.19 Use the defining equations for M! in PROBLEM 4.1.16 to show directly
that Mt = MT(MMT)I = (MTM)IM thus verifying (4.38). [Hint: Use the defining
equations three times, once each for (MTM), for (MMT)T, and for Mt.]

PROBLEM 4.1.20 If r is the rank of M, show that M can be factored into a product of an
m X r matrizx L and an r x n matriz R such that

M =LR,
where L and R are each of rank r. Show that the generalized inverse M may be written
M =RTRRT) }LTL) LT, (4.54)

Use (4.54) to show that M = (MTM)~'M” when r = n and that MT = MT(MMT)~!
when r = m. [Smith and Franklin, 1969]
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PROBLEM 4.1.21 Any real matriz M can be partitioned into the form

M = <‘é CAB—lB) (4.55)

after some rearrangement of the rows and columns.

1. If A is a nonsingular submatriz of M whose rank 1s equal to that of M, then verify
that

(4.56)

At — (ATPAT  ATPCT
~ \BTPAT BTPCT )’

where P = (AAT + BBT)"'A(ATA + CTC)~L. [Hint: M = <Ck‘1> (A B)/

2. How do we know the inverses in the definition of P exist?
[Penrose, 1955b]

PROBLEM 4.1.22 Rao and Mitra [1971] and Barnett [1990] discuss variations of the gen-
eralized inverse obtained by relaxing the constraints on its definition given in PROBLEM
4.1.16.

1. Give an example of a generalized tnverse X satisfying
MXM =M, (4.57)
but not satisfying at least one of the remaining conditions.
2. Show that all generalized inverses satisfying (4.57) may be expressed in the form
X=Xg4+Y - XMYMX,,

where Xg is a particular matriz satisfying condition (4.57) and Y is an arbitrary
n X m matriz. Ezplain this result using singular value decomposition.

3. Show that, if M is rearranged as in (4.55), then one choice of X in (4.57) is

Al _A1BZ
X‘( 0 z )

where Zi is an arbitrary matriz having the proper dimensions.
PROBLEM 4.1.23 Consider the stochastic inverse
X =C.Cp .

introduced in PROBLEM 3.4.5. If the noise N is negligible so that MS = T but Cy is
still invertible, show that X satisfies the first three of the Moore-Penrose conditions (see
PROBLEM 4.1.16) for the generalized inverse. Show that this matriz is a special case of

X =Z[MZ]™*, (4.58)

where Z is an arbitrary n X m matriz except that MZ must be invertible. What are the
conditions on Z needed to guarantee that the third Moore-Penrose condition is satisfied?
What is the matriz Z if X satisfies all four conditions?
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4.1.4 Relation to least-squares

Now we can solve the least-squares problem using the SVD of M. To see this, we will let
w; = 1 for simplicity. To begin, first recognize that s and t may be expanded in terms of
the left- and right-eigenvectors:

t = ZTiyi + to, (459)
=1
s = ZO’Z'ZZ' + so, (4.60)
i=1
where
zlsg=ylto=0 forall i=1,...,r (4.61)
and
T = yrlt, (4.62)
o; = z.s. (4.63)

In terms of the expansion coefficients and unit weights, we have

T(s) = (Ms — t)T(Ms — t) (4.64)
= tgto + i()\iai - Ti)2. (4.65)
=1

For nonzero eigenvalues, setting
\o; =T (4.66)
minimizes ¥ by eliminating the sum in (4.65). Then,

S = 8o+ Z AZ-_ITZ‘ZZ‘. (4.67)
=1

The vector sg is an arbitrary vector from the right null space of M. We can minimize s”s

by setting s = 0. Thus, we obtain the minimum-norm least-squares model:
T
Sus =Y\ iz, (4.68)
=1
The reader can easily verify that

§1g = M't. (4.69)

It is a general result that the Moore-Penrose pseudoinverse solves the least-squares
problem. We will make use of this fact later when we attempt to construct methods of
solving the inversion problem that are both fast and easy to implement.
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PROBLEMS
PROBLEM 4.1.24 Verify (4.69).

PROBLEM 4.1.25 Define Zg to be a “best approrimate solution” of the matriz equation
MZ =Y f for all Z, either

1. |IMZ-Y]|| > ||MZy - Y||, or
2. |[MZ - Y]|| = [|MZo — Y|| and ||Z|| = ||Zo],

where ||A||> = Tr(ATA). Then, show that Z = MY is the unique best approximate
solution of MZ =Y. [Penrose, 1955b]

PROBLEM 4.1.26 Let Zo = MY and
Z=70+ Y oziy, Y,
1=7r+1

where the a;s are scalars and the z;s and y;s for r+1 < i < n are vectors from the right and
left null spaces of M. Then, which condition in PROBLEM 4.1.25 does Z wviolate? Under
what circumstances is the “best approximate solution” defined tn PROBLEM 4.1.25 really
the best?

PROBLEM 4.1.27 Show that
éLS = RnS,

where Ry, = MM is the model space resolution matriz. [Backus and Gilbert, 1968; 1970;
Jackson, 1972]

PROBLEM 4.1.28 Show that
MéLS = T\’,mt,

where Ry, = MM is the data space resolution matriz. [Wiggins, 1972; Jackson, 1972]

4.2 Scaling Methods

Given M we define two diagonal matrices based on row and column sums of its elements,
l;j. Let L and C be diagonal matrices such that

n

Li =Y lij, i=1,...m, (4.70)
=1

<
Il

Li, j=1,...,n. (4.71)

s

-
Il
—

Cjj = D Lijs
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L;; is the length of the ¢th ray path, obtained by summing the lengths of its intersection
with all cells. Cj;, on the other hand, is the total length of ray segments intersecting the
jth cell. Cj; (or its minor variations) is known variously as the illumination, hit parameter,
or coverage of cell j.

Let v be the n-vector whose components are each 1:

1
v=|.]. (4.72)

Similarly, let u be the analogous m-vector. Then Mv is the m-vector containing the ray
lengths. We can also infer that Lu is the same vector. Analogously, M” u and Cv are both
the n-vector containing the cell coverages. That is,

Mv = Lu, (4.73)
MTu = Cv. (4.74)
This implies that A =1, y = u, z = v is a solution to the eigenvalue problem
Mz = ALy, (4.75)
MTy = \Cz. (4.76)

This problem is a generalization of our earlier eigenvalue problem (4.5)—(4.6) in that it
incorporates positive definite weighting matrices L and C. In place of the orthonormality
conditions (4.12), we require the conjugacy conditions

y;rLy] = Z?CZ]' = 52] (477)

With these conditions, the generalized eigenvalue problem can be converted to the standard
form of (4.5)—(4.6) using the (preconditioning) transformations

M =L '2MC /2, (4.78)
y' =LY%y, (4.79)
7 = C'/?g, (4.80)

Whenever L3 and C 3 appear in the formulas, we make the implicit assumption that all
the diagonal elements of both these matrices are nonzero. A zero diagonal component of
L would correspond to a ray path with no length, which is clearly unphysical. However,
a zero diagonal component of C corresponds to a cell with no ray coverage, which clearly
can and does happen in practice. If so, then we assume that this cell is removed from the
inversion problem.?

By construction, the eigenvalues of M and M’ are the same, but for different eigenvalue

problems: (4.75)—(4.76) and

M'z = )y, (4.81)
MTy' = Xz (4.82)

2Some methods for doing so are discussed in Section 6.
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PROPOSITION 4.2.1 The eigenvalues of M lie in the interval [-1,1].

Proof: Recall that the eigenvalues come in pairs: if \,y’,z’ solves the eigenvalue prob-
lem, so does —\,y’, —z'. Then, we may (without loss of generality) restrict the discussion
to eigenvalues satisfying A > 0.

Let A, y, z be any solution to (4.75)—(4.76) with A > 0. Then, in components,

> lijzj = ALy, (4.83)
J
le]yz = AC]']'ZJ'. (484)
7
Let Ymax be the largest absolute component of y, i.e., Ymax = max;|y;|. Similarly, let

Zmax = Max; |z;|. Since l;; > 0, we can infer

Zmax Z llj > )\Lulyz|7 (485)
J

ymaleij > ACyjlzl. (4.86)

Recalling the definitions of C}; and L;; given by (4.70) and (4.71), this implies

Zmax = )‘|y1|? (487)

Ymax Z )‘|Z]|7 (488)
which must hold for all ¢ and j; thus

Zmax = AYmax; (4.89)

Ymax > AZmax- (4.90)

Thus, we have zmax > A22Zmax, which implies A2 < 1 and therefore —1 < X < 1. 1|

PROBLEMS
PROBLEM 4.2.1 Show that the eigenvectors of M having eigenvalue A = 1 are y' = Liu
and z' = Czv. What are the eigenvectors of (M) having unit eigenvalue?
PROBLEM 4.2.2 Using MMM = M and (4.70), demonstrate the general result
MM/Lu = R,,Lu = Lu. (4.91)

Thus, Lu is an etgenvector of the data resolution matriz Ry, having unit eigenvalue.
PROBLEM 4.2.3 Using MMM = M and (4.71), derive the general result that

vIicM'M = vTCR, = vTC. (4.92)

Thus, vI'C is an eigenvector of the model resolution matriz R, having unit eigenvalue.
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PROBLEM 4.2.4 Three ezamples of data resolution matrices are presented in (4.46), (4.48),
and (4.50). Check to see if they agree with (4.91).

PROBLEM 4.2.5 Three examples of model resolution matrices are presented in (4.45), (4.47),
and (4.49). Check to see if they agree with (4.92).

PROBLEM 4.2.6 Use the definition of the pseudoinverse in PROBLEM 4.1.16 to show that,
if
M =L :MC :,
then
X =C :(M)IL 2, (4.93)

where X is an approzimate generalized inverse satisfying the first two conditions (MXM =

M and XMX = X ). Use (4.93) to show that the SVDs of M and X have the form

_ Luv?C
" uTLu

and

VllT

X=——+...
uTLu+ ’

(4.94)

where the terms not shown are for eigenvectors of M' with eigenvalues A < 1. Treat (4.94)
as an approzimate inverse, and compare the resulting estimate of s to (3.42). What can be
said about the accuracy of this approrimate inverse?

PROBLEM 4.2.7 Use (4.93) and (4.94) to show that
u/MX = u”, (4.95)

for a ray-path matriz M. Thus, u is a left eigenvector of the approximate data resolution
matriz MX, having unit eigenvalue. What restrictions (if any) are there on the validity of

(4.95)?
PROBLEM 4.2.8 Use (4.93) and (4.94) to show that
XMy =v, (4.96)

for a ray-path matriz M. Thus, v is a right eigenvector of the approrimate model resolution
matrizc XM, having unit eigenvalue. What restrictions (if any) are there on the validity of

(4.96)?
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4.3 Weighted Least-Squares, Regularization, and Effective
Resolution

In weighted least-squares, a good choice of weighting matrix is L™!, that is, the inverse of
the ray length matrix. In Section 3.5, we discussed the physical arguments for using such
a weight matrix. Here we will show that mathematical arguments based on stability and
regularization lead to the same choice of weight matrix.

4.3.1 General weights and objective functionals

There is an inherent arbitrariness to the choice of weight matrix in a least-squares minimiza-
tion. Let F and G be two positive, diagonal weight matrices, m X m and n X n respectively.
Then define the scaled inversion problem so that

! __ —1 _1 1 _ 1 1 _ _1
M =F :MG 2, s =G?s, t' =F it. (4.97)

The (unweighted) damped least-squares minimization problem associated with (4.97) is to
minimize the functional

() = (¢ — MS)T(t' = M's)) + (s’ — )7 (s' — s}, (4.98)
with respect to s'. The normal equations resulting from (4.98) are
(MM + pI)(s' — sf) = M'T(t' — M's}). (4.99)

The result for the untransformed s is exactly the same whether we use the functional (4.98)
or the weighted least-squares functional

U(s) = (t — Ms)TF7L(t — Ms) + u(s — sg)TG(s — sg). (4.100)
In either case, the result is
s=s0+ (M F'M + uG)'"MTF~1(t — Msy). (4.101)

In truth, every least-squares method is a special case of the general weighted least-squares
method — the more common ones just have unit weights everywhere.

The minimum of (4.100) is achieved by the slowness model given in (4.101) as long as
the matrix MTF~!M + G is invertible. Thus, some relaxation of the conditions placed
on the weight matrix G is possible. One common choice is to make the regularization
term correspond to minimizing the gradient or curvature of the model. Then, the matrix
G = KTK, where Ks is either the gradient of the model or its Laplacian. Such a weight
matrix is neither diagonal nor positive. In fact, a constant model vector lies in the null
space of such a G. The combined matrix MTF~IM + 4G may still be invertible however,
since the null spaces of the two terms are generally orthogonal.

PROBLEMS

PROBLEM 4.3.1 Find explicit expressions for the matriz K such that
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1. Ks is the gradient of the slowness model;

2. Ks s the Laplacian of the slowness model.

PROBLEM 4.3.2 Suppose the desired weight matrices F and/or G are nonnegative diagonal,
(i.e., have some zeroes along the diagonal). Generalize (4.97), replacing these definitions

by
M = (F'):M(Gh)z, &' =Gzs, t = (F)zt,

where F1 and GT are the pseudoinverses of F and G respectively. If F = L and G = C
with some of the cell coverages vanishing, compare the approach using generalized inverses
to the usual method of deleting uncovered cells from the inversion problem.

PROBLEM 4.3.3 Suppose that the damping parameter p = 0 and the diagonal elements of
F are given by

Fii = |(Ms); — ;] 77

where the term in the exponent p > 1 (p = 2 for least-squares). Show that the resulting
special case of (4.101) is the slowness minimizing

Uy(s) = ) [(Ms); — ;] P
=1

Assuming that some of the traveltime residuals vanish and p = 1, use the result of PROB-
LEM 4.3.2 to provide an appropriate generalization of (4.101). This method is known as
iteratively reweighted least-squares. [Claerbout and Muir, 1973; Claerbout, 1976; Scales,
Gersztenkorn, and Treitel, 1988]

4.3.2 Regularization

There are physical reasons for choosing particular weighting schemes and some of these
reasons have been discussed in Section 3.5. A sound mathematical reason for choosing
a particular scheme [Burkhard, 1980] might be either “convergence” or “regularization.”
It may be difficult or impossible to compute the result (4.101) unless appropriate weight
matrices are used, since MY F~'M may be poorly conditioned or noninvertible. We will
see in our discussion of simple iteration (Section 4.4.3) that this method converges if the
eigenvalues of the matrix M (or equivalently M’ here) lie in the range -2 < )\ < V2. So
how can we choose the weight matrices to guarantee that the eigenvalues fall in the desired
range?
For the sake of argument, suppose that

Ms = AFr, (4.102)
M7Tr = \Gs. (4.103)
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Then, in terms of components, we have

> lijsj = AFyry, (4.104)
i

Z lijr; = AGjjs;. (4.105)

Letting spmax be the magnitude of the largest component of s and 7,,x the magnitude of
the largest component of r, we have

SmaxLii > AFy|rsl, (4.106)
rmaxcjj Z )\G]'j|8j|. (4107)

It follows that

Fyi FiiGi;
Smax Z )‘4rmax > )‘QM

max- 4.108
L;; — LyCjj ° ( )

So, in general, we can guarantee that the eigenvalues A will be bounded above by unity
by requiring that

| > LidCis

Z TGy’ for all 1,7. (4.109)

Many choices of F and G are permitted by (4.109), but perhaps the simplest choice is

F=L and G=C. (4.110)

Thus, although the choice (4.110) is certainly not unique, it is nevertheless a good choice
for the weight matrices in weighted least-squares, and guarantees that A% < 1 as desired.

In Section 7.2, we find that another choice of weight matrices has the same constrain-
ing properties on the eigenvalues, yet has more useful properties in nonlinear tomography
algorithms.

4.3.3 Effective resolution

Another way of understanding the significance of formulas such as (4.101) is to reconsider
the fundamental relation

Ms=t (4.111)
and its rearrangement
MAs =t — Msy, (4.112)
where As =s — sg. Now, view the matrix

X=MTF M+ xG)"'"MTF! (4.113)
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as an approximate generalized inverse of M. Multiplying (4.112) on the left by X, we have
XMAs = (MTF™'M + pG) " 'MTF1(t — Ms). (4.114)

If XM =1 were true, then (4.114) and (4.101) would be identical; however, for any p > 0,
XM =1I-pu(MTF M+ 14G)71G #1 (4.115)

Thus, the product XM is analogous to the resolution matrix R, = MfM. We will call the
product XM the n x n effective resolution matrix

XM =¢&,, (4.116)
and similarly define the product

MX = &, (4.117)

as the m x m effective resolution matrix.

The generalized inverse M gives optimal performance in the sense that no other choice
of inverse can produce resolution matrices closer to the identity matrix than R, and R,,.
To see how well the approximate inverse X does in this regard, we can compare the effective
resolution matrices with the optimal ones. For simplicity, consider the case F = G = L.

Then, the SVD of &, shows that

T A2
& = (MM + uI) 'M™M = Y (AQ. i#) z;27 . (4.118)
j=1 \"

Then, it is easy to see that the effective resolution matrix is closely related to the resolution
matrix R, by

: M T
En =R, — E 3 Z;Z; . (4.119)
e A+ p

If the damping parameter is sufficiently small but still positive (u — 0T), we expect &, —
Ry- Similarly, the effective resolution matrix &, satisfies

& =MMIM + 1) " MT =R, - S —Fy.yT. 4.120
( + pI) ;Ag+#yyz (4.120)

and &,, — R, as u — 0. We see then that the effective resolution matrices are suboptimal,
but approach optimal in the limit that 2 — 07. This calculation shows that the approximate
inverse X is biased, but not very strongly biased if very small values of p are used.

PROBLEM

PROBLEM 4.3.4 Use (4.119) and (4.120) to show that Tr(E,) = Tr(Em) < rank(M) if
w>0.
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4.4 Sequential and Iterative Methods

First consider the case where »r = n. The least-squares solution is then given by
sps = (MTM)~tmTt. (4.121)

We begin by summarizing the main ideas behind two matrix inversion methods that work if
MTM is invertible. Then, we discuss other methods applicable to more realistic problems
in tomography.

Our main focus in this discussion will be to elucidate the general principles behind these
methods and to show how they relate to the Moore-Penrose pseudoinverse. A later section
will be devoted to evaluating iterative methods and making some jugdments about which
algorithms are best for tomography and inversion problems.

4.4.1 Series expansion method

Again letting A = M”M, observe that A is square and suppose it to be of full rank. In
terms of the SVD of M,

A=) Nzz]. (4.122)
=1

Let p; = )\12. Then, since A satisfies its own characteristic polynomial, we have the
following matrix identity:

(A — piI)(A = o) ... (A — p,I) = 0. (4.123)

The left-hand side of this equation is simply an nth order matrix polynomial in A, which
can be rewritten as

A" — (p1+ - 4 p) A o (= 1)1 ppI = 0. (4.124)
Multiplying through formally by A~!
A — (o1 4+ o)A R (1)1 - pp AT =0, (4.125)
or
Al= % [A"*l —(p14+ -+ pu) A" 24T (4.126)

This gives a series expansion for A~1 in powers of A itself. Based on this series, A~ 1Mt
may be computed recursively if the eigenvalues of A are known, or at least if the symmetric
functions of the eigenvalues that appear in the formulas are known.

This approach clearly fails if A is not of full rank, since the multiplication leading to
(4.125) cannot be performed. The final division by the product of the eigenvalues in (4.126)
also cannot be performed.

PROBLEM

PROBLEM 4.4.1 A real symmetric matric B has a single vector w in its null space. Use
(4.126) to find an expression for the pseudoinverse BT,
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4.4.2 Conjugate directions and conjugate gradients

In the method of conjugate directions [Hestenes and Stiefel, 1952], a different expansion of
A~1is used. Let p1, ..., pn be a set of vectors such that

p; Ap; = 6;;p! Ap;. (4.127)

The vectors p; are not necessarily orthogonal with respect to the usual vector dot product,
but by construction they are orthogonal relative to the matrix A. The vectors p; are said
to be conjugate relative to A. Then consider

n T
A= PP (4.128)
o Pl Api
It follows from (4.127) and (4.128) that
A'(Apj) Epz i = Pj (4.129)
and
(p] A)A' = pr&w P, (4.130)

which is also just the transpose of (4.129) since A = AT. Thus, if the p;s span the entire
vector space (t.e., if they are complete), (4.129) and (4.130) show that

A'A=T1=AA" (4.131)
Uniqueness of the inverse then implies that
A1 =A" (4.132)

The completeness relation in terms of the p;s is therefore

" pip’ Ap;pt
I= C = G 4.133
Pl Apz X; p; Ap;’ (4133)

This approach produces a valid and simple formula (4.128) for A~! when A is of full rank,
and furthermore it is guaranteed to converge in a finite number of steps (see PROBLEM
4.4.5). But, when A is rank deficient, it must happen that pZTApi = 0 for some p; and,
therefore, this method also fails in the cases often of most interest in tomography.

Conjugate directions may still be useful for singular As if care is taken to choose only
pis orthogonal to the null space of A. Then, this approach may be used to generate the
generalized inverse of A.

To see an example of how this works, consider the method of conjugate gradients
[Hestenes and Stiefel, 1952; Golub and Van Loan, 1983; Ashby, Manteuffel, and Saylor,
1990] for solving Ms = t in the least-squares sense. The normal equations take the form

MTMs = MTt, (4.134)
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which may be rewritten for these purposes as
As=bD) (4.135)

where A = MTM and b = MTt. Then, starting with the error vector rl!) = b — As(®)
equal to the first direction vector p(1), the conjugate-gradient method uses the iteration
scheme

(k)\T (k)
(k1) _ (k) @)Y g
s W+ AP (4.136)
rD) = p — As(HD), (4.137)
(K)\T A p(k+1)
(k1) _ (k1) _ (P)" Ar (k)
p =r PE)TApH p. (4.138)

The philosophy of this method is to generate a sequence of directions by taking the latest
error vector (4.137) as the primary source and then orthogonalizing (4.138) relative to A
with respect to all previous directions taken (see PROBLEM 4.4.4). Since the error vectors
are all of the form r = M’ x a vector, this iteration sequence cannot generate vectors in the
right null space of M. Thus, in principle, this method can converge to the minimum-norm
least-squares solution.

Nevertheless, finite but small eigenvalues can have a large effect through the influence
of the denominators appearing in (4.136) and (4.138). Small computational errors get
magnified under circumstances of poor conditioning. Regularization of this method can be
achieved by terminating the process when the latest direction vector satisfies (p(*t1)T Ap(F+1) <
€ where the scalar € is some preset threshold, or by adding a small positive constant u to
the diagonal elements of A.

PROBLEMS
PROBLEM 4.4.2 Using definition (4.128), show that
A'AA' =A'. (4.139)

Then, use the positivity of A together with (4.128) to show that (4.139) implies

A'A=1=AA"
Prove the inverse of a matriz is unique and therefore that A’ = A™L.
PROBLEM 4.4.3 Show that, if

s(kt1) = (k) 4 oK) p(k)
is one in a sequence of iterates to solve As =b fors and if
P"TAp®D =0 for i=1,...,k—1,

then a residual reducing choice of the scalar o¥) is

w _ @%b — Ast)]
— (p*)TApH)
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PROBLEM 4.4.4 Show that p*t1) as defined in (4.138) is conjugate to p®) for1 <i < k.
PROBLEM 4.4.5 Define the matrix
. p(p)”
Z (p(z )TAP(Z

Show that A} AA) = A). Then, show that the iterates obtained in the conjugate-gradient
method (4.136)-(4.138) satisfy
s+ = Alb 4+ (T — ALA) s, (4.140)

Use this expression to show that the iteration converges to the solution in n steps if A s
an n X n positive matriz. What conditions (if any) are required on the eigenvalues of A for
this scheme to converge?

PROBLEM 4.4.6 Consider the set of vectors
x,Ax, A’x, ..., A"x,

where X 1s not an eigenvector of A but has components along all eigenvectors with nonzero
eigenvalues (i.e., xTz; # 0 for 1 < i < r). Then, use Gram-Schmidt orthogonalization to
produce the new set of vectors

k() (x()T
(k+1) _ |7 _ x(xV)) k-1
x [I > x)TxD A" x, (4.141)
where x1) = x, x(?) = Ax — x(xTAx/xTx), .... How many orthogonal vectors can be

produced using this technique? If an arbitrary vector X is chosen, analyze the behavior of
this procedure in terms of the ergenvectors of A.

PROBLEM 4.4.7 What changes must be made in the conjugate-gradient method in order to
solve a weighted least-squares problem?

PROBLEM 4.4.8 Use the defining relations of conjugate gradients (4.136)-(4.188) to show
that

(p)T Ap(k) = (p)T Ap(k) = (r®)T Ap(H) (4.142)
and
(DT Ap(kt1) (k-+1N\T (k+1)
T Ag® = s (4.143)

(p(k))TAp(k) - (r(k))Tr(k) )
[Hestenes and Stiefel, 1952]

PROBLEM 4.4.9 Use the results of PROBLEM 4.4.8 to show that the following algorithm is
a conjugate-gradients algorithm for the traveltime inversion problem:
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s =0; pO =r0 =MT¢;
for k=0,1,2,...

{
. (x()Tp(F) .
Ok = R TMTMp
S(k+1) = S(k) + akp(k);

p(+1) = p(8) — o, MTMp(®);

if |e* 1| is below threshold then quit;

_ (eHD))T (kA1)
Br = ENTIOEIONEE

[Hestenes and Stiefel, 1952; van der Sluis and van der Vorst, 1987]

PROBLEM 4.4.10 Use the result of PROBLEM 4.4.8 to show that the following algorithm is
also a conjugate-gradients algorithm:

S(O) = O, t(O) = t, p(o) = r(o) = MTt,

for k=0,1,2,...
{
q®) = Mp®:
_ (r(k))Tr(k) .
= (a@)Tqm

S(k+1) = s(k) =+ akp(k),
£+ — () g (B).
r(k+1) — MT(k+1),

if e D] is below threshold then quit;

(e T (k1)
/Bk GO TONN

p(k+1) = r(k+1) -+ ﬂkp(k),
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Note that this variation on conjugate gradients does not require the formation of the (gen-
erally) dense matriz MTM. [Bjérck and Elfving, 1979; Paige and Saunders, 1982; van der
Sluis and van der Vorst, 1987]

4.4.3 Simple iteration

In simple iteration,? we start with an initial model s(°) and iteratively generate a sequence
sk k=1,2, ... using

st+1) — g(B) L M7 (t — Ms(*)). (4.144)
In terms of eigenvector expansion coeflicients, the iteration sequence becomes
o = 6B 43 = Ao, (4.145)
To solve this equation, note that it can be rewritten as
o) = Nim 4+ (1 =29 = Nm 4+ (1= A um+ (1= AoV (4.146)
Rearranging the resulting series, we find
o S [+ (1= 22+ (1 =222 4+ (1= A)*um + (1= A2 10 (4147)
The series multiplying 7; can be summed exactly for any value of \; # 0 as

1= (1= Akt

1+ (1=)2 1=22 4+ ... +(1=2\H*= 4.14
1+ ( i)+ ( )Tt i) T— (=0 (4.148)
from which it follows that
1— (1= )\2)ktL
okl [ ( — i) ]rﬁ (1 — A2)F+15(0), (4.149)

If \; = 0, (4.145) shows that ot — 01(0). If we assume that the eigenvalues, );, are all

between —+/2 and ﬁ, the iteration sequence converges. The condition V2 < ) < V2
(k)

thus implies that o;’ — 7;/\; as k — oco. That is, the iteration converges to a least-squares
model.

We have already seen in Section 4.2 that the stronger condition —1 < A; < 1 can be
guaranteed with an appropriate preconditioning (prescaling) of the matrix M.

Simple iteration is a good method for solving linear tomography problems, and is much
simpler to implement than other methods such as conjugate directions or conjugate gradi-
ents. This method has significant computational advantages when the dimensions of M are
large. The method is also closely related to SIRT (Simultaneous Iterative Reconstruction

Technique) which will be discussed in Section 4.4.5.

PROBLEMS

% Also known as Richardson iteration [Varga, 1962].
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PROBLEM 4.4.11 Repeat the analysis of simple iteration for a damped least-squares objec-
tive functional. Show that

s = (M + M7 (t — Ms@) — (MTM + uI) (s — ) (4.150)
1s a valid iteration scheme. Show that

S+ _ 1— (1 =2 —p)ktt
: M+ p

Ciri+ oty + (1= 22— P10 (4151
What restrictions must be placed on the \;js and p to guarantee convergence of (4.151)?

Find the differences between the asymptotic results for (4.151) and those for the undamped
least-squares method.

PROBLEM 4.4.12 Show that, if the mazimum eigenvalue is \y = /2, then convergence of
simple iteration is improved by considering stk+1) = %(S(k‘{'l) +s®)). [Tvansson, 1983]

4.4.4 Neural network method

Consider a sequence of models s(n) as a function of a continuous index variable n. We
think of 77 as a measure of the iteration computation time, or as a continuous version of the
iteration counter k used in the preceding discussion. The data misfit functional, ¥, applied
to this sequence then is also a function of . We have
dv dsT
— =2—V VU, (4.152)
dn dn
where

V¥ = MT (Ms — t). (4.153)

We would like d¥/dn < 0 so that s(n) converges to a model minimizing ¥ as  — co. It
is easy to verify that a negative derivative is achieved by requiring, for some positive scalar
v >0,

ds T
— = —yM" (Ms — t). (4.154)
dn
Since the differential change in s is proportional to the local gradient of the objective
functional, this choice produces a type of gradient descent method. We thus have a first-
order differential equation for s(n). In terms of the expansion coefficients, o;, this becomes

do;
dn

Using o; = 0 as an initial condition, the solution to (4.155) is given by

oin) =\ [1 - e ). (4.156)
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We see that s(n) does indeed converge to spg = Y7 A; '7:2;, with its exponential conver-
gence rate controlled by v and the magnitudes of the positive eigenvalues \; forz =1,...,r.

This approach may be used with other objective functionals. For example, we may
compare the results of this approach directly with those of simple iteration by considering
the damped least-squares functional

T, = (t — Ms)T(t — Ms) + u(s — sp) T (s — sp), (4.157)
where s is the starting model s(0) = sp. Then, the same analysis shows that a reasonable

equation of motion for s(n) is

d

d—s = —7 [MTM + pl)s - M7t — pisy (4.158)
n

where 7 is again some positive scalar. Now the coeflicients satisfy

dO’Z'
dn

= 7 [Ximi + uoi(0) = O + wai(m)] (4.159)

which yields upon integration

XiTi + poi(0)

oi(n) = 22+ p [1 - 6’7*?"] + oi(0)e A, (4.160)
In the presence of the damping term, the method does not converge to sps. Instead, it
converges exponentially to an approximation with the coefficients o;(c0) being weighted
averages of the initial value 0;(0) and 7;/);. The coefficients of the eigenvectors in the null
space do not change from their initial values.

Further discussion of this approach together with comparisons to other methods may

found in Jeffrey and Rosner [1986a,b] and Lu and Berryman [1990].
PROBLEMS

PROBLEM 4.4.13 Repeat the analysis of the simple iteration and neural network methods
assuming the objective functionals are damped and weighted least-squares. Compare the
asymptotic results.

PROBLEM 4.4.14 Compare the convergence rates of simple iteration and the neural network
method.

4.4.5 ART and SIRT

Probably the two best known methods of solving linear equations for tomographic appli-
cations in general geometries are ART and SIRT. ART is the Algebraic Reconstruction
Technique [Gordon, Bender, and Herman, 1970; Tanabe, 1971; Herman, Lent, and Row-
land, 1973; Natterer, 1986], while SIRT is the Simultaneous Iterative Reconstruction Tech-
nique [Gilbert, 1972; Dines and Lytle, 1979; Ivansson, 1983]. ART is closely related to
Kaczmarz’s iterative projection method of solving linear equations [Kaczmarz, 1937; Gor-
don, 1974; Guenther et al., 1974]. Our discussion will not distinguish between ART and
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Kaczmarz'’s algorithm, although the term ART is often used to refer to any algebraic recon-
struction method including the many variations on Kaczmarz’s algorithm [Gordon, 1974].
The discussion of ART presented here is a simplified version of Tanabe’s analysis of Kacz-
marz’s method. The discussion of SIRT follows Ivansson’s [1983] analysis of the method
developed by Dines and Lytle [1979].

First, we present definitions of two types of projection operators that will be important
for the analysis of ART algorithms. Some of the properties of these operators are presented
in PROBLEM 4.4.15.

DEFINITION 4.4.1 A projection operator P(a;) for a vector a; is

ol
a;a;

-
a; a;

P(a;) =

If a definite set of vectors {a;} is under consideration (so no confusion can arise), we
shorten the notation to P; = P(a;).

DEFINITION 4.4.2 The orthogonal projection operator P, (a;) for a vector a; is
PJ_(a,-) =1- P(al)

If a definite set of vectors {a;} is under consideration, the notation is shortened to Q; =

P, (a;).

Once again, to solve for the slowness model s given a traveltime vector t and a ray-path
matrix M, we choose to solve Ms = t in the least-squares sense (although ART does not
require a square matrix) by solving As = b where A = M”M and b = M7”t. Now write
the matrix A as

AT =(a; ay ... a,), (4.161)

where the a;s are the n column vectors of the transpose of A. Now suppose that we have
an estimate of the slowness vector s ~ § and we want to improve the agreement between
the data and the estimate of the data by adding an optimal correction in the direction of
vector a;. Then, considering the relation

al (54 oa;) = b;, (4.162)

the optimal value of the coefficient «; is

b; —als
o = — (4.163)
a; a;
Next, we can define an iterative sequence — starting from a guess s(®) and making use of

only one row of A at a time — given by

o _ aTgli-1)
NOJENCE VL ek SNy (4.164)

ai a;
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Then it is easy to rearrange (4.164) into the form

b;

T
a; a;

s = stV + a; for 1<i<n. (4.165)

The significance of (4.165) is that any component of s(=1 in the direction a; is removed
by the orthogonal projection operator @); and then the optimal component proportional to
b;/||a;|| in the direction of the unit vector a;/||a;|| is added in its place.

A single iteration of ART is completed when we have cycled once through all the column
vectors of AT. Then, the slowness s(™ is the result and this becomes the starting point
for the next iteration. In fact, (4.165) may be used for further iterations with only the
minor modification that the ¢ subscripts on everything but the slowness estimate should be
replaced by i’ = i mod n, except that i/ = n if i mod n = 0.* Thus, we have

. . b
s =QusV+ —*—a; for 1<i<n, and 1<i, (4.166)
az aj
and the iteration number is k = [¢/n], where the bracket stands for the greatest integer of

the argument.
Now it is straightforward to show that

b
s = QuQn-1- Q180 + = —QnQn_1--- Q22

b bn
+ T2 QnQn—l tet Q3a2 + ...+ —F_—an, (4:167)
as an ala,
which can be written more compactly as
s(™ = Qs!® + Rb (4.168)
by introducing the matrices
Q=0QnQn-1--C1 (4.169)
and
R = (QnQ:\_llz;Qzal QnQv;—g}a'l;Qaaz aggn ) ) (4.170)
It follows easily from (4.168) that
k-1
st = 3" QPRb + QFs?, (4.171)
p=0

“The choice of range 1 < i < n for subscripts made here is typical of Fortran programming conventions.
An inversion code written in C would more naturally use the range 0 < ¢ < n — 1 and thereby avoid the
need for the exception when ¢ mod n = 0.
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where k is the iteration number. Thus, as k — oo, the iterates s(*») — s, the slowness
solving our linear equation if

k—1
: PR — Af
Jim. > QPR=A (4.172)
p=1
and
lim Q*s® =n or 0, (4.173)

k— o0

where n is any vector from the right null space of A. However, it has been found that ART
may not converge in practice if the data are inconsistent and/or if A is singular or nearly
so [Gilbert, 1972; Gordon, 1974; Dines and Lytle, 1979], which brings us to SIRT.

One common version of the SIRT algorithm [Dines and Lytle, 1979; Ivansson, 1983] may
be written in component form as

(k)

g s8N
s =0 4 Z — =r=l l’;s” ) . (4.174)
g=1"2q

where Nj; is the number of rays passing through cell j (sometimes known as the hit param-
eter). In vector notation, this becomes

s+ — g(0) L N—IMTD~1(t — Ms(®), (4.175)

where N is the diagonal matrix whose components are N;; and D is the diagonal matrix
whose components are

= (MMT); Zl (4.176)

Convergence of this algorithm has been proven by Ivansson [1983]. We present a similar

proof.
The analysis is very similar to that presented in Section 4.2 on scaling methods. Define
M’ =D :MN 2, (4.177)
" =Diy, (4.178)
z' = N2z, (4.179)

Then, consider the eigenvalue problem

M"z" = \y", (4.180)

M'"Ty" = \z", (4.181)
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which is equivalent to

Mz = \Dy, (4.182)

MTy = ANz. (4.183)
We see that, if y; and z; are eigenvectors for eigenvalues A; and A;,
yi Mz, = \;y! Dy; = \iz! Nz;, (4.184)
so we are free to normalize the eigenvectors so that

)Ty = (2])72] = 6i5.p (4.185)

2

PROPOSITION 4.4.1 The eigenvalues of M" lie in the interval [-1,1].

Proof: The eigenvalue problem (4.180)—(4.181) can be written in components as

> 1’7] = M\, (4.186)
j=1 (DZZN]])Z

m L.
— =\ 4.187
; (ijDii)%y ! ( :

Now define the sign function as

+1 if li]' > 0,
sgn(lij) = 0 if li]' = 0, (4188)
-1 if [; <0,
and note that
m
Nj; =) sgn(ly), (4.189)
=1

since the path lengths are never negative. Considering (4.186) and using Cauchy’s inequality
for sums, we have

2": Sgn(l”)(Z”)2 (4.190)

J

N (y)? < Z
p:
Using the definition (4.176) of D;; and summing (4.190) over 4, we find

MY W) <Y senll) (%) _ PR (4.191)

m m n II)2 n
i=1 i=1j=1 Njj j=1
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Then, the normalization condition (4.185) shows that (4.191) reduces to
A<, (4.192)

|
Thus, an analysis completely analogous to that given previously for simple iteration (see
Section 4.4.3) shows that an iteration scheme of the form

Nzs*t) = N2s® 4+ M7 [D~2¢t - M"N2s®)] | (4.193)
is guaranteed to converge to a solution of MY Ms = M7t.
PROBLEMS

PROBLEM 4.4.15 Show that
1. P(a)a=a;a’P(a) = a’;
2. P (a)a=0;a’P (a) =0;
3. P%(a) = P(a); PT(a) = P(a);
4. P(—a) = P(a); P(ya) = P(a) for any scalar ~;
5. P(a)P,(a) =0= P, (a)P(a);
6. ifala; =0, then PLPy = Py Pi;
7. if agal # 0, then Py Py # P2 Py unless ag = vay for some scalar ~;
8. Pi(a) = P(a).

PROBLEM 4.4.16 A beam of light will not pass through a pair of polarizing filters if their
azes are crossed at right angles. However, if a third filter is inserted between the first
two with its polarizing axis at 45°, then some of the light can get through. Use projection
operators for the vectors a; = &, ag = (&+9)/v/2, and a3 = § to explain this physical effect.
Design a product of projection operators that will project a vector & onto the direction of
its reflection —&. What s the smallest number of projection operators that can be used to
produce a reflection? [Feynman, Leighton, and Sands, 1963]

PROBLEM 4.4.17 Verify (4.167).
PROBLEM 4.4.18 Rewrite (4.18) and (4.19) in terms of projection operators.
PROBLEM 4.4.19 Rewrite (4.128) in terms of projection operators.

PROBLEM 4.4.20 Rewrite the Gram-Schmit orthogonalization procedure (4.141) in terms
of projection operators.
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PROBLEM 4.4.21 Reconsider the conjugate gradients approach (4.136)—(4.138). Show that
the iteration scheme can be written as

st = [1- QPIb + Qs

and
p*+) = Q) [b— Ast+1)],
where
® (p"F)Tpk) A
AT ()T A
Show that

sH = 1= QPRE™ Qb+ PR Qs
Compare this result to (4.140).

PROBLEM 4.4.22 Suppose that AT = (a1, as,a3,a4). Show that

RA =1- Q4Q3Q201

if
R = 14G3@2ay QaQsa Qsas ay
= ala ala ala ala, /-
1M 2 42 3 43 4
Show that

AT = "[Q4Q3Q2Q1]*R.

k=0
PROBLEM 4.4.23 What changes must be made tn ART and SIRT in order to solve a

weighted least-squares problem? Or, a damped and weighted least-squares problem?

PROBLEM 4.4.24 Show that ART may be applied directly to the system Ms = t when the
m X n ray-path matriz M is not square by deriving the formula

n i1
@) _ 1) tr — Xp=1 li’psz(o :
j

Eq:l li’q

J

for the iteration sequence tn component form.

PROBLEM 4.4.25 Since A = MM in the traveltime inversion problem, the components of
A are given by

Ajjr =Y il
p=1
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and the components of the column vector a; are given by

Yo lpilp

m
2opet lpilp2
a; = B

21:1 lpilzm

Use these facts to write an expression for the ART iteration scheme (4.166) in component
form.

PROBLEM 4.4.26 Do the two forms of ART in Problems 4.4.24 and 4.4.25 converge to the
same slowness value? [Hint: Consider the generalized inverses of M and A = MTM.]

PROBLEM 4.4.27 The form of SIRT presented in (4.175) is just one of many possibilities.
Show that the following alternatives converge and determine their convergence rates:

1. X2s(k+1) = X35(®) 4 X"sMTD~1(t — Ms®) where X = N/ for 0 < y < 2;

—1 —1 —1 R — —
2. DZs(k+l) = D2s® + D 2MIN '(t — Ms®)) where D = diag(MTM) and N;; =
> 7=189n(li;) ts the number of cells traversed by the ith ray;

3. D?sk+D) = D7) 4 n 1D TMT (t — Ms®).
PROBLEM 4.4.28 Jacobi’s method for solving As = b for a square matriz A s
stkt1) — g(k) ﬁ_l(b — As®),

where the diagonal matrix

D = diagA.

If sV =0, compare s to the backprojection estimate (1.16). Show that, in component
form, the iterates of Jacobi’s method are

j—1 n
k+1 1
s = (bj =3 Apst) = 3 Ajps;’“)) (4.195)
77 p=1 p=j5+1
forj=1,...,n. Does this method converge for the traveltime inversion problem? If not, can

it be modified to guarantee convergence? Under what circumstances are SIRT and Jacobi’s
method equivalent?

PROBLEM 4.4.29 The Gauss-Seidel method for solving As = b decomposes the square ma-
triz A into

A=D+L+T,
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where D is the diagonal of A while L and U are the lower and upper triangular pieces of
A. Then, the iteration scheme 1s given by

(D +L)s*D) = b - Ts®,
Show that, in component form, the iterates of the Gauss-Seidel method are
(kt1) 1 j—1 n
+
550 = (b,- =Y At - % Ajps;’“)) (4.196)
33 p=1 p=j+1

for j =1,...,n. Compare and contrast (4.195) and (4.196). Does Gauss-Seidel converge
for the traveltime inversion problem? If not, can it be modified to guarantee convergence?

PROBLEM 4.4.30 To apply the Gauss-Seidel method to Ms = t when M 1is not square,
define the new m-vector q such that s = MTq. Then, the Gauss-Seidel approach may be
applied directly to

MM7Tq=t.

The resulting iteration scheme 1s
(k1) i—1 m
g = ti— D (MMT)pgl D — 3 (MMT)ipqlF) | /(MMT ). (4.197)
p=1 p=i+1

Write (4.197) in terms of components and compare the result to (4.194). Is ART equivalent
to the Gauss-Seidel method?



