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Chapter 3

Least-Squares Methods

We consider solutions to the inversion problem for block models. Given a set of weights
w; >0,71=1, ..., m, we define the functional ¥*:S — R by

T*(s) = Y wi[r}(s) — t:]. (3.1)
=1

U*(s) measures the degree of misfit between the observed data and traveltimes predicted
by the model s. ¥* is the nonlinear least-squares functional since it uses the full travel-
time functional 7* in the error calculation. The linear least-squares functional was defined
previously in (2.20).

3.1 Normal Equations

The standard least-squares problem is a simplified version of (3.1) with all weights equal
to unity and the traveltime functional replaced by its linear approximation Ms for a cell
model. Then, the squared error functional is

U(s) = (t — Ms)”(t — Ms). (3.2)

The minimum of this functional is found by differentiating with respect to the value of the
slowness in each cell. At the minimum, all these derivatives must vanish, so

ov

5 2 [MT(t - Ms)] =0, (3.3)

J

for all j =1,...,n. Thus, (3.3) implies the slowness at the minimum of (3.2) satisfies

Z Z l”lzkék = E l”tl for j = 1, ey N, (34)
1=1k=1 =1
or equivalently that
MTMs = MTt. (3.5)

25



26 CHAPTER 3. LEAST-SQUARES METHODS

There are n equations for the n unknowns s;, since M7TM is an n x n square and symmetric
matrix.

These equations are known as the normal equations for the solution § of the standard
least-squares problem. If the number of data m exceeds the number of cells n in the
discretized model so m > n, we say the discretized inversion problem is overdetermined.! If
the the number of cells n exceeds the number of data m so m < n, we say the discretized
inversion problem is underdetermined. The normal equations may be used in either case,
but the form of the resulting solution is substantially different. We generally assume that
the inversion problem is overdetermined, but there may still be situations where we want to
use only a small part of the available data to make corrections to the slowness model; then
the resulting problem is equivalent to the underdetermined version of the normal equations.
General methods for solving (3.5) will be discussed in Chapter 4.

PROBLEMS

PROBLEM 3.1.1 Use the chain rule to show that the minimum of a least-squares functional
occurs at the same model whether we use slowness or velocity as the variable.

PROBLEM 3.1.2 An ezperimental configuration has m source-receiver pairs and the region
to be reconstructed is modeled using n cells, so the ray-path matric M is m X n. Suppose that
p independent measurements of the traveltimes have been made, resulting in p traveltime

m-vectors t1,...,t,. Then, the inversion problem can be formulated as
M ty
M t2
N
M tp

Show that the normal equations for this problem become
MTMs = M7 (t),

where (t) = %Zgzl ty. Explain the significance of this result.

3.2 Scaled Least-Squares Model

DEFINITION 3.2.1 (SCALED LEAST-SQUARES MODEL) The scaled least-squares model with
respect to a given model sg, and set of weights w;, is the model Sygs,) minimizing ¥* subject
to the constraint that s = sy for v > 0. Thus

W (S15js,)) = min ¥ (750). (3.6)

'Recall that the underlying physical problem is essentially the reconstruction of a continuous function
from finite data, so this continuous reconstruction problem is always grossly underdetermined.
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The scaled least-squares model associated with sg is unique.
To solve for the scaled least-squares model, we expand ¥*(ysg) as

¥*(yso) = sz‘[f* ¥s0) — t]? (3.7)
= Zwl (ys0)% — 2 Z wit; T (yso) + Z w;t?. (3.8)
Using the homogeneity of 7%, we can write

*(vs0) = v Zw, (so) —272wt7 (so) +szt2 (3.9)

This is simply a second-order polynomial in v and achieves its minimum at v = g5,

where
2 witiTi (s0)
7LS[50] = Ez wi'rz'*(s())2 . (310)
Thus
. E wit;7; (so)
S == 3.11
LS[S()} Z w;T *(SO) ( )
THEOREM 3.2.1 For any so, Sig[s,] & Int F*.
Proof: We have from (3.10)
Tisiso] O witi (s0)” = Y witir} (s0), (3.12)
i=1 i=1
or, given the homogeneity of 7,
Zwl (s0)[7; (8Ls[so]) — ti] = 0. (3.13)

Since the w; and values of 7} are positive, this can only be true if either 7/(Syg(s,)) = t
for all 7 (i.e., 81g;s,) € Bdy 7™ and is an exact solution to the inversion problem) or if
7 (SLg[s,)) < ti for at least one 7 (i.e., Sygjs,) & F*). Thus, the scaled least-squares model
cannot be in Int F*. 1

This important result shows that

a scaled least-squares slowness model can never be a strictly interior point of
the global feasible set.

The only way for a scaled least-squares point to be in the feasible set is for it to be on
the boundary and then only if it solves the inversion problem.
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We can write the scaled least-squares model in matrix notation as follows. Let W be
the diagonal matrix formed from the positive weights w;:

w1
w2
W = , . (3.14)

W

Further, let Mg be the ray-path matrix computed from sg. Thus, 7*(sg) = [Mgso);- In
matrix notation, (3.10) becomes

ngth (3.15)
YLS[so] = TTaATYAS - .
LSlsol = STMITWMsg
implying
T
n . SO MO Wt
SLS[se] = SOW- (3.16)
PROBLEM

PROBLEM 3.2.1 If S1g[s,] 15 defined in terms of the linear least-squares functional VP in-
stead of W*, 1s there a result corresponding to Theorem 3.2.1 for this model?

3.3 Nomnlinear Least-Squares Models

DEFINITION 3.3.1 (LEAST-SQUARES MODEL) A least-squares model, with respect to weights
w;, 18 a vector Sps which minimizes U*, i.e.,

¥ (815) = min ¥ (s). (3.17)

The least-squares model may be nonunique. Nonuniqueness is expected when m < n, i.e.,
there are fewer traveltime data than model cells, or when m > n and the ray-path matrix
has a right null space containing ghosts g. The most common method of picking the “best”
least-squares solution [Penrose, 1955b] is to choose the one of minimum Euclidean norm.
This “best” solution has some nice properties as we shall see when we discuss ghosts in
tomography, but it may not represent the “best” solution to the inversion problem.

THEOREM 3.3.1 $rg ¢ Int F*.

Proof: This theorem follows from the fact that sps = Srgi5], i.€., a least-squares
model is the scaled least-squares model with respect to itself (or otherwise there would be
a model yielding smaller ¥*). I

Any nonlinear least-squares solution s infeasible unless it solves the inver-
ston problem, in which case it lies on the boundary of the feasible set.
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The preceding proof is entirely adequate to establish the infeasibility of the least-squares
point. However, it may be enlightening to present a second proof based on stationarity of
the ray paths.

Consider the deviation of the least-squares functional induced by a small change in the
model:

SU* = U*(s+8s) — U (s) = > wi [r] (s +65) — ;]> = > w; [t} (s) —t:]*.  (3.18)
=1 =1
This equation may be rearranged without approximation into the form

§T* =2 Z w; [17 (s + 8s) — 7 (s)] [(7 (s + 6s) + 7, (5)) /2 — ti] - (3.19)
i=1
For small slowness perturbations s, the first bracket in the sum of (3.19) is clearly of
order 6s, while any contributions of order és in the second bracket are therefore of second
order and may be neglected. If dI}[s] is the infinitesimal increment of the (or a) least-time
ray along path ¢ for s, then

(s + 65) — 73 (s) = / (s+ 65) dIZ[s + 6s] — / sdl?[s). (3.20)

Recall that stationarity of the ray paths near the one of least time implies that

/sdz;f[s+ §s] = /s{dlf[s] 4 d6IFY ~ /sdz;*[s], (3.21)

where dél} is the perturbation in the infinitesimal increment dl[s] of the ray path induced
by the fact that di}[s+ 65| is the one for the perturbed model and therefore generally? only
slightly different from that for s. Using (3.21) in (3.20), we find that

(s + 65) — 7 (s) = / §s dlX[s + 65] ~ f §s dI[s] (3.22)

to lowest order in és. Thus, (3.19) becomes

sU* =2 é w; ( / §s dl [s]) [r¥(s) — ti]. (3.23)

Equation (3.23) is the expression needed to construct the functional (Frechét) derivative of
U*. If s produces the minimum of ¥*(s), then the functional derivative should vanish. We
see that the weights w; are positive, the coefficient of és is the integral of the increment of
the ray path itself in the regions of change which is strictly positive, and if the the traveltime
function 7*(s) — t; > 0 as is required for all ¢ in order for the model s to be feasible, then
the derivative cannot vanish and therefore s is not the minimum. This contradiction shows
again that either the minimum of the traveltime function must be infeasible, or it must
solve the inversion problem.

PROBLEM

PROBLEM 3.3.1 Determine whether there is a result analogous to Theorem 3.3.1 for the
linear least-squares functional ¥P.

®There are pathological cases where a small change in the model s can induce a large change in the ray
path, but we will ignore this possibility for the present argument.
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Damped least-squares

Data t Model s
Minimize:
L = |At]2 + p|As]? = i
At As
t; S

Figure 3.1: Schematic illustration of deamped least squares analysis.

3.4 Damped Least-Squares Model

Let C be a diagonal (coverage) matrix formed from the positive weights c;:

C= . . (3.24)
Cn

The ¢;s may be treated here as arbitrary positive weights, but a definite choice of the c;s
will be found later.

DEFINITION 3.4.1 (DAMPED LEAST-SQUARES MODEL) The damped least-squares model with
respect to a given model s, and set of weights w;, c;, is the model Spgs, ) MiniMizing

U*(s) + p(s — s0)TC(s — s0). (3.25)
[Levenberg, 1944]

Like the scaled least-squares model, the damped least-squares model is unique.

We can solve for the damped least-squares model based on a linear approximation to the
traveltime functionals. Given the model sg, let Pio denote the least-time ray paths through
sg. Then, to first order in s — sg we have

P!
T (s) = 1, " (s). (3.26)
This approximation yields

P (s) = (t — Mos) W (t — Mgs), (3.27)

where My is the ray-path matrix obtained from the ray paths Pio.
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Using the first-order approximation, the damped least-squares model becomes
815[s0,4] = S0 + (M{ WM + pC) "MW (t — Mso). (3.28)
This equation can be rearranged to show that
#C(8Ls]s,, — 50) = Mg W (t — MoSLs[s, ,u)- (3.29)
Then, we obtain the following two theorems:

THEOREM 3.4.1 If sg ¢ FP', then the model SLS[so,u defined in (3.28) does not solve the
tnverston problem for any p > 0.

THEOREM 3.4.2 Ifsg ¢ FP' then S1S[so,u] & FP°.

Proof: The proofs are by contradiction.
First, suppose that Sygs, , solves the inversion problem so Msyg(s, ) = t. Then, (3.29)
shows that 81gs, ,) = so (if # > 0) so Mgsg = t. But this result contradicts the assumption

that s ¢ F P’ so SLS[so,u] does not solve the inversion problem if sg is infeasible.

Second, suppose that Spgys, . is feasible (i.e., MoSygjs,,) > t and, using the previous
theorem, we may exclude the possibility that it solves the inversion problem so in fact
Mysslssg, o > t), then it follows from the positivity of all the matrix elements in (3.29)
that éLS[so 4 < so. But, if sg is infeasible so (Mgsg); < t; for some 4, then it also follows
that (MoSyg[sy )i < t; for the same i so 81,gjg, ) is infeasible, which contradicts the original
feasibility supposition on Spgs, 4 1

To paraphrase the results, “we cannot get there from here.” If we start our computation
at any local infeasible point, we cannot get to a solution or to any local feasible point using
the damped least-squares method. These results are very strong because they show the
infeasibility of Spgs, ) holds for any value of the damping parameter p > 0 and also for
any choice of the weight matrix C. In fact, damped least-squares always leads to a biased
estimate:

unless the starting point sy already solves the inversion problem, the damped
least-squares solution never solves the inversion problem for any pu > 0.

Practical application of damped least-squares requires a definite choice of the damping
parameter p. Some methods for choosing its magnitude will be explored in the problems
and also in the section discussing linear inversion algorithms (Section 4). Types of damping
more general than the norm damping considered in (3.24) will also be discussed.

PROBLEMS

PROBLEM 3.4.1 Assume that sg solves the inversion problem except for a scale factor 7,
i.e.,

M-~sy = t.

Show that the damped least-squares solution with sg as the starting model does not solve the
tnverston problem for any p > 0 unless v = 1.
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PROBLEM 3.4.2 Assume the starting point sg is not a stationary point of ¥*(s). Then,
show that the damped least-squares point always gives a function value less than that of the
starting point, i.e., that this point satisfies

U (8L3(se,0)) < ¥*(s0)-

[Hint: Show that ‘I'*(éLs[SO#]) + M(éLS[Sg,p] — SQ)TC(éLs[SO’ﬂ] —sg) < U*(sg).] Thus, the
squares of the residuals will be reduced. [Levenberg, 1944]

PROBLEM 3.4.3 If Sgjs,,0] t5 the standard least-squares solution, show that

(815080, — 50)" C(BL[s0,] — 50) < (81.5[s0,0] — 50)” C(815[s0,0] — S0)-

[Hint: Show that ¥*(Syg(s,0) < Y (S1g[sg,u])-/ Thus, the weighted sums of the squares of
the model corrections is less than that for the standard least-squares problem. [Levenbery,

19441

PrOBLEM 3.4.4 Consider the model correction Asg = s — § as a function of the damping
parameter pu, where

(M™M + uI)Asy = M7 (t — M3) = As,. (3.30)

The angle 6 between the damped least-squares solution Asq and the negative of the least-
squares functional gradient Asgy is determined by

cos = ﬂ.
Tas, [ TAsd]
Show that
1. cosf — 1 as p — oo;
2. cos® — 0 as pp— 0 if MTM is singular.
Use these results to characterize (3.30) as an interpolation formula. [Marquardt, 1963]

PROBLEM 3.4.5 Suppose that traveltime measurements have been repeated K times, result-
ing in the set of data vectors t**) for k =1,...,K. Form the data matriz

T = (t(l) t2 .. ¢(K) )
and the associated solution matrix

S= (s s@ ... g(K)),
Also, introduce the noise matriz N defined by

N=T-MS =AT - MAS,
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where the correction matrices AT and AS are defined similarly by column vectors Ast*) =
sk —5 and At*) = t(¥) — M. The correlation matrices are then defined by

Ces = ASAST,  Cy = ATATT, (Cn, = NNT,

Cy = ASATT, C,, =NATT, (,, =NAST,

etc. Suppose that Cps =~ 0 ~ Cyy, (i.€., these correlation matrices are essentially negligible
compared with the others) so the noise is uncorrelated with the solution. Then, show the
following:

1. Cun = Cin;

2. Cpn = Cyy — MCyq — CisMT + MC, M7,
3. Cis ~ MCss;

4. Cipt = MCyt + Cps.

Show that the best linear unbiased estimate (BLUE) of the solution based on the data set k
18

s = ¢ et (3.31)
and that
1 T T -1
CaCitt = CouMT (MC,MT + )

Contrast this result with the damped least-squares method assuming that the correlation
matriz Cpy is diagonal. The result (3.31) is known as the “stochastic inverse” [Franklin,

1970; Jordan and Franklin, 1971].

3.5 Physical Basis for Weighted Least-Squares

So far we have treated the weights w; as if they are arbitrary positive constants. But are
they arbitrary? If they are not arbitrary, then what physical or mathematical feature of
the inversion problem determines the weights?

Our goal is ultimately to solve (if possible) the nonlinear inversion problem, so we must
keep in mind that the arguments often given for determining the weights in weighted least-
squares schemes in other contexts may not be relevant to our problem. In particular, these
weights are very often chosen on the basis of statistical (uncorrelated) errors in the data.
The assumption behind these choices may be very good indeed in some cases, but generally
not in the nonlinear inversion problem. Our working hypothesis for this analysis is that
the major source of error in nonlinear inversion is not the measurement error, but the error
due to the erroneous choices of ray paths currently in use in the algorithm. The statistical
errors in the data become a significant issue only after we have constructed a reliable set
of ray paths so that the errors due to wrong ray paths are smaller than the errors in the
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traveltime data. In fact, for high contrast reconstructions, it may be the case that the errors
in the traveltime data are only a small fraction of one percent while the errors introduced
by erroneous choices of ray paths are on the order of several percent, or even more in
pathological cases.

We envision a two step process. First, we solve the inversion problem iteratively to find
a good set of ray paths. This step requires the weighting scheme described here. Second,
once we have a reliable set of paths, the weighting scheme can be changed to take proper
account of the statistical errors in the data.

Now we use physical arguments to construct a proper set of weights [Berryman, 1989].
Suppose that the traveltime data in our reconstruction actually come from a model that
is homogeneous, i.e., with constant slowness og. What will be the characteristics of such
data? Clearly, the rays will in fact be straight and the average wave slowness along each
ray will be the same constant

ho_f_ _im

= = =...= = 3.32
w=7=7 (3:32)

where
Li=Y L (3.33)
j=1

Furthermore, it follows that the constant value of slowness is also given by the formula

Y1 ti

. 3.34
?;1 L; ( )

gy —

This problem is an ideal use for the scaled least-squares approach presented earlier. We
know the ray paths are straight, so we know the ray-path matrix M. We also know that
the slowness has the form s = yv, where v’ = (1,...,1) is an n-vector of ones. We want
to minimize the least-squares error

U(yv) = (t — Myv)TW(t — Myv) (3.35)

with respect to the coefficient 4. The minimum of (3.35) occurs for

vIMTW (t — Myv) = 0. (3.36)
Solving for v gives
_ vIMTwt (3.37)
T ITMTWMY ‘

For easier comparison of (3.37) and (3.34), we now introduce some more notation. Define
the m-vector of ones u = (1,...,1). Then,

Mv = Lu (3.38)
and

MTu = Cv, (3.39)
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where L is a diagonal m X m length matriz whose diagonal elements are the row sums of M
given by (3.33) and C is a diagonal n X n matrix whose diagonal elements are the column
sums of M given by

Cjj = lij. (3.40)
i=1
In our later analysis, we will see that the matrix C (which we call the coverage matriz) is

a good choice for the second weight matrix in damped least-squares (3.24).
Now we see that (3.37) can be rewritten in this notation as

_ u'LWt (3.41)
70T WTIWL’ ‘
while (3.34) becomes
ult
= —F. 3.42
00 =TT o (3.42)
Comparing (3.41) to (3.42), we see that these two equations would be identical if
WLu = u. (3.43)

Equation (3.43) states that u is an eigenvector of the matrix WL with eigenvalue unity.
Two choices for the product WL are

WL =1, (3.44)
where I is the identity matrix and
WL =L 'MCc M7, (3.45)

The choice (3.45) is undesirable because it leads to a weight matrix that is not positive
definite which would lead to spurious zeroes of the least-squares functional. The choice
(3.44) leads to

W =L} (3.46)

which is both positive definite and diagonal.

The full significance of the result (3.46) becomes more apparent when we consider that
the traveltime data t = t + At will generally include some experimental error At. If we
assume the data are unbiased and the number of source/receiver pairs is sufficiently large,
then to a good approximation we should have u” At = 0. The result (3.41) can be rewritten
as

alL1¢
aTu

7= ) (3.47)

where a = LWLu may be treated for these purposes as an arbitrary weighting vector. For
7 to be unbiased, we must have

a’L71At = uTAt =0. (3.48)
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Since the Ats are otherwise arbitrary, we must have
u=L"1'a=WLu, (3.49)

which is the same condition as that found in (3.43). Thus, the choice (3.46) produces the
simplest weight matrix giving a linear unbiased estimator of the scale factor for a constant
slowness model. In Section 7.2, we derive weights producing unbiased estimates for arbitrary
slowness.

Weighting inversely with respect to the lengths of the ray paths can be justified on
physical grounds using several different arguments [Frank and Balanis, 1989]. Signal-to-
noise ratio is expected to be better on shorter paths than longer ones, since the overall
attenuation will typically be smaller and the likelihood of missing the true first arrival
therefore smaller. Shorter trial paths are more likely to correspond to real paths that
remain completely in the image plane for two-dimensional reconstruction problems.

A disadvantage of using this weighting scheme is that sometimes the ray path is long
because the source and receiver are far apart (e.g., from the top of one borehole to the
bottom of the other). Yet the information contained in the ray is important because such
diagonal rays may help to determine the horizontal extent of some feature of interest, espe-
cially when the experimental view angles are severely limited as in crosshole tomography.
Weighting inversely with respect to the ray-path length tends to reduce the possibly signifi-
cant improvement in horizontal resolution that can come from inclusion of these rays. This
disadvantage can be circumvented to some extent by using more of these diagonal rays, .e.,
using more closely spaced sources and receivers for the diagonal rays. Then, the weights of
the individual rays are smaller, but their overall influence on the reconstruction can still be
significant.

In Section 4.3, we show that an argument based on stability and regularization leads to
the same choice of weight matrices.

3.6 Partial Corrections Using Backprojection
Suppose we have found a solution § of the overdetermined (m > n) normal equations
MTMs = M7+, (3.50)
but this solution does not satisfy the data exactly so
Ms # t. (3.51)
Then, we argue that a correction As could be added to § and the correction should satisfy
MAs = At =t — MSs. (3.52)

Now suppose further that for some subset of the ray paths either At, = 0, or we are satisfied
for some other reason with the agreement between the predicted and measured data (e.g.,
|At;] < e for some small threshold ¢, or ray path i corresponds to a feasible ray path
with At; < 0). Then, we may want to make corrections using only the ray paths that are
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considered unsatisfactory. We renumber the ray paths so the unsatisfactory ones are the
first m’ of the m total paths and suppose m' < n. Next we rewrite (3.52) as

M'As = At/, (3.53)

where M/ is an m' X n matrix and At’ is the corresponding m’-vector of unsatisfactory
traveltime errors. The problem of solving for the As;s is underdetermined as stated.

We can solve (3.53) using a type of backprojection. We argue that the correction vector
component As; should be a sum whose terms are proportional to /;; (so that rays not passing
through cell j make no contribution) and it should be a linear combination of the traveltime
errors At;. However, these corrections should also be made in a way that minimizes the
overall effect on the agreement already attained in (3.50). One way to do this approximately
is to weight inversely with respect to the cell coverage Cj;; then, the cells with the most
coverage will change the least and therefore the result should have the smallest effect on
(3.50). This argument results in a general form for the correction

ml

AS]' = CJ_Jl Z lk’jwk'kAtka (354)
k'k

where wyj, is some weight matrix to be determined by substituting (3.54) into (3.53). On
making the substitution, we find that

r

SN (15 C5 s ) wenAty = At;, (3.55)

j=1kk'

which implies that

=1

Z (Z Li;Cy; lk’j) Wik = bik, (3.56)

showing that wyy is the inverse of the matrix
[M'ct(wr) ] Z ki Oyt (3.57)

Thus, we have
-1
As=C{(M)T [M'Ci(M)T]| A, (3.58)

It is straightforward to verify that (3.58) is a formal solution by substituting it into (3.53).

To use (3.58) in general requires that the inverse of the m/ x m' matrix M'C~}(M')T
must always exist. This may not always be true, but there is one particularly simple case
where the formula can be evaluated: m’ = 1. Then,

l1;At1/Cj;

As; = =200
T Yho1 B/ Cr

(3.59)
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PROBLEMS

PROBLEM 3.6.1 Let D be an arbitrary n X n positive diagonal matriz. Show that another
set of model corrections can be chosen to be

-1
As =D M) [M’D*l(M')T } At (3.60)
Other than C, what are some physically relevant choices of the weight matriz D ?

PROBLEM 3.6.2 Consider the stochastic inverse (3.31) when the noise correlation is negli-
gible so that Cpy ~ 0. Compare the resulting formula with (3.58) and (3.60).

PROBLEM 3.6.3 Using (3.58), find an explicit expression for As; when slownesses along
only two ray paths need correction, i.e., m' = 2. Show that the required matriz inverse
exists for this problem f

2
(ElljZQj/ij) < (Zl%j/cj]’) (Zl%k/ckk)- (3.61)
Jj=1 j=1 k=1

Use Cauchy’s inequality for sums to show that (3.61) is always satisfied unless li; = vyly;
for all j, where v > 0 is some scalar. Ezxplain the physical significance of the special case
when l1; = 7yla; and suggest a method of solving the problem in this case.

PROBLEM 3.6.4 Using (3.58), find an explicit expression for As; when slownesses along
three ray paths need correction (m' = 3). Determine conditions on the matriz elements
necessary to guarantee that the required matriz inverse exists.



