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Chapter 2

Feasibility Analysis for Traveltime
Inversion

The idea of using feasibility constraints in nonlinear programming problems is well es-
tablished [Fiacco and McCormick, 1990]. However, it has only recently been realized that
physical principles such as Fermat’s principle actually lead to rigorous feasibility constraints
for nonlinear inversion problems [Berryman, 1991]. The main practical difference between
the standard analysis in nonlinear programming and the new analysis in nonlinear inversion
is that, whereas the functions involved in nonlinear programming are often continuous, dif-
ferentiable, and relatively easy to compute explicitly, the functionals in nonlinear inversion
(e.g., the traveltime functional) need not be continuous or differentiable and, furthermore,
are very often comparatively difficult to compute. Feasibility constraints for inversion prob-
lems are implicit, rather than explicit.

We present the rigorous analysis here in a general setting, because it is actually quite
easy to understand once we have introduced the concepts of convex function and convex
set. This analysis is important because it will help to characterize the solution set for the
inversion problem, and it will help to clarify questions about local and global minima of the
inverson problem.

2.1 Feasibility Constraints Defined

Equation (1.5) assumes that P; is a Fermat (least-time) path and leads to the equalities
summarized in the vector-matrix equation Ms = t. Now let us suppose instead that F; is
a trial ray path which may or may not be the least-time path. Fermat’s principle allows us
to write

/P s(0dP > 1, 2.1)

where now t¢; is the measured traveltime for source-receiver pair :. When we discretize (2.1)
for cell or block models and all ray paths 7, the resulting set of m inequalities may be written
as

Ms > t. (2.2)
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Figure 2.1: Feasible part of the model space is determined implicitly by the feasible part of
the data space.

Equations (2.1) and (2.2) can be interpreted as a set of inequality constraints on the
slowness model s. When s obeys these m constraints, we say that s is feasible. When any
of the constraints is violated, we say s is infeasible. The set of inequalities collectively will
be called the feasibility constraints.

The concept of the feasibility constraint is quite straightforward in nonlinear program-
ming problems [Fiacco and McCormick, 1990] whenever the constraints may be explicitly
stated for the solution vector. However, in our inversion problems, an additional com-
putation is required. Figure 2.1 shows that the feasibility constraints are explicit for the
traveltime data vector, but they are only implicit (i.e., they must be computed) for the
slowness vector. This added degree of complication is unavoidable in the inversion prob-
lem, but nevertheless it is also very easily handled computationally with only very minor
modifications of the usual nonlinear inversion algorithms.

2.2 Quick Review of Convexity

Here we define some mathematical concepts [Hardy, Littlewood, and Pélya, 1934] which
will facilitate the discussion and analysis of feasible models. In the following, let S denote
a linear vector space.

DEFINITION 2.2.1 (CONVEX SET) A set A C S is convez if, for every s1,s2 € A and every
number A € [0,1], we have As; + (1 — \)sy € A.1

Examples of convex sets are

! A C S means A is a subset of S.
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convex sets nonconvex sets

Figure 2.2: Examples of convex and nonconvex sets.

1. R (the real numbers).
2. R (the positive real numbers).

3. The positive n-tant R ; i.e., the set of n-dimensional vectors whose components are
all positive.

4. Cy(R3) (the set of positive, continuous functions, s(x) > 0, where x € R3).
5. A closed interval [a,b] in R.2

6. A hyperplane in R"; i.e., vectors s obeying c’s = 4 where c is a vector and v is a
scalar.3

7. The interior of a circular disk in 2-space; t.e., points (z,y) obeying
(2 —a)?+ (y—b)? < &

for real a, b and c.

?[a,b] means the set of numbers z such that a < z < b.
3T used in a superscript means to take the transpose of a vector or a matrix.
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We note that R" (example 3) defines the set of n-dimensional block slowness models such
that the slowness of each cell is a positive number. Cy(R3) (example 4) is the space of
positive, continuous 3-D slowness distributions.

PROPOSITION 2.2.1 If Ay and As are convex sets, then Ay N As is a convez set.t

Proof: If A1 N As is empty, it is convex by default (one cannot find s1, s3 and A which
disobey the definition).

Assume the intersection is not empty and let s = As; + (1 — A)sy for some 0 < XA <1
and s1,s9 € A1 N As. Since A; and As are each convex, we must have s € A; and s € As.
Consequently, s € A; N As. 1

DEFINITION 2.2.2 (CONE) A set A C S is a cone if, for every s € A and every number
v > 0, we have vs € A.

Examples 1-4 of convex sets given above are also examples of cones. We infer that the
set of positive slowness models (block or continuous) is convex and conical (a convez cone).

DEFINITION 2.2.3 (LINEAR FUNCTIONAL) The functional f:S — R is linear if, for all
s1,82 € S and real numbers A1, A2, we have®

F(A181 + Aasa) = A1 f(s1) + Aaf(s2). (2.3)

Considering A; = A2 = 0, note that a linear functional necessarily vanishes at the origin.
We will also need to consider the broader class of functionals that are linear except for a
shift at the origin.

DEFINITION 2.2.4 (SHIFTED LINEAR FUNCTIONAL) The functional f:S — R s shifted lin-
ear if the functional

g9(s) = f(s) = f(0) (2.4)

1s linear.

DEFINITION 2.2.5 (CONVEX FUNCTIONAL) Let A be a convez setinS. A functional f: A —
R is convez if, for every s1,s2 € A and number X € [0,1], we have

FOs1+ (1= Ns2) < Af(s1) + (1= ) f(s2). (2.5)
DEFINITION 2.2.6 (CONCAVE FUNCTIONAL) A functional f is concave if (—f) is convez.

DEFINITION 2.2.7 (HOMOGENEOUS FUNCTIONAL) Let A be a cone in S. A functional
f: A— R s homogeneous if, for everys € A and v > 0, we have

f(ys) =f(s). (2.6)

*A; N A; denotes the intersection of sets A; and Ay (i.e., the set of elements common to both sets).
®f:S — R means: the function f which maps each element of the set S to an element of the set R.
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Figure 2.3: Examples of convex, concave, and nonconvex functionals.

It should be clear that every linear functional is also convex, concave, and homogeneous.

PROBLEMS

PROBLEM 2.2.1 Is the union of two convex sets convex? Give an example.

PROBLEM 2.2.2 Decide whether the following sets are convex:

1.

2.

>

© > xRS =

10.

the intertor of a cube;
the interior of a tetrahedron;
the interior of a rectangular prism;

any compact region tn n-dimenstonal vector space, all of whose boundaries are hyper-
planes;

the interior of an ellipsoid;

the interior of an n-dimensional sphere;

the interior of two partially overlapping spheres;
the interior of a boomerang;

the cheesy part of a swiss cheese;

the interior of any object having a rough surface.
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PROBLEM 2.2.3 If ¢ s an arbitrary n-vector, which of the following functionals is linear
ms?

1. cTs;
2. ssTc;
3. (s—c)f(s—c).
PROBLEM 2.2.4 Show that a linear functional 1s convez, concave, and homogeneous.

PROBLEM 2.2.5 Is a shifted linear functional convez, concave, and/or homogeneous?

PROBLEM 2.2.6 Are all cones convex? If not, give an example of a nonconvex cone.

2.3 Properties of Traveltime Functionals

PROPOSITION 2.3.1 7% is a linear functional.

The proof of this stems from the fact that integration is a linear functional of the
integrand. Since it is linear, it follows that 7 is also convex, concave, and homogeneous.

PROPOSITION 2.3.2 7* is a homogeneous functional.

Proof: Given v > 0 we have

T*(78) = m}i)nTP('ys). (2.7)
Using the linearity of 77,
T*(vs) = ngn'y'rp(s) = 'ymgn P(s) = yr*(s). 1 (2.8)
PROPOSITION 2.3.3 7% s a concave functional.

Proof: Given slowness models s; and sp and A € [0,1], let s = As; + (1 — A)sa. Letting
P*(s) be the Fermat ray path for s, we have

m*(s) = 178 (s). (2.9)
The linearity of 7¥ then implies
7*(s) = AP (s) + (1 — ) 7P ) (sy). (2.10)

Since 7* minimizes 7F for any fixed model, it must be the case that 7" (5)(s;) > 7%(s;) and
similarly for sp. Further, A and (1 — )) are non-negative. Therefore, (2.10) implies

7*(8) > M (s1) + (1= N)7*(s2). W (2.11)
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2.4 Feasibility Sets

Given the set of observed traveltimes, ¢; for 2 = 1, ..., m, we define two sets of models:

DEFINITION 2.4.1 (LOCAL FEASIBILITY SET) The local feasibility set with respect to a set
of trial ray paths P = {Py,..., Py} and observed traveltimes ti, ..., ty, is

FP={s|tF(s)>t; forall i=1,...,m}. (2.12)

DEFINITION 2.4.2 (GLOBAL FEASIBILITY SET) The global feasibility set with respect to the
observed traveltimes ty, ..., t, is

Fr*={s| 7/ (s) >t; forall i=1,...,m}. (2.13)
Now we show that the concavity of TiP and 7 implies the convexity of FP and F*.
THEOREM 2.4.1 FP is a convez set.

Proof: Suppose s1,s3 € F7 and let sy = As; + (1 — \)sy where 0 < A < 1. Since, for

each i, 7¥ is a concave (actually linear) functional, we have

P (sy) > AMF (s1) + (1 = A)7f (s2). (2.14)

(Although equality applies in the present case, the “greater than or equal to” is important
in the next proof.) But 7¥(s1), 7 (s2) > t; and X and (1 — )\) are non-negative. Therefore,

mP(sy) > M+ (1= \Nt; = t;. (2.15)
Thus, sy, € F7. 1
THEOREM 2.4.2 F* is a conver set.

The proof proceeds in analogy with the previous proof, with 7} replacing 77, but the
inequalities come into play this time.

The next theorem follows easily from an analysis of Figure 2.1.

THEOREM 2.4.3 Given any model s, there exists a finite scalalr v* > 0 such that vs € F*
for all v > ~*.

Proof: Let
123
* = ) 2.16
7 ke{rnl,?f.),(m} T (s) (2.16)
For any ¢, 7;* is homogeneous, implying
T (v*s) = v*1(s) = 7, (s) mIfLX% > (S)TZ*—(ZS) =t;. (2.17)
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Figure 2.4: The defining conditions for the feasible and infeasible parts of the model space
and the boundary separating them.

We see that v*s satisfies all the feasibility constraints, so it is in F*, and so is s for any

>y 1
We can decompose F* into two parts: its boundary and its interior. The boundary of
F*, denoted OF*, comprises feasible models s which satisfy some feasibility constraint with

equality, i.e.,
OF* ={s € F* | 1/(s) = t;, for some i}. (2.18)

Models in the interior of F*, denoted Int F* = F* — OF™*, satisfy all constraints with
inequality:

Int F* = {s € F* | 7](s) > t;, for all i}. (2.19)
These characteristics of the feasible set are illustrated in Figure 2.4.
PROBLEMS

PROBLEM 2.4.1 Prove that F* is convez.
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PROBLEM 2.4.2 Define another type of feasibility set R by

R={s]| ZT{"(S) > th}
=1 =1

Is R convex? What is the relationship between this set and the other ones defined in thus
section? (Larger or smaller set?) [relazed constraints]

PROBLEM 2.4.3 Consider the wvelocity vector space related to the slowness wvector space
through the nonlinear transform v = (1/s1,1/s2,...,1/s,). Suppose there is some reason
to expect that all models solving our inversion problem should lie in a part of the velocity
vector space satisfying the hyperplane constraint given by

V={v|d'v>gl},

where (3 is some positive constant and d is a nonnegative vector. Now, let V' be the set of
slownesses corresponding to

Vi={s|veV}
and define the slowness overlap set
D=V nNF"

Assuming that the set D is not empty, 1s it convex?

2.5 Convex Programming for Inversion

We first define convex programming for first-arrival traveltime inversion. Then we present
some basic theorems about convex programming in this context.

DEFINITION 2.5.1 Let ®(s) be any convex functional of s. Then the convex nonlinear pro-
gramming problem associated with ® is to minimize ®(s) subject to the global feasibility
constraints 7} (s) > t;, fori=1,...,m.

DEFINITION 2.5.2 Let
m
vP (s) = Z w; [TiPi(S) — ti]2 (2.20)
i=1

for some positive weights {w;} and some set of ray paths P = {P1,...,Pn}. Then, the
convez linear programming problem associated with WF is to minimize WP (s) subject to the
local feasibility constraints Tz-Pi (s) > ti, fori=1,...,m.

THEOREM 2.5.1 Every local minimum s* of the convex monlinear programming problem
associated with ®(s) is a global minimum.



24 CHAPTER 2. FEASIBILITY ANALYSIS FOR TRAVELTIME INVERSION

THEOREM 2.5.2 FEvery local minimum s* of the convex linear programming problem asso-
ciated with WP (s) is a global minimum.

Proof: This proof follows one given by Fiacco and McCormick [1990]. Let s* be a local
minimum. Then, by definition, there is a compact set C such that s* is in the interior of

CNF* and

®(s*) = min P(s). 2.21
() = min 2(s) (2.21)
If s is any point in the feasible set 7* and 0 < A < 1 such that s} = As* + (1 — A)s is in
C N F*, then

®(sy) — A®(s¥) S B(s*) — AP(s*)

>
®(s) 2 1— = 1—

= B(sY). (2.22)

The first step of (2.22) follows from the convexity of ® and the second from the fact that s*
is a minimum in C N F*. Convexity of 7* guarantees that the convex combination s} lies
in the feasible set. This completes the proof of the first theorem.

The proof of the second theorem follows that of the first once we have shown that the
function ¥” is convex. Consider a term of U7

[r7i (st + (1 = N)so) — ;> = M (s1) + (1 — M7l (s2) — i)

= A (s1) — t? + (1 = N[ (s2) — ]
M1 = N[ (s1) — 7,7 (s2))?
Arfi(sy) — ti* + (1= N)[rf (s2) — t]*

IN

Then, if S) = As1 + (1 - )\)52,
TP (s)) < AUP(s1) + (1 — N)TP(sy), (2.23)

so U7 is a convex function. 1

Thus, linear inversion is a convex programming problem. These results show further
that, if we could find a convex functional of slowness s pertinent to the nonlinear inversion
problem, then the nonlinear programming problem would be easy (i.e., proofs of convergence
become trivial), because there would be no local minima. However, this analysis does not
guarantee the existence of such a functional, nor do we know how to construct such a
functional even if we suppose one exists. It remains an open question whether an appropriate
convex functional for nonlinear seismic inversion can be found.

I expect this question to remain open for a long time, but nevertheless challenge the
reader to prove me wrong in this prediction.



