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Preface

In general we look for a new law by the following process: First we guess
it. Then we compute the consequences of the guess to see what would be
implied if this law that we guessed is right. Then we compare the result
of the computation to nature, with experiment or experience, compare it
directly with observation, to see if it works. If it disagrees with experiment
it is wrong. In that simple statement is the key to science.

— Richard P. Feynman, The Character of Physical Law

Nonlinear inverse problems are common in science and engineering. In fact the quotation
from Feynman shows clearly that the process of discovering physical laws is itself an inverse
problem.

What is an inverse problem? Subtraction is the inverse of addition. Division is the
inverse of multiplication. Root is the inverse of power. Given the answer (say, the number
4) find the question (242 = ? or 8/2 = ? or /16 = ?). This last example (commonly
seen in the game of Jeopardy) is most important since it is clear that the same answer (i.e.,
the data) could come from many questions (e.g., models and methods of analysis) — and
therefore it is not surprising that a degree of ambiguity (sometimes a very high degree of
ambiguity) is an inherent part of most realistic inverse problems. Physical scientists are
used to thinking about situations that lead to equations with unique solutions. Because of
the traditional training they receive, most scientists are very uncomfortable with mathemat-
ical problems that do not have unique solutions. Yet both quantum mechanics and chaos
theory provide numerous examples of real experiments (e.g., the double slit experiment and
weather) where ambiguities are typically encountered. The subject of inverse problems is
another realm where lack of uniqueness commonly occurs. Methods of dealing with the
ambiguities therefore play a vital — if not quite central — role in our analysis.

How do we solve an inverse problem? In general, we use the prescription described by
Feynman: guess, compute, compare. But one more element is added in the inverse problems
we discuss: feedback. When searching for physical laws, we make a guess, compute the
consequences, and compare with experiment. If the comparisons are unfavorable, then we
have learned that our first guess is bad, but we may not have any constructive procedure for

vii
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generating a better guess. In contrast, when trying to solve problems in nonlinear inversion
and tomography, we often think we know the physical laws (i.e., the general equations
governing the processes), but we may not know the precise values of the parameters in
the equations. In such circumstances, it may be possible to make use of the observed
discrepancies between the measured and computed results to adjust the parameters and,
thereby, obtain improved guesses in a systematic way. This process of feeding the errors
back to help produce a better set of parameters for the starting equation then becomes
the paradigm for nonlinear inversion algorithms. In some cases it may happen that one
feedback step is sufficient; in others many iteration steps may be needed to achieve the
desired agreement between model and data.

James G. Berryman
Danwille, CA
Januvary, 1994
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Chapter 1

Introduction to the Traveltime
Inversion Problem

Our main topic is seismic traveltime inversion in 2- and 3-dimensional heterogeneous media.
A typical problem is to infer the (isotropic) compressional-wave slowness (reciprocal of
velocity) distribution of a medium, given a set of observed first-arrival traveltimes between
sources and receivers of known location within the medium. This problem is common for
crosswell seismic transmission tomography imaging a 2-D region between vertical boreholes
in oil field applications. We also consider the problem of inverting for wave slowness when
the absolute traveltimes are not known, as is normally the case in earthquake seismology.

In this Introduction, we define most of the general terminology we will use throughout
our analysis.

1.1 Wave Slowness Models

When a sound wave or seismic wave is launched into a medium, it takes time for the influence
of the wave to progress from a point close to the source to a more distant point. The time
taken by the wave to travel from one point of interest to the next is called the traveltime.
For a medium that is not undergoing physical or chemical changes during the passage of the
sound, the wave has a definite speed with which it always travels between any two points in
the medium. We call this speed the average wave speed or wave velocity. We can also define
a local wave speed associated with each point in the medium by considering the average
wave speed for two points that are very closely spaced. The local slowness is the inverse of
the local wave speed. It is most convenient to develop inversion and tomography formulas
in terms of wave slowness models, because the pertinent equations are linear in slowness.
We consider three kinds of slowness models. Sometimes we allow the slowness to be a
general function s(x) of the position x. However, we often make one of two more restrictive
assumptions that () the model comprises homogeneous cells (in 2-D), or blocks (in 3-D),
with s; then denoting the slowness value of the jth cell, or blocks. Or (ii) the model is
composed of a grid with values of slowness assigned at the grid points together with some
interpolation scheme (bilinear, trilinear, spline, etc.) to specify the values between grid
points. Of course, as cells/blocks become smaller and smaller (down to infinitesimal), we
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can think of cells/blocks of constant slowness as a special case of continuous models, or of
continuous models as a limiting case of cells/blocks.

When it is not important which type of slowness model is involved, we refer to the
model abstractly as a vector s in a vector space S. For a block model with n blocks
we have § = R, the n-dimensional Euclidean vector space. (R denotes the set of real
numbers.) A continuous slowness model, on the other hand, is an element of a function
space, e.g., S = C(R3), the set of continuous functions of three real variables. No matter
how we parameterize the model, we should always keep in mind that, for real materials, our
models necessarily have far fewer parameters than the actual medium they are intended to
represent. Thus, our models are analogous to cartoon drawings of public figures, trying to
capture the main features with the minimum of detail.

1.2 Fermat’s Principle and Traveltime Functionals

The traveltime of a seismic wave is the integral of slowness along a ray path connecting
the source and receiver. To make this more precise, we will define two functionals® for
traveltime.

Let P denote an arbitrary path connecting a given source and receiver in a slowness
model s. We will refer to P as a trial ray path. We define a functional ¥ which yields the
traveltime along path P. Letting s be the continuous slowness distribution s(x), we have

+P(s) = fP s(x) di”, (1.1)

where dI¥ denotes the infinitesimal distance along the path P.

Fermat’s principle [Fermat, 1891; Goldstein, 1950; Born and Wolf, 1980] states that the
correct ray path between two points is the one of least overall traveltime, i.e., it minimizes?
7P(s) with respect to path P.

Let us define 7* to be the functional that yields the traveltime along the Fermat (least-
time) ray path. Fermat’s principle then states

* : P
m(s) = puin, T (s), (1.2)
where Paths denotes the set of all continuous paths connecting the given source and
receiver.> The particular path that produces the minimum in (1.2) is denoted P*. If
more than one path produces the same minimum traveltime value, then P* denotes any
particular member in this set of minimizing paths.
Substituting (1.1) into (1.2), we have Fermat’s principle of least time:

™) = [p.s(x)diP" = minp [ps(x)dl. (1.3)

1A functional is a function which maps a function space or a vector space to the set of real numbers.

2Fermat’s principle is actually the weaker condition that the traveltime integral is stationary with respect
to variations in the ray path, but for traveltime inversion using measured first arrivals it follows that the
traveltimes must be minima.

3The notation P € Paths means that P is a member of the set Paths.
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Path of least time

S1

82

Path of least distance

Figure 1.1: Snell’s law gives the path of least traveltime from point A to point B. Other
paths shown are: least distance through medium 1, least distance through medium 2, and
least total distance.

The traveltime functional 7*(s) is stationary with respect to small variations in the path

P*(s).

1.3 Snell’s Law

Snell’s law is a consequence of Fermat’s principle [Born and Wolf, 1980]. This result can be
derived using a simple geometric argument based on stationarity of the traveltime functional,
illustrated in Figures 5.1 and 5.2. The well-known result is

sysinf; = sgsinfy, (Snell’s law) (1.4)

where 61 and 62 denote the angles of the ray path from the normal to the boundary that
separates the two regions.

A thorough discussion of the physical significance of Fermat’s principle and its relation
to Snell’s law may be found in The Feynman Lectures [Feynman, Leighton, and Sands,
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1963]. Relations to the principle of least action and Hamilton-Jacobi theory are discussed
by Goldstein [1950], Boorse and Motz [1966], and Born and Wolf [1980]. An interesting and
less technical account is given by Gleick [1993].

The main point to be made here is that Snell’s law is special. There are various assump-
tions that go into the derivation such as: the points A and B are far from the boundary,
the two media on either side of the boundary are homogeneous with constant isotropic
slowness, etc. For general imaging problems, the underlying media may be very complex
and it may not be convenient to apply Snell’s law. A standard ray tracing method may fail
in some circumstances, so it is preferable to consider more robust methods of determining
approximate ray paths and traveltimes. Such methods will be discussed in some detail in

Chapter 5.

1.4 Seismic Inversion and Tomography

Suppose we have a set of observed traveltimes, ¢, ..., t;,, from m source-receiver pairs
in a medium of slowness s(x). Let P; be the Fermat ray path connecting the ith source-
receiver pair. Neglecting observational errors, we can write

/‘q@dfe:“ i=1,...,m. (1.5)
P;

Given a block model of slowness, let I;; be the length of the ¢th ray path through the
jth cell:

ziz/ diFi. 1.6
I Piﬁce]lj ( )

Given a model with n cells, Eq. (1.5) can then be written
n
Elijsj:ti, t=1,...,m. (1.7)
=1

Note that for any given i, the ray-path lengths [;; are zero for most cells j, as a given ray
path will in general intersect only a few of the cells in the model. Figure 1.2 illustrates ray
path segmentation for a 2-D cell model.

We can rewrite (1.7) in matrix notation by defining the column vectors s and t and the
matrix M as follows:

51 1 i hig - lig
59 t2 log lag -+ oy

s= |72, t=|7|, wm=| = T (1.8)
Sn tm lml lmZ et lmn

Equation (1.7) then becomes the basic equation of forward modeling for ray equation anal-
ysis:

Ms = t. (1.9)
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Traveltime for ray path 2

16
t; = Z lz'ij
j=1

s1 $9 s3 S4 o Receiver
li3 lia
S5 S6 ST S8
liz
lie
S9 510 S11 512
li10
Lig
Source /
®
S13 S14 515 S16

Figure 1.2: Schematic illustration of ray paths through a cell slowness model.

Note that equation (1.9) may be viewed as a numerical approximation to equation (1.3), i.e.,
it is just a discretized form of the equation. We will study equation (1.9) at great length.
Equation (1.9) may be used for any set of ray paths, whether those ray paths minimize
(1.3) or not. If the ray paths used to form the matrix M actually are minimizing ray paths,
then we should keep in mind that M is then implicitly a function of s.

The methods developed apply to both two-dimensional and three-dimensional imaging
applications. We use the term inversion for either 2-D or 3-D applications. When discussing
only 2-D applications, we will use the term tomography. The prefix tomo is Greek for slice
and therefore implies a 2-D reconstruction. Similarly, the cells in 2-D are sometimes called
puxels since they are 2-D picture elements, while the cells or blocks in 3-D are sometimes
called vozels since they are 3-D volume elements. Thus, traveltime tomography reconstructs
the slowness values in model pixels (or cells), while traveltime inversion reconstructs the
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values in model voxels (or blocks or cells).

1.5 Backprojection for Bent Rays

The term backprojection will be used to mean a one-step approximate inversion scheme to
solve (1.9) for the slowness vector s.

The physical idea behind backprojection is this: If we have measured a traveltime ¢;
along the ith ray-path and we know the total path length along that path is L; = Z?:l lij,
then the path-average slowness along the ray path is

ti  Jpsdl P
(s); = L= J, AP
The sth ray path passes through the jth cell if ;; > 0 and misses the cell if /;; = 0. An
estimate of the slowness in cell j can be obtained by finding the mean of the path-average

slownesses (s); for all the rays that do traverse the jth cell. This averaging process is
backprojection: accumulating (summing) all the path-averages and then dividing by the

(1.10)

total number of contributions.

We can formalize this procedure by introducing the sign function such that sgn(l;;) =1
if I;; > 0 and sgn(l;;) = 0if [;; = 0. Then, the total number of ray paths passing through
the jth cell is N; = Y sgn(l;;), and the mean slowness is

e t;
sj ~ N; ! ngn(lij)f. (1.11)
=1 t

We call (1.11) the formula for elementary backprojection. Variations on this formula are
explored in the PROBLEMS.

The formula (1.11) provides a fast but inaccurate estimate of the cell slowness, based
on available data. The formula is so simple that it can easily be evaluated by hand or
using a pocket calculator, whereas the more accurate methods of inverting for slowness (see
Chapter 4) are not really practical unless modern computational facilities are available.

There are many possible modifications of the physical arguments for backprojection for-
mulas. Each new choice seemingly leads to a new estimate, showing that the interpretation
of these estimates is ambiguous and these methods should not be used for work requiring
high accuracy reconstruction. For example, suppose that the slowness in cell j is determined
by a weighted sum of the products [;;2;. This approach seems to be an improvement over
the preceding one, since it still accounts for our expectation that the ¢th ray path should
not contribute to the estimate if /;; = 0 but in addition weights a ray path more heavily
when it samples more of the cell. The formula then becomes

§; = Zwilijti, (112)
i=1

where some choice of the weights w; must be made. Substituting (1.12) into (1.9), we find
that

Zlijsj = Z Wk (Z lijlkj) tp >~ ;. (1.13)
j=1 k=1 j=1
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Our initial choice of the form of the weights was too simple to allow a rigorous solution to
be developed this way, but an approximate solution is obtained by choosing

-1
w; = (Z@) . (1.14)
j=1
Defining a diagonal matrix D whose diagonal elements are given by

D; = (MMT);; =) 12, (1.15)
=1

we see that (1.12) and (1.14) lead to the estimate
s~D 'M7t. (1.16)

This result is not so simple as the formula (1.11) for elementary backprojection, but the
implied computations are still manageable without using very sophisticated computers.

Formulas (1.11), (1.16), and numerous variations are all backprojection formulas. As
we attempt to compute accurate inverses, these backprojection formulas will frequently
reappear as the starting point of rigorous iteration schemes.

PROBLEMS

PROBLEM 1.5.1 Define the hit matriz H such that H;; = sgn(l;j) and the diagonal matrices
N such that Nj; = 332 sgn(li;), and L, such that Li; = 3774 lij. Show that (1.11) is
equivalent to

s~ N THTL .

PROBLEM 1.5.2 Elementary backprojection can be applied either to wave slowness as in
(1.11) or to wave velocity. Then,

1 - L;
vj=—~N; 12 sgn(lij) —. (1.17)
i=1

S]' ti

It is a general result that the harmonic mean of a set of numbers {z;} (given by :c;;,m =
NN 271) is always less than or equal to the mean (Tmean = N™'XN 1 25), i.e.,

Tharm < Tmean- (118)

Use this result to determine a general relation between the backprojection formulas (1.11)

and (1.17).
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PROBLEM 1.5.3 Consider an elementary backprojection formula based on weighting the av-
erage ray slowness (s); = t;/L; with respect to the path length l;; — instead of with the cell
hit factor sgn(l;;). Show that an alternative to (1.11) is then given by

s~ CIMTL 1, (1.19)

where C is the diagonal matriz whose diagonal elements are given by Cj; = > 7% l;j. Define
a corresponding estimate for the velocity, then use (1.18) to obtain a relation between these
two estimates. Using (1.19), show that

m m

Z (MS)Z = Z ti,

=1 i=1

demonstrating that this backprojection formula is an unbiased estimator (i.e., average pre-
dicted traveltime agrees with average measured traveltime). What can be said about the bias
of the backprojection formula for velocity?

PROBLEM 1.5.4 Construct a backprojection formula by supposing that the slowness may be
determined in the form

§; X~ zzz:l ’wili]'L—i
and by finding a useful set of weights w;. Compare the resulting formula to (1.16).

1.6 Diffraction Tomography and Full Waveform Inversion

Geophysical diffraction tomography [Devaney, 1983; Harris, 1987; Wu and Toksdz, 1987;
Lo, Duckworth, and Toksoz, 1990] consists of a collection of methods including Born [Born,
1926; Newton, 1966] and Rytov [Rytov, 1937; 1938; Keller, 1969; Born and Wolf, 1980]
inversion that make use of full waveform information in seismic data. An example of real
crosswell transmission data is shown in Figure 1.3. Successful inversion of real data has
also been performed using both microwave and ultrasonic diffraction tomography [Tabbara,
Duchéne, Pichot, Lesslier, Chommeloux, and Joachimowicz, 1988]. Instead of using only the
first arrival traveltimes as the data in the inversion, amplitude and phase in the waveform
following the first arrival are used. It is necessary to use full waveform information whenever
the wavelengths of the probing waves are comparable in size to the anomalies present in the
region to be imaged. The ray approximation is strictly valid only for very high frequencies
or equivalently for wavelengths “small” compared with the size of the anomalies (there will
be a discussion of the eikonal equation in a Chapter 5). The term “small” is subject to
interpretation, but extensive experience with the asymptotic analysis of wave propagation
problems [Bleistein, 1984] has shown that, if the largest wavelength found in bandlimited
data is Amax, then the ray approximation is valid when the anomalies are of size ~ 3Anax
or larger. If this relationship is violated by the tomographic experiment, then diffraction
tomography should play an important role in the reconstruction.
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Figure 1.3: Example of real data for crosswell seismic tomography showing the result of a
single fan beam with a source at 700 feet in one borehole and receivers spaced 10 feet apart

in the other hole. (Courtesy of CONOCO Inc.)
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Diffraction tomography is both more and less ambitious than traveltime tomography. As
it exists today, diffraction tomography is a strictly linear tomography method. A starting
model is required. The usual starting model is a constant, because this method requires
a comparison between predicted wave fields (planewaves for a constant background) and
the measured wave fields. If a nonconstant starting model is used, then “distorted wave”
diffraction tomography may be applied to the differences between the computed complex
wave field and the measured wave field. In either case, it is possible to prove convergence
of diffraction tomography to a solution of the inversion problem if the comparison wave
field differs by a small enough amount from the measured wave field. Thus, diffraction
tomography is one type of linear tomography — although in this case the “rays” may not be
straight, it is still linear in the mathematical sense that the perturbations from the starting
model must be very small in some sense. So diffraction tomography is less ambitious than
traveltime tomography in the sense that it is inherently limited to be linear tomography.*

On the other hand, diffraction tomography is more ambitious than traveltime tomog-
raphy, because it tries to make use of more of the information contained in the measured
seismic waveforms. There are serious problems involved with this process, because ampli-
tude information can be ambiguous. It is well known that wave attenuation, scattering,
three-dimensional geometrical spreading, mode conversion, and reflection/transmission ef-
fects can all mimic each other — producing similar effects in the waveform. Thus, to be
successful, diffraction tomography must achieve the ambitious goal of solving all of these
problems simultaneously for real data. To date, most of the work in diffraction tomography
has been limited to two-dimensional inversions and the most successful applications have
used ultrasound for medical imaging or microwaves for imaging metallic reinforcements in
concrete.

I view diffraction tomography and full waveform inversion as challenging long-term
goals. The wave slowness results obtained from our traveltime tomography analysis may
be used as the required starting model for “distorted wave” diffraction tomography. So the
potential benefits of diffraction tomography provide an additional motivation for improving
traveltime inversion and tomography.

1.7 Linear vs Nonlinear Inversion and Tomography

We now define three problems in the context of Eq. (1.9). Each of these problems will be
studied at some length in this book.

In the forward problem, we are given s; the goal is to determine M and t. This en-
tails computing the ray path between each source and receiver (e.g., using a ray tracing
algorithm) and then computing the traveltime integral along each path.

In lLinear tomography or inversion problems, we are given M and t; the objective is
to determine s. The assumption here is that the ray paths are known a prior:, which is
justified under a linear approximation that ignores the dependence of the ray paths on the
slowness distribution. Typically, the ray paths are assumed to be straight lines connecting

*An iterative method for diffraction tomography has been proposed recently by Ladas and Devaney
[1991]; a nonlinear least-squares approach to full waveform inversion has been proposed by Tarantola and
Valette [1982] and Tarantola [1984]. Such methods are “nonlinear” in the sense used here.
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sources and receivers, adding a second connotation to the term linear. Linear tomography
is commonly practiced in medical imaging and in many geophysical situations as well.

In nonlinear tomography or inversion problems, we are given only t (along with the
source and receiver locations); the goal is to infer s, and (for most of the methods considered)
incidently M. In this problem, the dependence of ray paths on the slowness distribution
strongly influences the design of the inversion algorithm. Nonlinear inversion is required for
problems with significant slowness variations across the region of interest, including many
seismic inversion problems. The ray paths in such media will show large curvature (i.e., be
nonlinear) which cannot be known before the inversion process begins.

Linear tomography and inversion problems can be solved approximately using backpro-
jection techniques (see Section 1.5). Linear inversion problems can also be solved more
accurately using a variety of optimization techniques. In the standard least-squares method
(see Section 3), for example, the normal solution for s is expressed analytically as

§=MTM) M7, (1.20)

assuming the matrix inverse exists. If the inverse does not exist, then (1.20) must be
reqularized. Typically, regularization is accomplished by adding a positive matrix to MTM
and replacing the singular inverse in (1.20) by the inverse of the modified matrix.

For nonlinear inversion, an iterative algorithm is generally needed to find an approximate
solution §;. The basic structure of such an algorithm (see Figure 1.4) is as follows:

1. Set $p to a given initial model (a constant or the previously best-known geological

model).
2. Compute the ray-path matrix M and traveltimes t; for &, and set At =t — ;.
3. If At is sufficiently small, output $; and stop.

4. Find a model correction As as the solution to the linear inversion problem: MAs =

At.

5. Update 8, to the new model obtained by adding the model correction As to the
previous model Sp.

6. Return to Step 2.

This algorithm looks very reasonable and in fact sometimes it actually works! But not
always. For models with low slowness contrasts, the algorithm will converge to a sensible
result. When the method fails, the failure mode is usually a divergence to a highly oscillatory
model. Ad hoc procedures to reduce the possible range of slowness values and to guarantee
a high degree of smoothness in the reconstructed model have commonly been introduced to
deal with this instability. Such smoothness constraints come from external considerations
(like the class of models in which we want the solution to lie), not from the data. But a
really satisfactory method of stabilizing the iteration scheme based on information in the
data itself has been lacking.

Analyzing the algorithm, we see that there are really only two significant calculations
contained in it. Step 2 is just the solution of the forward problem for §p. This step should not
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introduce any instability, since it can be performed essentially as accurately as desired (if
the computing budget is large enough and the computers fast enough). Step 4, on the other
hand, is a linear inversion step imbedded in a nonlinear algorithm. We should be skeptical
of this step. Linear inversion implicitly assumes that the updated model (after adding the
model correction) is not so different from the previous model that the ray-path matrix M
should change significantly from one iteration to the next. If this implicit assumption is
violated, then this step is not justified, and steps 4 and/or 5 in the algorithm must be
modified.

Feasibility analysis supplies a set of rigorous physical constraints on the reconstruction
process. Experience has shown that constraints on smoothness or limits on the maximum
and minimum values of the model are generally not needed if feasibility constraints are
applied.

In the Chapters that follow, these problems will be analyzed in some detail, and several
methods of stabilizing the nonlinear inversion problem will be developed.
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Figure 1.4: ITterative algorithm for traveltime inversion.



