Mathematical Example of the Dispersive Effect Fﬁ

Now we will use our newfound physical understanding
to help us construct a simple mathematical example

showing how the effect arises in our equations.

New coefficients must be added to produce a change
in volume under an applied shear stress, and (because
of reciprocity) others that produce a change in

shear strain under a compressional load (in this

case pore pressure). The matrix must also be locally

anisotropic.
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Mathematical Example (2)
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Mathematical Example (3)

So now we use the standard (Gassmann) trick to
eliminate both the liquid increment ( and the liquid
pressure pr by setting ¢ = 0, solving for ps, which

is then given by

Pf= Im (011 + 022 + 033) — o

and substituting this back into the previous set of

012,

equations.

The result 1s:
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Mathematical Example (4a)
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Mathematical Example (4b)
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Mathematical Example (4c)
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Mathematical Example (5)

The important result we obtain shows that the shear

modulus for the saturated system now contains a term

sat __ Gar
Q o H|Q&ﬁ€w\\v\ ’

depending on the mechanical properties of the liquid

through the coeflicients w and .

Note that the saturated shear modulus is always greater

than the drained modulus for nonvanishing w.



