UCRL-JC-140001 Version date: October 16, 2000

Dispersion in Poroelastic Systems

James G. Berryman
Lawrence Livermore National Laboratory
P. O. Box 808 L-200
Livermore, CA 94551-9900

and

Herbert F. Wang
Department of Geology and Geophysics
University of Wisconsin
1215 West Dayton Street
Madison, WI 53706



ABSTRACT

In a series of laboratory ultrasonic wave propagation experiments on porous glass immersed in
a water bath, Plona showed 20 years ago that many of the predictions of the Biot-Gassmann
theory of wave propagation in poroelastic media could be observed for these materials. Predictions
included the existence of a second (slow) compressional wave, the magnitude of the slow-wave
velocity and attenuation, and the resulting enhanced attenuation of the faster compressional wave
that corresponds to the usual viscoelastic mode in such media. Chin et al., together with many
others by the present time, have shown that the theory explains these data remarkably well.

On the other hand, when the same theory is applied to porous rock, the agreement between
theory and experiment is usually not so satisfactory. Slow waves may not be observed at all in
rocks, and the velocity and attenuation of the measured compressional waves may not agree very
well either quantitatively or even qualitatively in some cases; for example, the dependence of the
attenuation on frequency and the corresponding frequency dispersion of the wave velocity is a
commonly quoted discrepancy between the theory and the experiments.

This paper addresses one key source of the discrepancy between theory and experiment, i.e.,
the fact that Gassmann’s equations for the bulk and shear moduli predict that the shear modulus is
independent of the saturating fluid properties, whereas it is observed that at high enough frequencies
the shear modulus can in fact depend on the fluid content in many porous materials. One clue to
understanding this behavior comes from effective medium theory, which shows in particular that the
shear modulus does in fact depend on the fluid properties in many circumstances. In comparison to
values predicted by effective medium theory, Gassmann’s equations predict different, smaller values
for the bulk and shear moduli of porous media. Sorting through these apparent (but not actual)
disagreements among theory and theory, and theory and experiment will be the main thrust of the
paper.

PACS numbers: 83.50.Fc, 83.50.Vr, 43.20.Jr, 81.05.Rm



Dispersion in Poroelastic Systems

James G. Berryman and Herbert F. Wang

1 Introduction

Velocity dispersion is an inevitable consequence of attenuation in real systems. For example, Aki
and Richards' show how causality (the requirement that the effect must always follow — never pre-
cede — the cause) leads to the Kramers-Kronig relations between the real and imaginary parts of
the wavenumber, or equivalently, the velocity of a wave propagating through a dispersive medium.
The velocity acquires an inherent frequency dependence in such systems, and this frequency de-
pendence is what we mean by “dispersion” in the present context. We will assume the reader is
familiar with this result, and not elaborate here.

The consequences of dispersion are very important in seismology and acoustics, because disper-
sion makes reconciliation of field data with laboratory data much more difficult than it would be if
there were no dispersion. The exploration seismic band is from about 10 — 100 Hz, while earthquake
seismology usually considers frequencies from about 10 Hz down. Well-logging tools usually work
in the high sonic range, from about 1-20 kHz. On the other hand, laboratory experiments are most
often performed in the ultrasonic range from about 100 kHz to 2 MHz. So the gap in frequency
between laboratory and field data can be as high as five or six orders of magnitude, but efforts to
produce laboratory data below the ultrasonic range have been carried through successfully using
resonance bar methods, forced oscillation methods, and some other methods. When they are avail-
able, these types of laboratory data are often the most useful ones to us because we can make direct
comparisons between field and laboratory systems at the same frequencies. But often we do not
have this luxury, so we need to understand both the mechanism (or possibly mechanisms) and the
consequences of dispersion in these earth or porous rock systems in order to aid the interpretation
(and inversion) of field data.

Probably the most common choice of theory used to try to explain poroelastic data is Biot’s
theory.? In a series of laboratory ultrasonic wave propagation experiments on porous glass immersed
in a water bath, Plona® showed 20 years ago that many of the predictions of Biot’s theory of
wave propagation in poroelastic media could be observed for these materials. Predictions included
the existence of a second (slow) compressional wave, the magnitude of the slow-wave velocity
and attenuation, and the resulting enhanced attenuation of the faster compressional wave that
corresponds to the usual viscoelastic mode in such media. Chin et al.,* Johnson et al.,® together
with many others by the present time, have shown that the theory explains these and similar
laboratory data on synthetic materials remarkably well.

On the other hand there are many examples of real earth materials for which Biot’s theory
does not seem to explain the dispersion very well and it would therefore be most useful to clarify
what the physical issues are that limit the use of the theory. Various additions and corrections to
Biot’s theory have been attempted including treating the porous medium as granular,® treating the
elastic medium as nonlinear,” treating the pore space as a double-porosity system® so that high
permeability fractures and low permeability but high storage matrix porosity coexist in the theory,



and considering the effects of both partial and patchy saturation.? Each of these approaches has
something important to say about dispersion in poroelasticity systems. But it nevertheless remains
difficult to explain some of the data.

The main purpose of this paper is therefore to clarify another of the outstanding questions
about dispersion in poroelastic systems, such as those described by Biot’s theory.? The work to
be summarized was motivated in part by ongoing studies of shear velocity in partially saturated
porous systems,”? but partial saturation will not play any role in the discussion here. Our approach
will be to reconsider a basic result in the theory, 4.e., Gassmann’s result'®!! that the effective shear
modulus of the porous, fluid-saturated system is independent of the presence of fluid in the pores.

Section 2 will rederive a basic result in poroelasticity: Gassmann’s equations for a fluid-
saturated, closed system. Section 3 will present effective medium results for the same system.
Section 4 will show that, even though these two approaches are both at least nominally low fre-
quency methods, Gassmann’s results differ from the effective medium theory results because they
are quasi-static and actually pertinent to a lower frequency band than is allowed for or considered
by the effective medium theory approach. Section 5 presents a detailed analysis showing how to
reconcile the two results. Section 6 summarizes our conclusions.

2 Gassmann’s Equations for Isotropic Porous Media

One of the most fundamental results in poroelasticity concerns the mechanical behavior of an
enclosed, undrained, fluid-saturated system. Exact results for the effective bulk and shear moduli
of such systems were derived almost 50 years ago by Gassmann.!? The results are elementary in
retrospect, but surely they are not trivial or obvious, as we shall see.

Gassmann’s relations are receiving more attention as seismic data are increasingly used for
reservoir monitoring. Correct interpretation of underground fluid flow from seismic data requires a
quantitative understanding of the relationships among the velocity data and fluid properties in the
form of fluid substitution formulas, and these formulas are very commonly based on Gassmann’s
equations. Nevertheless, confusion persists about the basic assumptions and the derivation of
Gassmann’s well-known equations in poroelasticity relating dry or drained bulk elastic constants
to those for fluid saturated and undrained conditions. It is frequently stated, for example, but
quite incorrect to say that Gassmann assumes the shear modulus is constant, i.e., mechanically
independent of the presence of the saturating fluid. This section of the paper clarifies the situation
by repeating a brief derivation!! of Gassmann’s relations that emphasizes the true origin of the
constant shear modulus result, while also clarifying the role played by the shear modulus in the
derivation of the better understood result for the bulk modulus.

2.1 A derivation of Gassmann’s equations

We now present a concise, but complete, derivation of Gassmann’s famous results. For the sake
of simplicity, the analysis of this section is limited to isotropic systems, but it can be generalized
with little difficulty to anisotropic systems.!%:12:13 Gassmann’s equations!® relate the bulk and
shear moduli of a saturated isotropic porous, monomineralic medium to the bulk and shear moduli



of the same medium in the drained case and show furthermore that the shear modulus must be
mechanically independent of the presence of the fluid. An important implicit assumption is that
there is no chemical interaction between porous rock and fluid that affects the moduli. Gassmann’s
paper is concerned with the quasistatic (very low frequency) analysis of the elastic moduli and
that is what we emphasize in this section also. Generalization to higher frequency effects and
complications arising in wave propagation due to frequency dispersion will be discussed in the
following sections of this paper.

In contrast to simple elasticity with stress tensor o;; and strain tensor e;;, the presence of a
saturating pore fluid in porous media requires the introduction of conjugate variables associated
with the fluid. The pressure p; in the fluid is the new field parameter that can be controlled.
Allowing sufficient time (equivalent to a low frequency assumption) for global pressure equilibration
will permit us to consider py to be a constant throughout the percolating (connected) pore fluid,
while restricting the analysis to quasistatic processes. The change ( in the amount of fluid mass
contained in the pores is the new type of strain variable, measuring how much of the original fluid
in the pores is squeezed out during the compression of the pore volume, while including the effects
of compression or expansion of the pore fluid itself due to changes in ps. It is most convenient
to write the resulting equations in terms of compliances S;; rather than stiffnesses Cj;, so for an
isotropic porous medium in principal coordinates the basic equation to be considered takes the
form:
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The constants 8 and 7y appearing in the matrix on the right hand side will be given precise definitions
later. For now, they are defined implicitly by (1) as coefficients that can be measured by observing
the changes in system strain caused by changes in system stress. It is important to write the
equations this way rather than using the inverse relation in terms of the stiffnesses, because the
compliances S;; appearing in (1) are simply and directly related to the drained constants A4 and
Ggr (the Lamé parameters for the isotropic porous medium in the drained case) in the same way
they are related in normal elasticity (the matrix S;; is just the inverse of the matrix Cj;), whereas the
individual stiffnesses C’fj“t (the “sat” superscript indicates a constant for the fully liquid saturated
case) obtained by inverting the equation in (1) must contain coupling terms through the parameters
B and «y that depend on the porous medium and fluid compliances.

Using the standard relations for the isotropic moduli (e.g., Lakes'*), we find that
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where the drained Young’s modulus Ejy, is defined in terms of the drained bulk modulus Ky and

shear modulus Gg, by the second equality of (2) and the drained Poisson’s ratio is determined by
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The fundamental results of interest are Gassmann’s equations, found by considering the satu-
rated (and “undrained,” meaning that the liquid is trapped and cannot escape from the volume)
case such that

(=0, (5)

which — by making use of (1) — implies that the pore pressure must respond to external applied
stresses according to

pf=—§(¢711+022+033)- (6)

Equation (6) is often called the “pore-pressure buildup” equation (see Skempton'®). Then, using
result (6) to eliminate both ¢ and py from (1), we obtain
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where Sfft is the desired saturated compliance including the effects of the trapped liquid, while S;;
is the drained compliance in the absence of the liquid. (We will assume that, when drained, the
pores are filled with air, and that Kg; ~ Ggir =~ 0. In fact, K,;- does not vanish, but it is more than
three orders of magnitude smaller than other constants we are considering. This approximation
has a negligible effect on the final results, and makes the resulting formulas noticeably simpler —
and especially so in the next section on effective medium theory.)

Since for elastic isotropy there are only two independent coefficients (S1; and Si2), we find that
(7) reduces to one expression for the diagonal compliance

¢ p
Sitt =851 — —, 8
i 5 (8)
and another for the off-diagonal compliance
2
Si5' = Si2 — % (9)

If K59 and G*% are respectively the undrained bulk and shear moduli, then (2) and (3) together
with (8) and (9) imply that
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Subtracting (11) from (10) shows immediately that 1/2G*% = 1/2Gy,, or equivalently that

Gsat — Gdr- (12)



Thus, the first result of Gassmann’s thought experiment is that, for purely mechanical effects,
the shear modulus for the case with trapped fluid (undrained) is the same as that for the case with
no fluid (drained). Then, substituting (12) back into either (10) or (11) gives one form of the result
commonly known as Gassmann’s equation for the bulk modulus:

2
11 e 3
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We want to emphasize that the analysis presented shows clearly that (12) is a definite result
of this analysis, not an assumption. In fact, for isotropic systems, we must have (12) in order for
(13) to hold, and furthermore, if (13) holds, then so must (12). Thus, monitoring any changes in
shear modulus with changes of liquid content (say through shear velocity measurements) provides
a test of both Gassmann’s assumptions [e.g., low frequencies, lack of chemical effects on the shear
moduli, etc.] and results [i.e., equations (12) and (13)].

2.2 Alternative formulas for K%

To obtain one of the more common forms of Gassmann’s result for the bulk modulus, we now need
to define the coefficients 8 and . First note that

P=— — — = (14)

where K is the grain modulus of the solid constituent present and « is the Biot-Willis parameter.'6
Furthermore, the parameter  is related through (6) to Skempton’s pore-pressure buildup coefficient'
B, so that

= =B (15)

Substituting these results into (13) gives

Kdr
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K* = (16)
which is another form!” of Gassmann’s standard result for the bulk modulus.

One other form of Gassmann’s equation for the bulk modulus,'®!! and one that we will find

useful for comparison to the effective medium theory formulas to follow, is

o?

(a—¢)/Ks + ¢/Ky’

which highlights how the undrained constant K*% differs from the drained constant Kg.. Here ¢
is the porosity and K is the fluid bulk modulus. We could alternatively have chosen to replace
the first term on the right hand side by Ky = (1 — a)K;. Then, all the geometrical and volume
fraction information is contained in a and ¢, while the pertinent constituent properties are just K
and K.

Next we consider what effective medium theory has to say about the same physical system.

K% = Ky + (17)



3 Effective Medium Theory

Porous media are inherently inhomogeneous because of the voids (pores) which may contain either
air or some type of liquid, such as water or oil. Typical naturally occurring porous media are
also random, as the pores are not distributed in any organized (periodic) way throughout the
porous body. So it is natural to consider homogenization theory, or equivalently effective medium
theory, to estimate physical constants such as the elastic constants of porous media. One implicit
and significant difference between effective medium theory and the methods used by Gassmann
is that typically we assume that the constituents of the inhomogeneous medium are essentially
fixed relative to one another; i.e., when studying elastic constants, we often use a welded-contact
assumption: two points in contact remaining in contact throughout a deformation. So implicitly
we have a no-slip boundary condition between fluid present in the pores and the solids surrounding
(and therefore defining the boundaries of) the pores. Gassmann, on the other hand, assumes that
the porous medium has a finite fluid permeability, so pores are connected and fluid is free to move in
and out of the pores depending on the state of elastic stress and fluid pore pressure. This difference
is important, but — as we shall see — it is not the only source of disagreement between the two
approaches.

To highlight the differences in the results, we will first provide a quick derivation of a particular
effective medium theory (the CPA, or coherent potential approximation) and make some observa-
tions about connections between this theory and rigorous bounds. Then we will study some relevant
properties of the so-called'®'? “canonical functions” which can be used to study and compare both
rigorous bounds and the effective medium theory estimates of elastic constants. Then, we will show
how Gassmann’s results fit into the same framework.

3.1 Derivation of the CPA

Probably the best known of all the effective medium theories in elasticity is the “self-consistent
theory.” One formulation of these results was presented by Hill?® and Budiansky?!. For the
special case of spherical inclusions (which is the only case we will consider here), these results
are identical to results obtained later by Korringa et al.?? and Berryman'®'%23 ysing arguments
based on the coherent potential approximation (CPA) from the theory of alloys [see Gubernatis and
Krumhansl?* and references]. But these two “self-consistent” approaches can give very different
results when the inclusions have shapes other than spherical. The CPA has the advantage that
it is known to provide estimates that always lie between known rigorous bounds,'??® such as the
Hashin-Shtrikman bounds,?® whereas the other “self-consistent” formulation is known to violate the
bounds in some cases (though not for spheres). The CPA has also been generalized recently for use
at higher frequencies by Kaelin?” and Kaelin and Johnson.?$2% Since our goal here is to elucidate
a point in poroelasticity theory, it will be adequate to concentrate on the noncontroversial case of
spherical inclusions — which is therefore what we shall do. Useful reviews of the effective medium
topic with emphasis on geophysical (rock physics) applications for further reading are those of Watt
et al.3® and Berryman.3!

We can obtain the CPA formulas quickly by using an argument of Berryman.'® If we imagine
a scattering experiment in which a single sphere of one inclusion material is imbedded in a host
matrix, then for a plane compressional wave incident on this sphere, the two pertinent scattering



coefficients at infinity are

K,, — K;
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where the moduli for the surrounding matrix material are K, (bulk) and Gy, (shear), and the
moduli for the spherical inclusion are K; and G;.

The trick used in CPA is to imagine that our composite contains inclusions ¢ = 1,...,n, where
n > 2, and that the scattering experiment is being performed at such low frequencies (and therefore
long wavelengths) that the precise locations of the individual scatterers have no special effect
on the results. Then, we can suppose (see Figure 1) that the composite (scattering) medium is
imbedded in an adjustable matrix material m = %, such that each individual scatterer sees all the
other scatterers as composing this matrix. Then, the composite inclusion, when imbedded in the
adjustable x-matrix, should actually produce no scattering at all at infinity if the single-scattering
coefficients satisfy

n
> fiBo(K*, Ki, G*)|s—efs = 0, (20)
i=1

and
ZfiBQ(G*aGiaK*”*:eff = 07 (21)
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where the f;’s are the volume fractions of all the constituents in the composite and therefore
> fi = 1. The particular choices of the adjustable moduli that cause the right hand sides of (20)
and (21) to vanish are then defined to be the CPA effective medium constants. Equations (20)
and (21) provide a coupled set of equations which uniquely [Note: the only known exceptions to
uniqueness occur when some of the constituent moduli vanish — see Berryman!®23] determine the
effective elastic constants K¢/f = K* and G¢/7 = G*. These formulas may be written in many
different ways, but the one that we prefer here has the form

1 . i fi _ < 1 > (22)
Keff +4GefT /3~ &= K; +4GeI1 /3~ \ K(z) +4GeI1/3/’
and
1 v fi _ < 1 > (23)
Gell + Fell — &= Gi+ FeIf — \G(z) + Fe/T /[’

where F = G(9K + 8G)/6(K +2G), with F¢/f being the same formula with all physical constants
replaced by those with “ef f” superscripts. The notation (-) is introduced as the volume average,
and the right hand sides can then easily be shown to be identical to the preceding quantity in each
of the two equations.

Note that (22) and (23) are strongly coupled, but the pair of equations can be solved easily by
iteration. Also note that the resulting G¢// is the same for drained and undrained cases only if
Feff is the same, which would require that additionally that K¢/ be the same for the drained and
undrained cases.



3.2 Hashin-Shtrikman-Walpole bounds

Now we will not derive, but merely quote, the results for the Hashin-Shtrikman bounds?® in elas-
ticity. These results take a very similar form to those for the CPA for spheres. The symbols for
the Hashin-Shtrikman upper bounds are K;'IS and GES, and for the lower bounds the pluses are
replaced by minuses. The results are

1 " 1
Kis 11028 &R +{LzGi/3 - <K(a:) n 4Gi/3> ! (24)
and
% 1
GH5+Fi Z:ZIG + P <G(:c)-|—Fi>’ (25)
where K| = max; K;, K_ = min; K;, G4 = max; G;, G_ = min; G;, and Fy, where all constants in

F = G(9K +8@G)/6(K +2G) now take the same subscripts as Fy.. If, for a two-component medium,
the material properties are well-ordered so that (G2 — G1)(K2 — K1) > 0, then equations (24) and
(25) are known as the Hashin-Shtrikman bounds. But — if the constants are not well-ordered,
o (G2 — G1)(K2 — K1) < 0 — the formulas presented are still true bounds, known instead as
the Walpole bounds.3?~3* Sometimes equations (24) and (25) taken in their entirety are called the
Hashin-Shtrikman-Walpole bounds.

3.3 Properties of the canonical functions in elasticity

These results and others of a similar nature using many of the known bounds in elasticity [see
Berryman'®] suggest that a single set of two functions controls the behaviors of both effective
medium theories and bounds. We call these expressions the “canonical functions of elasticity” be-
cause they occur repeatedly, and they have many nice properties. These function properties include
monotonicity as a function of the arguments, which makes them very convenient for comparisons
between and among many of the bounds and effective medium results.

We define the canonical function for the bulk modulus as

1 o4
NO= (r@riem) ¢ .

and the canonical function for the shear modulus as

I(F) = <W>_l _F (27)

Using these definitions, equations (22) and (23) can be rewritten as
KT = NG, (28)
and

Gl =(FeIY), (29)



respectively. Similarly, the Hashin-Shtrikman-Walpole results are written as
Kijjs = A(Gz), (30)
and

Grs =T(Fy), (31)

It is easy to show that these canonical functions are both monotonic in their arguments. For
example,

%?) - §<m>_2 <<<K(w) +14G/3)2> - <m>2) 20 )

Non-negativity follows easily from the Cauchy-Schwartz inequality®® (a)® < (a?). Thus, A is a
nondecreasing function of its argument. Similarly, I" is a nondecreasing function of its argument F',
which itself has the property that ' = F(K, G) is a nondecreasing function of both of its arguments.
Furthermore, note that A(0) = (1/K(z)) ' = Kg, ['(0) = (1/G(z)) ' = Gg, which are the
harmonic means, or Reuss averages3® of these constants. Also note, limg_,0o A(G) = (K(z)) = Ky,
limp_,o I'(F) = (G(z)) = Gy, which is the mean, or corresponding Voigt average.>” Thus, the
physical range of real arguments for these two functions produces results that lie in the range

Kr < A(G) < Ky, (33)
and
Gr <T(F) < Gy. (34)
It follows that
Kps < KT < Kj, (35)
since
A(Gys) < MGIT) < MG, (36)
because A is monotonic and
Gps < G < G, (37)

which we know to be true, independent of the present arguments.

Finally, the canonical functions also have useful monotonicity properties as functions of their
constituents’ moduli values (not shown in the above argument list). To make these properties
explicit in the notation, we will also list the constitutents’ moduli K, Ky, and G in the argument
list when it is important to draw attention to them. For example, the drained bulk modulus in
effective medium theory from (22) is then expressed as

KT = NK,, K; = 0;GT), (38)
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and the corresponding result for the saturated modulus is

KT = N(K,, Kp; G, (39)

sat sat

Monotonicity of the canonical function in the fluid bulk modulus shows that
A(KsaKf = 0; G) < A(KsaKf;G)a (40)

assuming that the usual argument G is the same for both expressions. By concatenating inequalties,
we therefore obtain useful rigorous relations such as

A(Ksa 0; Gdr) < A(K87 Kf; Gdr) < A(KSa Kf; Gsat)a (4-1)
since 0 < Ky and Gg, < G4t and, similarly,
P(Ksa 0; Fdr) < F(Ksa Kf; Fdr) < F(Ks, Kf; Fsat)a (42)

since Fy,. < Fgqr. We will make use of these properties in the following arguments.

Note that the canonical functions have often played an explicit role in formulating rigorous
bounds since the work of Milton,?® in which he introduced the y-transform concept — closely
related to, and in part motivated by, the canonical functions defined here and also earlier by
Berryman.!8:19

3.4 Gassmann’s results in terms of canonical functions

Various authors [including Endres and Knight3® and Kaelin?’] have noticed that Gassmann’s equa-
tion for the undrained bulk modulus has a form similar to that of the effective medium theory
equation (22), or equivalently to the Hashin-Shtrikman?® bounds (24). The significance of these
observations has remained unclear, however, because — when making these comparisons to the
CPA — it has been necessary to sever the relationship between the bulk modulus equation (22)
and the shear modulus equation (23) in order to make the similarity apparent. Taking such a step
removes the self-consistency condition relating bulk and shear modulus, and replaces the derived
result with an ad hoc assumption that K¢/ ~ A(Gg,) = K*®. When similar observations are
made relating the Hashin-Shtrikman bulk modulus bounds to the Gassmann result, a similar ad
hoc step is required, which is Kli{S ~ A(Gary) = K 6t The ad hoc procedure sidesteps and confuses
the real issue, which is the question: Why do the two formulas (either in Gassmann and effective
medium theory, or in Gassmann and the Hashin-Shtrikman bounds), although similar in functional
form, in fact disagree?

To avoid making any unwarranted assumptions, we will first of all show what is true about the
Gassmann bulk modulus result and how it is related to the canonical functions. To do this, we will
approach the subject from the direction opposite to the one usually taken, and show that effective
medium results can be written in a form similar to that of Gassmann’s formula. First note that
[see Korringa et al.?? for an early application of this formula, and also Pride et al.%?),

eff _ (1 - ¢)Ks

= 43
dr 1+adr¢ ’ ( )
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where a4, = 3K /4G§£f . This formula is completely equivalent to the canonical form for the

drained case K;f F= A(Ggff )- In particular, we find that, when there are only two constituents
(solid and fluid), then the effective medium theory result can be written in the form

X2

(X —¢)/Ks + /Ky’

where all the microgeometry dependence of the equation appears here in x, and (coming from the
coupling to the shear modulus) is contained in the parameter

K = (1-x)K, +

sat

(44)

1+ asat

= gt Goat_ 45
X=b1 s (45)

where
asar = 3K, JAGEL]. (46)

Equations (44) and (45) should be compared to
2
K% = (1- a)K, + ° , (47)
(a—¢)/Ks + ¢/Ky
and
1+ay
—1-K9 Kk, = p— "0 4

a=1- Kl [K, = g2 (43)

with ag, given following (43). Thus, it now becomes clear that the only difference between the
effective medium result and Gassmann’s result for the bulk modulus is determined by which value of
the shear modulus is used for evaluating the corresponding parameter a. Thus, it is a definite result
that Gassmann’s equation for undrained bulk modulus can be written in terms of the canonical
function A as

K% = Asat(Gdr)a (49)

where Agq(-) = A(Ky, Ky;-) and Agr(-) = A(Kj,0;-). Note the differences among (38), (39), and
(49).

By assumption, we also have for both theories (i.e., Gassmann and effective medium theory)
that K4 = A(K,,0;Gqr) and Gy = T'(K,,0; Fg.). Gassmann treats Ky and Gy as purely
experimental quantities and there is no inconsistency involved if we choose to treat the Kg4. and
Gy from effective medium theory as our estimates of the drained bulk and shear moduli.

The preceding reasoning shows that it is inappropriate to decouple the effective medium equa-
tions (28) and (29), just as it is incorrect to say that Gassmann “assumed” (rather than derived)
G*% = Gy,. [We explicitly and easily derived this result in (12).] It is nevertheless true that (49) is
a correct statement of Gassmann’s result for the bulk modulus in terms of the canonical function
Agqt. From this statement, (35)-(36), and (41)-(42), we find that

Kdr S Ksat S Keff (50)

sat

12



and

Gar <T(Ks, Kf; Fg) < GLI (51)

sat *

But, we emphasize that Gassmann’s result shows G** = Gy, # I'(Kj, Ky; Fy) when Ky # 0, and
nothing should be inferred just from the fact that some of these quantities are expressible in terms
of the canonical functions.

The canonical functions best serve their purpose when physical approximations (such as CPA)
and rigorous mathematical arguments (such as Hashin-Shtrikman bounds) can be applied to derive
relationships among the various constants of interest.

4 The Dichotomy

The foregoing analysis shows that we have a theoretically difficult situation to resolve. The di-
chotomy is this: Gassmann’s equations are low frequency and predict that

K% = Aoi(Ggy)  and G = Gy, (52)

whereas effective medium theory (which is also for low frequencies) for apparently the same problem
predicts that

K = Ao (GET)  and G =T, (FET). (53)

sat — sat sat — sat

Furthermore, because the canonical functions A and I" are monotonic, it is easy to show from the
foregoing results that, whenever K > Kg; ~ 0,

G < Gelf (54)
and, therefore,
Kt < KT (55)

How do we explain that these two low frequency theories clearly differ? Even if the numerical
difference were not great, the mere existence of the difference (assuming both theories are correct, so
it is a real difference) shows that there must be dispersion in such systems. Dispersion also implies
attenuation because of Kramers-Kronig relations (see Aki and Richards'). So this difference, if
true, guarantees that there is more attenuation of sound waves in a poroelastic system than we
might expect from other considerations.

The reason for this dispersion is that the Gassmann approach is really quasi-static, and therefore
applies at extremely low frequencies, whereas the effective medium theory is clearly not formulated
to apply at such low frequencies. The difference arises from how fluid pressure is treated in the
two approaches. Gassmann allows the fluid pressure sufficient time to equilibrate throughout the
medium, however long it takes — perhaps very long times indeed. The effective medium theory
does not preclude the fluid from equilibrating, but does not necessarily allow enough time for
equilibration. Time does not play an explicit role in the effective medium theory, only an implicit
one in that it must be “long enough” so the frequencies are low and the wavelengths long compared
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to the microstructure. If liquids occupy isolated pockets scattered throughout the inhomogeneous
porous medium, they may have different fluid pressures if they are not permitted sufficient time to
equilibrate. In fact, the effective medium theory does not explicitly allow for finite (nonzero) fluid
permeability of the porous medium.

These facts suggest that there are some good reasons to think that there could be differences
between Gassmann and effective medium theories. But, so far the analysis still leaves the technical
question unresolved.

5 Resolution of the Dichotomy

One method of resolving this dichotomy is to use the method of multiple scales for the time-
dependent version of this problem. In fact, this has already been done by Burridge and Keller.*!42
They find the interesting (and perhaps now not surprising) result that there are two possible
solutions to the problem. One is essentially that of Biot’s theory? of wave propagation in poroelastic
media. The other is a set of viscoelastic equations. The difference leading to the two quite different
results is that, when the scaled viscosity is treated as being of order €? (e is the small quantity), they
get Biot-Gassmann, whereas when viscosity is treated as order 1, they obtain the viscoelasticity
equations instead. These results are consistent with the need for two approaches and two rather
different results, even though both are long wavelength, and low frequency results.

We will now take a different approach to show how the effective medium theory result can also
arise from Gassmann-style considerations.

5.1 What we need to show

The crux of our problem is to show how the shear modulus can be independent of the fluid properties
at quasi-static frequencies, yet become dependent on them at somewhat higher (but still low)
frequencies.

Physically, we know what must be happening in the effective medium theory to give rise to
the effects discussed. The presence of the liquid results in an increase in the shear modulus, even
though the liquid shear modulus is zero. Why is that? The reason is that in an inhomogeneous
medium, when we apply stress or strain at the macroscopic scale, that stress or strain gets resolved
locally in a complicated way because of the inhomogeneities. It is very easy to see that this must
be so in a granular medium, but is clearly true also in most inhomogeneous media. An applied
external compression can produce a shear field locally. An applied external pure shear can produce
a compression locally. This is the physical source of the effect. If we apply an external shear
to a porous medium containing liquid, it matters that the liquid is present and not replaced by
air. It matters because the external shear can be resolved into local compression in some regions
containing the liquid. In these regions, the liquid can support the compression (but not a shear),
and therefore the liquid stores some of the energy applied to the system by the external shearing
force. This discussion shows qualitatively (and physically) why the effective medium theory predicts
that the shear modulus depends on the bulk modulus of the liquid. (We will show explicitly how
it happens in the mathematics later in this section.) On the other hand, if the liquid has enough
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time (and finite permeability permits it) to move out of the way, it can relax to a state that does
not support any of the local compression, and then we have Gassmann’s result.

So what we will be attempting to show in the remainder of this section is how these ideas can
arise and then be quantified explicitly in the theory.

5.2 Why local isotropy is not sufficient

We know from the arguments given previously that purely isotropic (micro as well as macro)
poroelasticity cannot give the effective medium result. No matter what else happens — no matter
how we try to make changes in the poroelastic coefficients to see how such effects arise — we will
not be able to change the fact that Sj; — Si2 = 1/2G [recall (2) and (3)]. Changes in the coupling
coefficients that result in an isotropic elastic matrix must satisfy this condition (directly related to
system rotational invariance). And this condition guarantees that Gassmann’s result for the shear
modulus will always hold, e.g., compare (8) and (9). So an isotropic poroelastic medium that is
also isotropic everywhere on the microscale will not help us resolve our dichotomy.

5.3 Local anisotropy

In contrast, let us now consider one of the simplest cases of local anisotropy, i.e., transverse isotropy
(TT). We suppose that this anisotropy could arise from many mechanisms (local layering, or frac-
tures/cracks), and still produce the same formulas we will use in this demonstration. The elastic
tensor is not uniquely related to the microstructure. The precise mechanism is also not really im-
portant to our present purpose. We are trying merely to establish a link between Gassmann’s result
and the effective medium results. We have shown this is very difficult (and maybe impossible) to
establish for local (microscopic) isotropy. We want to show that it is, however, possible for local
anisotropy.

If the inhomogeneous medium is isotropic on the macroscale, it certainly can still be anisotropic
on the microscale. This fact has been used extensively in the mathematical homogenization com-
munity, where many authors [see, for example, Kohn and Milton** and Avellaneda and Milton*!]
have studied laminates to determine realizability results for bounding methods. A typical physical
example is an aggregate of randomly oriented crystals (i.e., a polycrystal), where individual crystals
or domains are locally anisotropic but the aggregate may be isotropic due to spatial averaging over
orientations.

To make a clear connection with rock physics, we will assume that, instead of being locally
layered (laminated), the medium has randomly oriented fractures or cracks. The spatial distribution
of randomness is such that the overall medium is macroscopically isotropic. We will assume that
there exists a scale at which it makes sense to talk about the porous medium’s local elastic constants,
that there is a single fracture per REV (representative elementary volume) on this scale, and that
the elastic compliance tensor can therefore be written locally as that for a transversely isotropic
(same as hexagonal symmetry) medium. The axis of symmetry differs from location to location
throughout the medium, but locally — if the x3 direction is the local axis of symmetry — we can
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write the strain-stress relations in terms of the compliance matrix as

€11 Sll Sl2 513 _/8(1) 011
€92 512 Sll 513 _,6(1) 0929
es3 S13 S13 Ss3 =BG o33
| =-8Y Y & 4 -ps |, (56)
€23 Gt 023
€31 en 31
e e o12

analogous to (1).

We still have the condition that 2(S11 — S12) = Sg¢ = 1/Gy4, for transverse isotropy as we did
for the isotropic case. But now the other two shear compliances (1/G}) are decoupled from the
values of the S’s in the upper left corner of the matrix. We can use an argument of Schoenberg and
Douma?*? [also see Schoenberg and Muir*® and Dellinger et al.*” for related concepts and techniques]
to introduce the effects of the drained fractures/cracks into this matrix. And we assume here that
this has already been done. The effects are localized and result in an increase in the compliances
S44 = Ss55 = 1/Gy, and S33 (which implies a decrease in associated stiffnesses).

Redoing Gassmann’s argument for this case, we have

e11 Sf%z ngz ngz o11 [ /S11 Sz Sis
€29 Sty Sitt Si3 0922 Sz Su Sis
es3 St Spgt Ssgt . 033 Si3 S13 Ss3
eos | Gt o3 | G%
€31 ﬁf g31 G%
€12 G—Slaf 012 - G];ir
(B2 (M2 pEG) 1 /o1y
(B2 (pWY2 G 099
1 pLBGB) MG (pB3))2 o33 (57)
0 031
0/] \o12

So, although this is more complicated than (1), the result is still basically the same: there is no
obvious effect of fluid saturation on the shear modulus. Thus, local anisotropy in the form of
transverse isotropy is still not enough to induce the desired response.

Now we must be careful to account for all the effects of the anisotropy on interactions between
shear stresses and change of volume. There are some subtle, but well-known, effects contained in
(57) that need to be elaborated.

5.3.1 Change of volume under shear

The elastic stiffness and compliance tensors, in the matrix form we are using here, have six eigen-
vectors. Four of them are universal and independent of the values of the matrix elements. These
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four are

1 0 0 0
-1 0 0 0
0 0 0 0
O 7 1 7 O bl O (58)
0 0 1 0
0 0 0 1

When applied to the compliance matrix, all four correspond to states of pure shear, and have
eigenvalues: S11 — S12, Su4, S55 = Su4, and Sgg, respectively.

The remaining two eigenvectors correspond to coupled states of compression and shear. These
eigenvectors can be written as

1 1

1 1
ay —2/CI/+

0 and 0 , (59)
0 0

0 0

where a solves
Sy = S11 + S12 + a4 513,
Siay = 28513 + a4 533, (60)

and S, is one of the eigenvalues, which satisfy

1
St = 2 Sz + 511+ S12 £ \/(533 — 811 — S12)% + 8573 - (61)

Of these two solutions to (60), a4 will normally turn out to be the one closest to unity, while the
other one (a_ = —2/ay) will be closest to —2. When a ~ 1, then the first eigenvector in (59) is
almost a pure compression and the second is almost a pure shear. Otherwise, the eigenvectors are
mixed states, that might be called quasi-compressional and quasi-shear states, respectively.

We see now clearly why it is that, if we apply a pure compression to the system, some local
shearing must occur. As long as this coupling is contained in the eigenvectors, it is unavoidable.
There is no way to construct a compressional state of this system that does not couple to shear.
It is possible to construct some pure shear states that do not couple to compression using the
first four eigenvectors in (58), but some interaction between compression and shear is nevertheless
guaranteed for such anisotropic systems.

Bulk modulus bounds

Effective constants for the overall isotropic system composed from random orientations of the
matrix (57) can be determined approximately using Reuss®® and Voigt3” estimates, which are also
known to be rigorous bounds on the constants.*®*? So, the best results available for a general
polycrystal** are the Reuss lower bound and the Voigt upper bound. The Reuss bound on the bulk
modulus is

(Kn)™" = 25151 + 255"+ S35t + 451"
2
= 2511 + 2512 + S33 + 4513 — (25(1) + ﬁ(g)) /7 (62)
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where v = (2,6(1) + 6(3)) /B, with B being Skempton’s pore-pressure buildup coefficient. The
corresponding Voigt bound is

Ky = 2 (2011 + 207" + C38' + 4C73")

O = O] =

2
(2011 +2C12 + O3 +4C13) + 5 (2 + o), (63)

where the o’s and f’s are related by defining the appropriate column vectors & and B respectively
and noting that 8 = S& and @ = Cf, with S and C being the drained compliance and stiffness
matrices respectively. The constant coefficient a in (63) is determined by 1/a = v — &’ Sa.

For hexagonal symmetry (following Nye®®), we have (the sat superscript will be dropped for
now)

Ci1 + Cia = S33/S, (64)
Ci1 — Ci2 =1/(S11 — Si12), (65)
Ci3 = —S13/5, (66)
C33 = (S11 + S12)/S, (67)

and
Cus = Cs5 = 1/Sua, (68)

with
S = 533(511 + 512) — 25%3. (69)

These identities show that [after restoring the sat superscripts and using (63)]

1
Ky = soor (i + 518" + 253" —45%5")
1 2
= 95 (S11 + S12 + 2833 —4513) + g (204(1) + a(?’)) ) (70)

Also, note that both the Reuss and Voigt bounds on bulk modulus are always larger in the presence
of the pore liquid (i.e., B > 0) than in its absence. These results are automatic for Reuss and follow
for Voigt if a > 0. When the TI medium is almost isotropic, we find

(2@(1) =+ a(3))2 (a(3) — a(l))Q
9K + 3G ’

1 2a® 4 a®
e —

3BK (71)

which reduces to 1/a = (1 — aB)/BK > 0 when a = ofY) = o(%). So, with these restrictions, a is
positive if B < 1/a. For our examples, we will only consider the range 0 < B < 1.

Shear modulus bounds
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For the shear modulus, we have the effects of the inhomogeneity showing up in the bounds
because the shear can depend on the liquid properties accordingly in the Reuss lower bound

1
(Gr)™" = 1 (851" +4538" — 457" — 857’ + 653" + 35%")
4 2
_ L A4Sy — _ A (g g
5 (8511 + 4533 — 4519 — 8513 + 6544 + 3566) 15y (ﬂ p ) ; (72)

and the Voigt upper bound
1

Gv =15

(2058 + C38" — 2038" - O3 + 6C35" + 3C38")

1
15 (2011 4+ Cs33 — 2C19 — C13+ 6Cyq + 3066) + %a(?’) (Oz(s) — a(l))
1 ( 2 6 3 S48+ ngt)

= +—+ (73)

S11— Si2 + Si Seg Ssat

where we have reinstated the sat superscript where appropriate for clarity.

Using the Voigt-Reuss-Hill-type estimates (i.e., taking either the average or the geometric mean
of the bounds), we find that such estimates for the shear modulus now do depend on the pore liquid
properties. Furthermore, the liquid contributions have a definite sign for Gg, showing that the lower
bound on shear modulus (and by inference the shear modulus itself) always increases due to the
presence of the pore liquid. The sign of liquid corrections to Gy in (73) is not difficult to analyze,
and can be seen to depend on the sign of the difference a(®) — oY), Using the identities relating
the column vectors & and 3, we also find for TT media close to isotropic that

a®(a® — oW ~ 2@ [K(Qﬂ(l) +B8®) + (4G/3)(B®) — 5(1))] (5(3) _ 5(1)) _ (74)

Thus, the condition for increasing Gy is either a® > a(1), or, if we assume that A = K —2G /3 >0,
then 83 > B, Tt is nevertheless somewhat surprising that there are any circumstances (even
for choices of the parameters that do not seem very likely) in which the upper bound on G can
decrease. We will return to this point in the subsection on constraints.

Numerical examples

To provide one numerical example of these results, we use measured values® for a Cretaceous
shale as the drained constants. Constants for the drained hexagonal (TI) medium are given in
Table 1. Results of the evaluations are shown in Figures 2 and 3. Besides the constants listed in
Table 1, we also needed values for the 8’s. To emphasize the dependence of the shear modulus on
the liquid properties, we have chosen to use () = 0.001476 GPa~! and ) = 0.02656 GPa",
for this example. These choices are intended to mimic behavior of a sample with cracks oriented
normal to the z3-axis, having its strongest liquid dependence normal to the crack and significantly
less dependence parallel to the crack. We use Skempton’s coefficient B as a proxy for frequency in
the case of the shear modulus (but it does not act as a frequency proxy for the bulk modulus), the
lowest values of B corresponding to low frequency, Gassmann-like behavior of the shear modulus,
while the highest values of B correspond to behavior expected at high frequencies when liquid
saturates the pores. We find as predicted that the bulk modulus is the stronger function of the
liquid properties, but that the shear modulus does indeed depend on them also. In this example,
the Voigt bounds are seen to be monotonically increasing functions of Skempton’s coefficient B for
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both moduli. The analysis shows that this must be so for the Reuss bounds. However, both the
analysis and some examples (not shown) indicate the Voigt upper bound on the shear modulus can
decrease slightly as B increases. For such cases, the VRH average will be almost constant, and may
not capture the true behavior of the shear modulus. We see that there is a substantial quantitative
difference between the changes in the bulk and shear moduli, the bulk modulus changing by as
much as 100% in this example, whereas the shear modulus changes by only about 10%. (Also, note
that Figure 2 provides graphical confirmation of the optimality** of the Voigt and Reuss bounds
since they nearly meet here at about B = 0.7.)

The effective medium approach being used here and illustrated in Figures 2 and 3 falls short of
proving that the shear modulus is dependent on the pore liquid properties. A definitive example
would show, for example, that the Voigt upper bound at B = 0 lies below the Reuss lower bound
at B =1, i.e., Gy(B = 0) < Gr(B = 1). This does not occur in Figure 3, but the results do
strongly suggest dependence of the effective G* on the liquid properties. The next subsection will
provide an analytical example where it is easy to see that the shear modulus should increase when
pore liquid is present.

A second numerical example is based on a complete set of poroelastic constants for Trafalgar
shale from Cheng®? using data from Aoki et al.,>® and the theoretical formulation of Thompson
and Willis.>* The main elastic constant data are displayed in Table 2. The results are shown
in Figures 4 and 5. In addition to the data in Table 2, Cheng quotes generalized Biot-Willis'®
parameters for the transversely isotropic shale having values of a(!) = 0.733 and a(® = 0.749. These
parameters can be shown to be related to the 8’s in our formulation by the following expressions:
B = a(l)(Sn + S12) + a® 85 and BG) = 201 S5 + a3 Sas, giving values BN =0.01821 GPa~!
and 8 = 0.02245 GPa~'. Results obtained for this example are qualitatively similar to those for
the first example. The main difference is that the values of the 8’s used here do not differ as much,
and therefore the dependence of the shear modulus on the liquid properties is not as great. We
believe that the assumptions of microisotropy and microhomogeneity, which were used by Cheng??
as a means to reduce the number of equations needed to determine the poroelastic constants from
data, may in fact be stronger than necessary and lead directly to the close values obtained here for
the B’s.

5.3.2 An alternative approach

We have shown that in principle the shear modulus can depend on properties of a liquid in the
pores. The results are rather indirect, however, and it might be helpful to see a more explicit way
for this behavior to develop in the equations. Furthermore, the corrections to the shear modulus
are expected on physical grounds to be positive. While explicit corrections of this type were found
for the Reuss lower bound, it would be helpful to see how such corrections arise more intuitively
from the mathematics.

Without enumerating all the remaining possible perturbations, we will now jump to another
alternative, which makes use of the fact that, in addition to being anisotropic, the compliance
matrix can be generalized to include some nonstandard terms. The form of (56) does not permit
us to couple simple shear directly into either compression or pore pressure because there are no
off-diagonal terms in the lower part of the matrix. Terms that can be added are those that produce
a change in volume under an applied shear stress, and others that produce a change in shear strain
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under a compressional load (in this case pore pressure). We think of this, not as introducing new
physics into the problem, but merely as a bookkeeping step to make the analysis simpler in this
complex system under study. (The terms introduced could be obtained instead by performing
a coordinate transformation to a system not aligned with the principal axes of the compliance
matrix.)

There are many possibilities to consider that would achieve the desired result, but the simplest
apparently has the form

e11 S Si2 S35 —pW) o11
€22 512 Sll 513 _,8(1) a2
es3 S13 S13 Ss3  —BB) 033
| =-BY -1 & 4 —w || =ps | (75)
€23 G% 023
€31 G% 31
e12 —w e 012

The only terms that are new here are those involving w, which couples o153 to ¢ and also couples
py to e12. Reciprocity requires that both terms are present if either is present. For these purposes,
we think of the strains on the left of the equation as being resolved local stains, while the stresses
on the right are global stresses.

Repeating Gassmann’s argument once more, we have

(76)

e11 Syt Sigt Sy S%\ /on [ /S11 Si2 Si3
€29 Syt Sit o sigt i Sz St Sis
ess | Syt sigt s3g . S| o || S5 Sz Ss3
e3 | Gt o23 | e
€31 # 031 Glt
e/ \sig s sy g/ N2/ L G
(B2 (8W)2 phe) BYw\T [on
(ﬁ(l))2 (5(1))2 ﬂ(l)ﬂ(?’) ﬂ(l)w 022
1| pMsB  p1aEG) (5(3))2 BB w o33
v 0 023
0 031
B0 BB w BB w w2 /| \oi2

Finally, we have a connection of the right type. We see that 1/G*% = 1/Gg4, — w?/v, or

equivalently that
Gy
G = T 7
1- Gdrw2/7’ ( )

showing that, since G4 > 0 and y > 0, the saturated (undrained) shear modulus always is larger
than that of the drained medium regardless of the sign of the new parameter w.

5.3.3 Constraints on the parameters

We could now study the resulting system by examining its eigenvectors and eigenvalues. Unfortu-
nately, the modified system is more complex than a transversely isotropic system. It is actually
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monoclinic (see Nye®?). It is beyond our present needs to study this full system, so we will simplify
and neglect the off-diagonal terms that make this system differ from TI. Doing so introduces no
error in three of the eigenvalues, but small errors of order %2w? in the remaining three eigenvalues.

Once we have the constants for the saturated system, we can obtain estimates of the effective
overall isotropic constants by making use of the Voigt and Reuss bounds as we did in the previous
example. This does not produce a formula, but it does give us insight into how the liquid effects
can influence the overall isotropic shear modulus of a poroelastic system. Using (62)-(73) again
shows that the effective shear modulus depends on the liquid properties.

We also have requirements on the resulting matrix that it be positive semi-definite. This
amounts to the physical requirement that the medium be mechanically stable, and the mathematical
requirement that the eigenvalues all be non-negative. These requirements are therefore that Gy,
G*%, S11 — S12, and Sy [from (61)] must all be nonnegative. This places 4 independent constraints
(actually 5 constraints when G is decoupled from Si; — Si2 as it is in a monoclinic system)
on any models we might want to consider. When S33 ~ Sii, we have the approximation that
0<S_ =~ S33—85%/512, and 0 < S, ~ Sy1 + S12 + 5% /512, which amount to a shear modulus
constraint and a bulk modulus constraint, respectively.

Finally, we should point out that if the off-diagonal terms S5&' and S§3 are retained in the Reuss

and Voigt averages, then it not difficult to show that the sign of correction due to fluid effects for
Gy can now be guaranteed to be positive if w > S /12. Thus, relatively small corrections of the
type presented here, which may be present in the real systems but difficult to measure, could be
affecting these systems and causing the shear modulus to increase in the presence of the pore liquid.

These various constraints [or their more accurate counterparts for the exact expressions derived
in (76)] should be considered when doing forward modeling with these equations to make sure that
the stability criteria are always satisfied.

6 Conclusions

We have shown that there are two main issues affecting the possible occurrence of velocity dispersion
in poroelastic systems. The first issue concerns the time scales implicitly assumed by Gassmann’s
derivation and by effective medium theory. Gassmann’s theory applies at very low frequencies (long
times), and should be thought of as a quasi-static approach. Fluid permeability is required to be
finite, pores are connected, and fluid can pass from one pore to another. In contrast, effective
medium theory, although formulated at low frequency, is not valid at such low frequencies as
envisioned in the quasi-static picture of Gassmann. The practical difference is that Gassmann
permits liquid to take as much time as it needs to equilibrate in pore pressure across the whole
sample. In contrast, effective medium theory does not assume that different pockets of liquid have
the same pore pressure values. Permeability in the effective medium picture might be either finite
or zero. The time scales of interest may therefore be too fast to achieve the equilibrated pressures
needed by Gassmann’s arguments.

Although these differences are the most obvious physical ones and these differences are an
important source of discrepancy between the two approaches, they are not sufficient to explain the
range of dispersion results observed in experiments. If they were sufficient, then we would not be
able to explain Plona’s ultrasonic data on porous glass so well (Plona,? Chin et al.,* Johnson et
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al.%), both qualitatively and quantitatively. There must be more at issue.

The second significant issue concerns the fact that Gassmann’s arguments (as usually presented)
do not treat the porous medium as if it is inhomogeneous, whereas the effective medium theory
inherently does so. This difference affects the results because in an inhomogeneous medium, when
fields are applied externally, the local impact on the system can be very different from that of the
applied field. In particular, if a pure compressional stress is applied externally, this may be resolved
into local shear stresses at some points in the medium. Similarly, if a pure shear stress is applied
externally, this may be resolved into local compressional stresses at some points in the medium. If
the medium is porous, but the pores are empty (air filled), then the effective medium theory and
Gassmann are in agreement. But in the same porous medium, if the pores are filled with liquid,
then, for example, an external shear stress can be resolved into a local compressional stress that
acts on the liquid. Elastic energy can then be stored in the liquid — energy that would not be
stored in the pores in the absence of the liquid. Energy also would not be stored if the liquid were
not trapped (finite versus zero permeability), so that no compression of the liquid occurred (some
liquid leaves to avoid being compressed).

The mathematical expression of these physical arguments has been shown in one example (for
transverse isotropy) to follow simply from the fact that, in anisotropic poroelastic media, it is
expected that at least two of the eigenvectors of the system will contain coupled compressional and
shear behavior.

The result of this effect can be very small in some situations, such as a porous medium with
finite permeability but isotropic on the microscale, or it can be quite large for a very similar
medium that is anisotropic on the microscale, as would be the case if randomly oriented liquid-
filled fractures/cracks were present in the system.

A porous glass system that is uniform on the microscale might very well obey Gassmann’s equa-
tions all the way up to frequencies at the low end of the megahertz band (before scattering effects
become important), while naturally occurring porous systems such as rocks containing microcracks,
might have observable frequency dispersion that sets in at frequencies as low as a few kilohertz.
Both kinds of systems (as long as both have finite permeability) would, however, still be expected
to obey Gassmann’s equations at much lower (quasi-static) frequencies, as long as the system has
finite permeability.

The main consequence of the foregoing analysis is that differences in shear modulus induced
by the presence of liquid in the pores must be explicitly incorporated into the theory at ultrasonic
frequencies when attempting to compare theory to laboratory experimental data. Carrying this
strategy through will be the subject of future work.
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TABLE 1. Stiffnesses and compressibilities of a Cretaceous shale, estimated from ultrasonic
laboratory measurements assuming hexagonal symmetry.>!

ij | Cij (GPa) | Sj; (GPa™")
11 34.3 0.0370
33 22.7 0.0560
44 5.4 0.1852
66 10.6 0.0943
13 10.7 -0.0126
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TABLE 2. Drained stiffnesses and compressibilities of Trafalgar shale, as derived by Cheng®? using
data of Aoki et al.?®

ij | Cij (GPa) | Sj; (GPa™")
11 24.1 0.0485
33 21.0 0.0578
44 7.23 0.1383
66 8.66 0.1155
13 7.62 -0.0142
12 6.80 -0.0092

28



* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *
* * *
* *

Figure 1: Schematic diagram for the coherent potential approximation (CPA) concept. The true
composite is replaced by a large sphere (dashed circle) containing spherical inclusions of type-1
and type-2 constituents in the proper relative proportions. The matrix (type-*) is composed of
a material with adjustable elastic constants. When the adjustments have been made so there is
no net scattering, the composite and the surrounding matrix presumably have the same effective

properties.

29



w
(o))

- - - Voigt
/
34 VRH
/
- - Reuss it
32' //_/ b
/,/
v

~30t A .

© 7

Q S

9/28_ //// N

n ~

= /

_§26' //// N

=24} - :

= ~

3 /////

M 22t e |
20+ ////:// |
18 -~ 1

|

16 | | |
0 0.2 0.4 0.6 0.8 1
Skempton Coefficient B

Figure 2: Example of bulk modulus estimates obtained using Reuss and Voigt bounds, and the
Voigt-Reuss-Hill average. Constants for the drained hexagonal (TI) medium are given in Table 1.
Note that this figure provides graphical confirmation of the optimality** of the Voigt and Reuss

bounds since they nearly meet here at about B = 0.7.
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Figure 3: Example of shear modulus estimates obtained using Reuss and Voigt bounds, and the

Voigt-Reuss-Hill average. Constants for the drained hexagonal (TT) medium are given in Table 1.

Other poroelastic constants are in the text.
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Figure 4: Example of bulk modulus estimates obtained using Reuss and Voigt bounds, and the
Voigt-Reuss-Hill average. Constants for the drained Trafalgar shale are given in Table 2. This
figure provides further graphical confirmation of the optimality** of the Voigt and Reuss bounds

since they are very close over the entire range plotted here.
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Figure 5: Example of shear modulus estimates obtained using Reuss and Voigt bounds, and the

Voigt-Reuss-Hill average. Constants for the drained Trafalgar shale are given in Table 2. Other

poroelastic constants are in the text.
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