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Abstract

This paper continues the analysis of approximate inverses from Part I by concentrating
on iterative inverses in linear tomographic applications. The importance of differentiating
between the ideal resolution of the operator/matrix to be inverted and the actual or ef-
fective resolution obtained by the approximate inverse in a iterative procedure is stressed.
Means of obtaining the effective resolution operator for standard iterative procedures such
as conjugate gradients, Lanczos, and LSQR are provided while circumventing the usual
need to produce a singular-value decomposition of the operator being inverted. The meth-
ods discussed produce very simple results in calculations with infinite precision, but require
reorthogonalization of the Krylov vectors/operators produced by the iterative procedures
in finite precision. Although this need for reorthogonalization increases the expense of the
procedure somewhat, it still produces the desired results much more efficiently than what
could be obtained using a full singular-value decomposition of the operator.



1 Introduction

This paper is a continuation of Part I [Berryman, 1999]. We focus here on applications
of our ideas concerning tomographic resolution to numerical methods and expecially to
approximate iterative inverses of matrices that are either hard or impossible to invert by
traditional methods. We discuss many of the standard methods such as conjugate gradients
[Hestenes and Stiefel, 1952], Lanczos [Lanczos, 1950], LSQR [Paige and Saunders, 1982],
etc., but our focus is on understanding how the fact that the matrix in question is usually
not positive definite, and often very large and rectangular, affects the analysis. We would
also like to have some means of comparing the various approximate inverses (at least qual-
itatively), especially when the iterative inversion procedure is terminated (as it usually is
in the context of large tomography/imaging applications) before convergence. The means
we chose in Part I and that we will continue to stress here is the concept of the “effective
resolution matrix.” As we will show, this matrix can usually be computed at little extra cost
in either time or storage, but gives a realistic assessment of the progress of the inversion
algorithm, and a straightforward means of comparing different approximation/numerical
schemes.

Recent work of a similar nature on computation of resolution matrices has been pub-
lished by Berryman [1994a,b], Zhang and McMechan [1995] and Minkoff [1996]. A different
approach to analysis of approximate inverses has been presented recently by Vasco et al.
[1996]. Some of the work presented here concerning the method of conjugate gradients is
joint work with Fomel [Berryman and Fomel, 1996].

2 Iterative Methods

We will now study iterative methods of solution to the basic inversion problem for Ms = t.
We refer to the model abstractly as a vector s in a vector space. For a block model with
n blocks, the model becomes a vector in R"™, the n-dimensional Euclidean vector space.
Similarly, the data vector t is a vector in the m-dimensional data space. The matrix M is
m X n and is probably not of full rank in most problems of interest. Applications of interest
include both overdetermined (m > n) and underdetermined (m < n) problems.

First consider the full rank case for overdetermined problems in which r = n < m. The
least-squares solution is then given by

sLs = (MIM) Mt (1)

Thus, we begin by summarizing the main ideas behind a matrix inversion method that works
if the symmetric matrix A = M?M (the normal matrix for overdetermined least squares)
is invertible. Then, we discuss other methods applicable to more realistic problems in
tomography when the rank r satisfies either r < n < m or r < m < n.



2.1 Richardson iteration

In Richardson iteration [Varga, 1962], we start with an initial model s(9 and iteratively
generate a sequence s(k), k=1,2,...using

s+ = () 1 M7 (t — Ms™®). (2)

In terms of singular vector expansion coefficients given by
T T T
M = Z /\iyiz?, s = Z 0:z;, and t = Znyi, (3)
=1 =1 =1

the iteration sequence becomes

Uz(k-l_l) = o(k) + A — /\ia(k)). (4)

7 z
To solve this equation, note that it can be rewritten as

oD = N+ (1= A2)0™) = Niri + (1= AD)[irs + (1= A2)o 5D, (5)

z
Computing and then rrarranging the resulting series, we find

e S [ (1= A+ (1= A2 4 (1= A A+ (1= A0 (6)

7 7
The series multiplying 7; can be summed exactly for any value of A; # 0 as

_ -1

T+ (1= 2D+ (1 =224 .+ (1= = 7
[ (=M + (1= M 4 (1= ) = s 7)
from which it follows that
(1 2Z2Yk+1
d“”zll S ]”+O—A%“%$? (8)
If A; = 0, equation (4) shows that Uz(k-l_l) = O'Z(O). If we assume that the singular values, A;,

are all between —v/2 and v/2, the iteration sequence converges for A; # 0. The condition
0 < A? < 2 thus implies that U}k) — O'Z(OO) = 7;/Ai as k — oo. That is, the iteration
converges to the minimum-norm least-squares model.

The stronger condition —1 < A; < 1 can be guaranteed with an appropriate precondi-
tioning (prescaling) of the matrix M.

Richardson iteration is a simple method for solving linear tomography problems, and is
somewhat easier to implement than other methods such as conjugate directions or conjugate
gradients since no orthogonalization (or conjugacy producing) step is required. This method
has some computational advantages when the data dimension m of M is much larger than
the model dimension n. The method is also closely related to the well-known tomographic
inversion technique SIRT (Simultaneous Iterative Reconstruction Technique) [Gilbert, 1972;
Dines and Lytle, 1979; Ivansson, 1983].



If we want to compute the model and data resolution for this method, the advantages
of Richardson’s iteration quickly turn into disadvantages. Since the method does not store
any vectors except the most recent estimate of the model vector, we must generate a set
of linearly independent vectors from which to compute the resolution matrices. To do this,
we consider the update vectors

AsF) = glk+1) _ k) — (T (t - Ms(k)) . (9)
Substituting (8) into (9), we find that
As®) = Z(l - /\?)k/\z2 (UZ(OO) - O'Z(O)) Zi, (10)
=1

showing that the first r» updates will be linearly independent. But this approach does not
give a procedure for determining the value r < n. Once we have these vectors, they can
be used in the conjugate directions method to produce a set of conjugate vectors in the
model space and a set of orthogonal vectors in the data space, as we will elaborate in
Section 2.3. Then, the procedure for computing the resolution matrices is the same as
discussed for conjugate directions. This modified Richardson iteration generally constructs
symmetric data resolution matrices and nonsymmetric model resolution matrices. These
results are essentially equivalent to those of other conjugate directions algorithms as we will
show. Even the convergence properties are similar, since the approximate inverse may, in
principle, be constructed using only r < n of the update vectors.

2.2 Singular-value decomposition

Another approach to solving the problem Ms = t that is available but which we will not
pursue at much length here, involves constructing the singular value decomposition of M.
We alluded to this previously and displayed the formal representation of the singular value
decomposition as

,
M = Z /\iYiZzT7 (11)
=1
where the z;’s are the eigenvectors of MY M, the y;’s are the eigenvectors of MM, and
the nonzero eigenvalues of both matrices are given by A?.
Once the SVD is known it is straightforward to construct the pseudoinverse of M as

M' = Z /\i_lziyZ'Tv (12)

i=1
or, what is more likely to happen in practice, to construct a truncated version of the
SVD. The truncated SVD is normally constructed by first ordering the eigenvalues and
eigenvectors (taken to be positive) so that Ay > Ay > ... > A;, where k < r. Then the
truncated SVD is given by

k
X = Z’\i_lziyiTv (13)
=1



for some convenient choice of k. The advantage of using either the SVD or the truncated
SVD is that minimal damage is done to the most significant part of the spectrum of the
inverse operator. Methods using damped least-squares or other regularization methods not
based on the truncated SVD typically alter the spectrum in order to remove noisy structure
from the final result. The truncated SVD accomplishes this by eliminating the components
with the lowest singular values and therefore the ones that are most likely to introduce
noisy structures into the inversion.

The disadvantage of using the SVD or the truncated SVD lies in the expense of finding
the eigenvectors and eigenvalues. In some sense, by constructing the full SVD we have
obtained a lot of information about the operator we are trying to inverse: more information
than we really need to do the inversion in a satisfactory way in most cases. We might
therefore think of the SVD as the ideal means of constructing the inverse, but nevertheless
avoid this ideal approach for the sake of its often prohibitive computational expense.

For the sake of argument, we will talk about the truncated SVD as if it is also an iterative
method that can be used to compute an approximate inverse of M by successively including
more of the smaller singular values. It may not be practical to compute the singular values
successively in precisely this way, but it will help the discussion in the next section if we
imagine this might be possible.

2.3 Intuitive definition of resolution in tomography

Now it is a general characteristic of iterative methods (and we include the truncated SVD in
this category as discussed in the last subsection) that each step of the iteration is centered
around finding a new vector to include in the analysis. Let us suppose that the vectors
found in some iterative method so far are vy, vy, vs, ..., vk, where k& < r, forming a
Krylov subspace of dimension k. We assume that these vectors are rigorously orthogonal
(which is a nontrivial assumption for most iterative methods) and also normalized, so that
VZ-TV]' = 6;;. This assumption will be relaxed and the consequences then treated later in the
paper. For what follows, the orthogonality is necessary and normalization is convenient.
We would like to have some means of characterizing the subspace of the full vector space
that is spanned by these vectors. There is a well-known means of doing this, namely the
projection operator

Pk = ZViVZ'T- (14)

Using the orthonormal properties of the vector sequence, it is easy to see that any vector
lying in the subspace formed by these vectors will be preserved when operated upon by Py,
while any components lying outside of this subspace will not survive the operation:

k T k
P, Z a;v; + Z a;v; | = Z a;Vj. (15)
=1 =1

1=k+1

But this operation is easily seen to be precisely the same as the concept of the resolution
operator in tomography as discussed in Part I. In particular, it agrees precisely with the
resolution operator one would obtain from a truncated singular-value decomposition of M.



We therefore take equation (14) as a definition of the resolution operator for iterative
methods can be constructed simply by forming the projection operator for any orthonormal
sequence of vectors generated by the iterative procedure as long as that vector sequence lies
in one of the proper spaces, i.e., the data space or the model space.

This intuitive approach to resolution will prove to be very helpful in understanding the
iterative methods to be presented in the following sections.

2.4 Conjugate directions and conjugate gradients

This subsection summarizes joint work of Berryman and Fomel [1996].

We will continue to use a notation consistent with earlier work of Berryman [1990] on
crosswell seismic tomography and with Part I in which the linear inversion problem to be
solved takes the form

Ms = t, (16)

where sT

three-dimensions with cells of constant slowness, M is a matrix of ray-path lengths such that
M;; is the length of the i-th ray path through the j-th cell, and t* = (t1,1q,...,1,,) is an
m-vector of the traveltimes associated with the ray paths between specified and numbered
pairs of sources and receivers. We may assume that the traveltime data are given and
that the model vector s is being sought. We further assume for the present purposes that
the ray-path matrix is known. This latter assumption is optimistic, but corresponds to
assuming that the full nonlinear inverse problem is being solved in an iterative fashion —
in which case the ray-path matrix in question is just the one in use at the latest stage of
the iteration process. We generally assume in addition that the problem is overdetermined
so that m > n, i.e., the number of data exceed the dimension of the model space, but
underdetermined problems can also be treated by virtually the same methods.

Although we are presenting the analysis as if we were dealing with matrix operators
operating on n-vectors and producing m-vectors as output, we want to make it clear that
virtually the same analysis works also for general operators acting on model functionals
and producing data functionals as output. The analysis would become rather confusing
if we were to use both types of language side by side, so we will restrict the language to
that of matrices and vectors but simply note that the generalization to operators is nearly

= (s1,82,...,5,) is an n-vector of wave slownesses associated in either two- or

immediate in most cases.

2.4.1 Conjugate directions

We want to solve the problem (16) in an iterative fashion, so we assume that the updates
to the solution take the general form

Sp = Sp—1 T xPn_1, (17)

where s,,_1 is the preceding estimate of s, s,, is the new estimate of s, p,,_1 is some direction
to be specified in the model space, and a,, is a optimization parameter (or direction weight
factor). Defining the residual data error as r, =t — Ms,,, we find the general relation that

r, = Trp_1— a,Mp,_1. (18)



One useful way to proceed is to choose the optimization parameter a,, so that the residual
vector is decreased and preferably minimized at each step of the iteration scheme. Using
the standard inner product notation (-,-) and considering

||I'n||2 = ||rn—1||2 - 2an(rn—17 Mpn—l) + ai(Mpn—lv Mpn—1)27 (19)
we find easily that the optimum choice of a,, using this criterion is

(rn—l ’ Mpn—l)
(Mp,,_;,Mp,_;)

This formula has the significance that, whenever the residual r,_; has a component along
the direction Mp,,_;, «a, is chosen to scale Mp,,_; so that this component exactly cancels
and therefore removes the contribution to r, made by Mp,,_;. This result implies therefore
that, if (r,—1, Mp,—1) # 0, then with this choice of a,, we have

oy =

(20)

(Mpn—lvrn) = (pn—lvMTrn) =0. (21)

We used the adjoint property of the inner product in (21) to show that p,,_; is orthogonal
to the gradient vector g, = M7r,, so-called because it is the gradient obtained by taking
the derivative with respect to s? of the squared residual error functional associated with
(16).

Thus, at each step of this iterative sequence a vector proportional to some vector p,
is added to the solution, while a vector proportional to Mp,, is subtracted from the resid-
ual. This sequence will be most efficient if the vectors used in decimating the residual are
orthogonal, i.e., if

(Mp,,,Mp;) =0 for j=1,2,....n—1. (22)
But again using the adjoint relation for the inner product, we find that
(P, M'Mp;)=0 for j=1,2,...,n—1, (23)

which is a statement of conjugacy for the vectors p,. Conjugacy is just a generalization of
orthogonality in which the vectors are orthogonal relative the nonstandard inner product
(-,A-) — with A being a symmetric, positive semidefinite matrix (operator) — instead of the
standard inner product given by (-,-) with A replaced by the identity.

We conclude that conjugacy is a desirable property of the set of direction vectors p,,
so our next necessary step in order to obtain a definite iterative process is to construct
a convenient sequence of vectors that have this property. Omne set of model vectors that
will be available in this iteration sequence is the set of gradient vectors themselves, where
g, = M”r,. We show next why this set plays an important role in constructing the desired
sequence.

2.4.2 Why not orthogonal residuals?

Since the direction vectors have not yet been specified, we still have several degrees of
freedom that we may use to help choose an optimum method. We might suppose that it



could be possible to choose the residuals themselves in a way so that they are orthogonal
from one step to the next. But, we soon find this is wrong for, if we were to try this, we
would find that the condition

(rp,rp_1)=0 (24)
implies that

n—1i»+tn— n— 7M n—
a, = (I' 1,T 1) _ (I' 1 p 1) ‘ (25)
(rn—hMpn—l) (Mpn—17Mpn—1)

But, condition (25) is actually impossible because the Cauchy-Schwartz inequality for vectors
states that

(rn—h Mpn—l )2 S (rn—l B rn—l)(Mpn—l ’ Mpn—1)7 (26)

where the equality in (26) occurs only when the two vectors are proportional which will
virtually never be true for such an iteration scheme.

2.4.3 Conjugate residuals and CG

Since orthogonality of the residuals is impossible, the next best condition we might try to
impose is conjugacy of the residual vectors. This condition can be stated as

(MTr,, MTr;) = (r,, MM ;) = 0 for j=1,2,...,n—1 (27)

If this condition is met, the residuals will be orthogonal relative to the inner product
(-,MMT"). The set of conditions (27) is not in conflict with (20) so we assume it holds and
construct the directions p,, that satisfy both (23) and (27).

We will now take g, = MTr, and suppose that

Prn = 8n — ﬁnpn—l- (28)

[Note that this choice is not unique as additional terms in the p;’s could have been included
on the right hand side of (28) and such choices are made by some authors.] The first term
on the right hand side is natural because (20) will vanish unless p,_; has some component
along g,_1. Some additional term or terms are necessary to guarantee that (23) can be
satisfied. The choice (28) is consistent with (21), which guarantees that the two terms on
the right hand side of (28) are orthogonal and therefore in a sense maximally effective.
Making use of the conjugacy condition (p,, MTMpn_l) = 0, we find that the constant (3,
takes the value

(gn7 MTMpn—l)
(Pr-1,M"Mp,,_;)

It is not difficult to show that the resulting scheme can be expressed in other ways. For

example, the computed coefficients can be rewritten as

(MTrn—l 9 pn—l) — ||MTrn—1 | |2
(Mp,,_1,Mp,,_;) |IMp,_4|?’

(30)

a, =



and

M2 (M2

- — 31
Y N R [TV (S (31)

which are forms first introduced by Hestenes and Stiefel [1952] in their well-known paper
on the conjugate gradients method. It is not hard to show that all the remaining conjugacy
conditions, (p,, MTMp;) for i < n — 1, are satisfied with these choices for the coefficients
(see for example Fomel [1996]).

The method of conjugate gradients is probably the most commonly used technique
applying the method of conjugate directions to solve problems of the form Ms = t in the
least-squares sense [Luenberger, 1973; Bjorck and Elfving, 1979; Golub and Van Loan, 1983;
Ashby et al., 1990].

2.4.4 Resolution operators for both model and data

From (17), it follows easily that the model estimate at the k-th iteration must be of the
form

k-1
SL = Z Q;+1P;- (32)
=1

Then substituting (20) — or more directly the first ratio in (30) — for the «;’s shows that
the k-th iterate is given explicitly by

1 k-1

p;p;

= (p;; MTMp;)

k— T
P;P;

Sk = —g =

; (pj> MTMp;)~

M7t (33)

for this scheme. Since the least-squares solution is of the form s = (MTM)™1MTt, the
resulting approximate inverse operator for the normal matrix is therefore

(MTM)T ~Y L (34)

which form we will now study. We use the dagger notation to indicate the pseudoinverse.
The expression in (34) is approximating a pseudoinverse, because it may happen that the
normal matrix MTM is singular in which case the usual inverse does not exist.

First, note that although (34) might appear to be in the form of a singualr-value de-
composition, it definitely is not an SVD. The p;’s are not orthogonal and the denominators
of these terms are not eigenvalues. If we define the matrix composed of direction vectors at
the k-th iteration to be

P,=(p1 P2 - Pk)s (35)

then the approximate inverse operator can be rewritten as

(MTM)T ~ P,D;'P/, (36)



where the matrix Dp is a diagonal matrix whose diagonal elements are given by D;; =
(pj, MTMpJ-). In fact the entire matrix is given directly by

Dp = PIMTMP,, (37)
because of the conjugacy of the p’s composing Pj. Now equation (28) shows that
P;B; = Gy, (38)
where
Gr=(81 8 " 8k); (39)

and the matrix By is bidiagonal with units along the main diagonal and (’s along the
upper diagonal. Multiplying (38) on the right by the inverse of By and then substituting
into (36), we find that

~1
(MTM)T ~ GB;'D;! (Bf ) GY. (40)
Thus, the approximate inverse is seen to have the general form
T -
(M'M)' ~ G, T G, (41)
where T, is the tridiagonal matrix
T, = B/ DpB,. (42)

This result highlights the similarities between the CG method and that of other iterative
methods we treat later such as Lanczos [Lanczos, 1950] and LSQR [Paige and Saunders,
1982], also producing tridiagonal respresentations of the matrix to be inverted.

2.4.5 Model resolution for CG

Although the tridiagonal form found in (42) is interesting in its own right, the more impor-
tant result contained in (41) is the fact that this analysis has resulted in a decomposition in
terms of orthogonal (rather than merely conjugate) vectors. This result allows us to obtain
the resolution matrix quickly for the model space from this form. In particular, if we define
the diagonal matrix

D¢ = G Gy, (43)
we see that
MM ~ G, D' T, D; G, (44)
and therefore, since
— (T T T )|
Romoder = (MIM) M'M = M'M (M"M) ", (45)
we find easily that
5 gig!
Romodet = GkD_lGT = =2t 46

These are effective resolution operators until £ = r, at which time they become true reso-
lution operators.

10



2.4.6 Data resolution for CG

The data resolution is known to be related to the operator
ALy
Rista = M (MTM) M. (47)
Substituting (34) for the pseudoinverse and then defining
q; = Mp;, (48)

we find that the resolution operator for the data space is

k

T
q:9;
Rdata = Z : > (49)
~ (9, 9i)

a form completely analogous to that in (46). These are effective resolution operators until
k = r, at which time they become true (ideal) resolution operators.

2.5 Tridiagonalization and the method of Lanczos

The main results of this subsection were published previously in Berryman [1994a).
Another common method of solving linear inversion problems of the form Ms = t is
Lanczos’s method [Lanczos, 1950; Golub & Van Loan, 1983; van der Sluis & van der Vorst,
1987]. This method introduces a sequence of orthonormal vectors z(k) through a process
of tridiagonalization, and it must be applied to a square matrix (although there are tricks
used to complete the square with rectangular matrices in a way that permits Lanczos to be
applied to rectangular matrices, asin LSQR). Applying this method to the normal equations
M™Ms = M”t, Lanczos’s method is a projection procedure equivalent to the following:

2 (z<1))T M7t = MZt, (50)

[Zu) (Zu))T ) (Z<2>)T M7 Mz = M7 Mz, (51)

and, for k > 2,

[Z(k—l) (Z(k—l))T ) <Z<k))T 4 g(k+D) <Z<k+1))T M Mz® = MMz, (52)

We see that (50) defines z(!) as the unit vector in the direction of M”t, and can have no
terms from the right null space of M. Equation (51) defines z(?) as the unit vector found
by removing the component of M Mz in the direction of z(!) and then normalizing.
Equation (52) determines z(**1) as the unit vector along the component of M?Mz(*) that
is orthogonal to both z®) and z(*-1). By construction,

(Z(z’))T zU) = 6;;, (53)

11



so the vectors are orthonormal (in infinite precision but not in practice).
Defining the constants

T
Ny = [MTt| = (20) M, (54)
T
Dy = (z(k)) MIMz®  for k=1,2,..., (55)
and
kN L N rT g (k
Nig1 = (z< + )) MIMz®  for k=1,2,..., (56)

we then see that the equations (50)—(52) determine a tridiagonal system of the form

Dy Ny
Ny Dy Nj
(0 ... 0 2*D)YNpyy + 7y N3 D3 Ny =MTMZ,
N, D
for 2<k<r, (57)

where the orthogonal matrix composed of the resulting orthonormal vectors is
Z, = (2 22 20 0 gk, (58)

The process stops (in principle) when & = r (the rank of the matrix) because then
N,41 = 0, or is numerically negligible. It follows that this tridiagonalization process results
in the identity

MM = z,T,27, (59)

where the tridiagonal matrix of coefficients is defined by

Dy Ny
Ny, Dy Ns
T) = Ns D3 Ny for 2<k<r (60)

Ne Dy
Since T, is invertible (by the definition of the rank r of M),

(MTM)T =7, (T,) 'z (61)
The solution to the least-squares inversion problem may therefore be written as
1
s=2%,(T,)"'zI'M"t = N,Z, (T,)™" 0 : (62)
0

12



where we used (50), (54), and the fact that

1
0
z'z20 = . |. (63)
0
It follows that we need only the first column of the inverse of T, to solve this inversion
problem.
Since Lanczos’s method directly produces a sequence of orthonormal vectors in the
model space, it is straightforward to see that the model resolution matrix for this method
is given by

t . T
Romodet = MIM (MTM)" = 2,27 = 3" 2 (s)", (64)
k=1
which is also clearly symmetric. It is however more difficult to compute the data resolution
matrix. Using the fact that

T
Riata = MM = M (MTM) M7 (65)
together with (61), we find that
Riata = MZ, (T,) " ZIMT. (66)

It is clear that both of the resolution matrices are symmetric if we compute the full Lanczos
inverse. If the process is terminated early so that k < r by setting the constant Ny4q equal
to zero, then a Lanczos approximate inverse is given by

X*®) = 7, (Tp)' 2F M7 (67)

so that XWMX®) = X*) for all k, but MX®IM £ M if k < . The effective resolution
matrices are given by &oder = XEM and Ejgpq = MX(’“), or are found by replacing Z,
and T, in (64) and (66) by Zy and Ty, respectively. Clearly, the effective resolutions are
also symmetric. Thus, three out of four Moore-Penrose conditions are satisfied by (67), and
all four are satisfied (for infinite precision) when k = r.

An alternative method of computing the resolution matrices involves noting that the
vector sequence z(¥)
conjugate directions. Then, we can produce a set of conjugate vectors from this orthogonal

may also be used as the starting set of vectors for the method of

set and easily compute both the model resolution matrix and the data resolution matrix
if desired. This alternative requires additional work, however, to produce the sequence of
conjugate vectors and it also generally produces a model resolution that is not symmetric,
and therefore difficult to interpret. Thus, the Lanczos procedure appears to be superior
to conjugate directions/gradients from this point of view. (But we have demonstrated
alternatives for computing resolution with conjugate gradients in the preceding subsection.)
The main disadvantage of the Lanczos method is that the amount of storage increases with
the iteration number k, since all the vectors z(1), ...,z
calculation of s®!) = X®*)t. In contrast, conjugate gradients requires a fixed amount of

must be stored until the final

storage, but we must sacrifice an easily interpretable model resolution to gain this advantage.
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2.6 Bidiagonalization, LSQR, and the modified LSQR algorithm

The main results of this subsection were published previously in Berryman [1994b)].

The method of Lanczos [1950] may be applied to any square, symmetric matrix inversion
problem. To solve the least-squares inversion problem, the method may therefore be applied
to the normal matrix MY M. However, dynamic range problems due to poor conditioning
of M worsen when the Lanczos method is applied directly to the normal equations since
the singular values are squared in M7 M. It would therefore be preferable to avoid squaring
the singular values if possible. Another serious drawback of this procedure is that, whereas
M is always a sparse matrix in seismic tomography (each ray path traverses only a small
number of cells in the model), M” M is nevertheless a full matrix. Thus, the straightforward
application of the Lanczos method to the least-squares estimation problem immediately
destroys one of the key simplifying features of the matrix M.

To take full advantage of the sparsity of M, we can “complete the square” with M and

consider either the problem
I M r t
(wr 0)(5) = (o) 8

where r = t — Ms is the residual vector, or the alternate form

(e 0) ()= (we)- (69)

where -p = Ms is the predicted traveltime. The idea of completing the square this way
appears to be due Lanczos [1960], and the application of the idea to computations such as
bidiagonalization and singular-value decomposition is due to Golub and Kahan [1965].

The first approach (68) is the one on which LSQR [Paige and Saunders, 1982] is based,
and it has been used extensively in seismic tomography applications as discussed recently
by van der Sluis and van der Vorst [1987; 1990]. The second approach (69) has been named
LSCG by Paige [1974] and the approach is discussed but rejected by Paige and Saunders
[1982] on the grounds that it must have inferior numerical performance compared to LSQR.
We wish to revisit (69) in the present work, because it has special properties that make
it the preferred form when trying to analyze the progress of the inversion process using
resolution matrices.

Equations (68) and (69) again both have the form Ax = b with square symmetric matrix
T _ (I.T sT) or xI = (pT sT)

A= <MT o ), unknown vectors x , and data vectors

bT = (t7' o) or bT = (07 —tTM), respectively. The LSQR algorithm of Paige and
Saunders [1982] can be obtained in a relatively straightforward manner from (68) by apply-
ing the Lanczos method to the system as we demonstrate in the sequel. Another somewhat
older approach called Craig’s method [Craig, 1955] has been compared and contrasted with
LSQR recently by Saunders [1995]. LSQR was designed originally for overdetermined prob-
lems, whereas Craig’s method was designed for underdetermined or compatible problems.
But Saunders [1995] shows that the two methods, although not precisely equivalent, do
solve the same problems, especially when damping is incorporated as we will do later. We
refer the interested reader to Saunders’ paper and to his references for further information
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about technical issues concerning relationships between LSQR and Craig that are beyond
our present scope.

In this discussion of LSQR, we continue to assume infinite precision in the computations
in order to develop the main ideas. We discuss practical consequences of finite precision in
Section 3.

2.6.1 Choice of starting vector

Relatively little attention has been paid to the choice of starting vector for LSQR and the
other variants of this method such as Craig’s method [Craig, 1955], LSCG [Paige, 1974]
and LSLQ [Paige and Saunders, 1982]. Discussions have naturally centered around issues
of the numerical performance of these algorithms for solving the problem Ms = t in the
least-squares or some other sense. But as we have been stressing in this article, it is also
important to evaluate what has been accomplished once the procedure terminates. To do
this requires either the computation of the resolution matrices or something similar. As we
will now explain, the choice of starting vector has a very important effect on our ability to
compute the resolution matrix for the data space.

The choices of starting vector in the two cases (68) and (69) are very different. These
two vectors are orthogonal, but more importantly their nonzero components lie in different
vector spaces. The choice in (68) is all in the data space, whereas the choice in (69)
is all in the model space. The distinction is important both for resolution analysis and
for numerical reasons. Paige and Saunders [1982] show that even though the two methods
appear to be analytically equivalent, the choice in (69) is expected to be numerically inferior.
The algorithm resulting from applying the Lanczos procedure to (69) is effectively solving
the normal equations M?Ms = M’t, whereas the algorithm resulting from (68) is instead
solving Ms = t in the pseudo-inverse (Moore-Penrose) sense.

Although these conclusions are no doubt correct when the system is compatible, a
problem can arise with (68) when the system is inconsistent. In particular, if the data
vector t contains components in the null space of MT, then LSQR — when used without
modification — will produce a sequence of vectors in the data space having some very
strange characteristics. Since the very first vector in the sequence is the data vector itself,
it will appear that we have perfectly resolved the data at the very first iteration step, which
is clearly incorrect. Furthermore, all subsequent vectors generated in the data space will
be orthogonal (at least in principle) to the first vector, and therefore cannot be used in any
way to shed light on the true resolution of the data that has been achieved.

If we use (69) instead of (68), then the problem described in the preceding paragraph
cannot occur. The starting vector is M”t, and any components of t that might lie in the
null space of M? are projected out of the problem by the operator itself. Thus, by using
(69), we gain most of the advantages of LSQR, but have the added advantage that we
can compute both R, oqer and Ryqzq in a very natural way, as we will see in the following
discussion. We will show later that the numerically unfavorable performance of the choice
(69) affects the calculation by forcing us to reorthogonalize the resulting Krylov sequence,
but this is usually unavoidable anyway whenever the resolution matrices must be computed.
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2.6.2 A variant of LSQR

As we have already discussed, the LSQR method is most commonly based on (68). However,
for our present purposes, (69) is the superior choice for reasons having to do with the data
resolution matrix as we discussed in the preceding subsection. This variant of LSQR is very
closely related to LSCG [Paige, 1974] and to LSLQ [Paige and Saunders, 1982]. We will
refer to it as the “modified LSQR,” and the main modification is just the choice of starting
vector.

We will now provide a derivation of the modified LSQR algorithm. First, consider a
vector of the form

£(k)
0 = (e ) (70)
Then, the Lanczos tridiagonalization process applied to (69) takes the form
W () (0 (.0
2 (20)" (oo ) = (arre ) ()

together with equations

T /1 M I M
[Zm (20)" + 2 (@) ( .o ) 2 — ( r Y ) 20, (72)
and, for & > 2,

[z(’“‘l) (Z(k_l))T Ity (Z(k))T + (kD) (Z(k—l—l))T <1\/}T 1(\)/1) z(F)

- (N}T 1(\)4) z*). (73)

We first set h() = 0. Then, substituting (70) into (71), (72), and (73) gives

£ =0 and h® (h(Q))TMTt = M"t, (74)

£ (1)) Mh® = Mh® and b =0, (75)
and, for k£ > 1,

£ — o and [h(zk) (h(zk))T 1 h(2k+2) (h(2k+2))T MZ£@ = MTECE) - (76)

and
[f@k) (£9) " 4 g4+ (f<2k+2>)T] Mh(?*+2) — MRC2)  and w3 — 9, (77)

Defining the constants

¢ = MTt] = K@M, (78)
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and, for k£ > 1,
o = (h(2k))TMTf(2k) _ (f(zk))TMh(zk) (79)
and
The orthogonal matrix of the vectors £(2%) is defined by
Fp=(f@ @ . f@8)) (81)
while the corresponding matrix Hy, of the vectors h(?%) is defined by
H,=(h® h® . Kk, (82)

Now we introduce the k£ x k upper bidiagonal matrix

92 g3
94 s
Qr = K ’ (83)
G2k
and the related k& x (k 4 1) matrix
92 493

94 s

Q, = % 47 , (84)
92k 92k+1

obtained from Qyj by adding another column with just one nonzero element ¢y41. The two
bidiagonal systems may be written, for 2 < k < r, as

—T
H;11Q, = M'Fy, (85)
and
f(2k+2)e£+1(hk+2 + F; Q) = MHy4 ;. (86)

We see that, when k = r with r determined by the condition that ¢z,41 = 0 (or is numerically
negligible), multiplying (85) on the right by F! and then taking the transpose yields the
relation

M = F,Q,HT. (87)
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This equality is exact for infinite precision and takes its usual approximate meaning in finite
precision. The corresponding approximate inverse is

X, =H, (QT)_l F'/j: (88)
Finally, the solution is given by
s=X,t=H,(Q,)' Flt, (89)

which cannot be simplified directly since, for the sequence following from (69), t is not
orthogonal to any of the vectors f(2¥), Nevertheless, two further simplifications can be
obtained.

To improve the efficiency of the computation, first note that the inverse matrix is upper
triangular and has the simple form

/g2 —q3/4291 4395/ 429446

1/q4 —qs5/q4q96 -
(QT)_lz /1 ql//quq RN (90)

Although it appears that all elements of H, must be retained to the end in order to compute
s, it turns out that if we define the n X r matrix

W, = H (@) = (wl?) wl®) L wl)), (91)
then the n-vectors w(2%) for k = 1,...,r can be computed recursively according to
wi?) = Lpen) LD g o>, (92)
G2k 42k B

The initial vector in the sequence is defined by
w(® = 0. (93)

The need for retaining earlier vectors h()) for j < k, is eliminated using this recursion, since

the pertinent information in the required form is already imbedded in the vectors w(Z¥).

The second simplification results when we note that
F.Q, = G,;1B,. (94)
From (94), it follows that
£R) gy = g(zk)bzk + g(2k+2)b2k+1 — £ 2gy . (95)

Using the facts that t7 - g(®?) = b; and that t is orthogonal to all other gs, we find the
general result that

¢T . g(2k) _ _4T . f(2k—2)q2k_1/q2k _ (_1)k k-1 '(]1‘ (96)

92k " 42
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Thus, we have found an explicit expression for the elements of the vector F1t appearing in
(89).

The resulting algorithm is very similar to the one used in LSQR, although the starting
point and some of the details of the derivation are slightly different.

The main point of this effort is that we end up with virtually the same algorithm as
LSQR — apparently having all its good properties — but we can also compute the data
resolution safely and easily if we choose to do so.

2.6.3 Formulas for resolution using LSQR

Our main conclusion is that the model resolution for this approach is given by
Rmodet = MM = X, M = H,H? (97)
while the data resolution is
Riata = MM' = MX, = F,FI. (98)

Equations (97) and (98) are both exact (at least in principle). The usual caveats apply if
the process is terminated early, so the final iteration number is k& < r. See Section 3 for
further discussion of numerical issues, and discussion of reorthogonalization.

2.6.4 Diagonal resolution

If — as is often the case — the only resolution matrix desired is the model resolution, then
it may also suffice to limit consideration to the diagonal components of the effective model
resolution matrix

()2
k (29)\2
diag(éﬂ?dd) = Z (hQ' ) , for k=1,...,7. (99)
=1 .
(hi2)?

This vector can be accumulated easily without subsequently retaining the components of
the vectors h(?) for all ¢ = 1,...,k. The diagonal components are also the ones that are
normally the easiest to interpret, since they are positive and generally lie between 0 and
1 and therefore may be treated as measures of the probability of having correctly resolved
the model slowness value in a given cell. However, it should be emphasized that various
authors, including Evans and Achauer [1993], caution that diagonal resolution alone can be
misleading.

Of the methods commonly used to compute iterative inverses, this variant of LSQR is
the only one known to the author that may be used to compute diagonal components of
the data resolution (98) in analogy to (99). This result is another factor favoring the use of
LSQR-type algorithms for seismic tomography problems.
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2.7 LSQR for damped least-squares

If the ray-path matrix M is very poorly conditioned, it may be advisable to modify the
normal equations with a damping term. Then, (69) changes to

(e 25) (2) = (Lime)- (100

where —p = Ms is still the predicted traveltime vector, but now the solution vector satisfies
—1
s=(M"M+pu1) M7t (101)

The inverse matrix in (101) exists for any value of p > 0, since the eigenvalues of MTM
are nonnegative and the addition of the diagonal term g shifts all the eigenvalues up by p.

Applying the Lanczos method to (100), we soon discover that the terms proportional to
1 always cancel out of the equations so the hard part of the analysis is the same as for the
undamped problem. Thus, with r being the rank of M, we find

M = G,B,H! and M'=H,B 'GI, (102)

as before. For infinite precision, the orthogonal matrices Gy and Hy for all k£, in the range
1 <k < r, are all identical to those for the undamped case.

Then, we can write the regularized normal matrix in terms of these orthogonal matrices
and find its inverse. The matrix is given by

M™M + ul = H,BTB,H” + jd = H, (BTB, + ) HY + 4 (1- H.HT).  (103)

The inverse matrix is easily shown to be

-1 -1 1
(MM + 1) =H, (BTB, + 1) H! + - (1- H,HT). (104)
I
Substituting this result into (101) gives
1
-1 -1 0
s=H, (BB, +ul) BIGIt=0H, (BB, +u1) B! |, (105)
0

which should be compared to (89). Following the same analytical path used in the Lanczos
method for damped least-squares, the result is

s=2Z, (T, + u) ' Z2Z'M"t = D1Z, (T, + 1)~ | . |, (106)

which should be compared to (62).

Using (102), it is straightforward to check that these two formulas have the same Moore-
Penrose characteristics as other damped approximate inverses. The resulting resolution
matrices are symmetric, but the two remaining uniqueness conditions are both violated for
any g > 0. The same results hold for partial versions of these formulas, where the process
is terminated early at some k < r and rs are replaced by ks everywhere in the formulas

(105) and (106).
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2.8 Summary

The Table summarizes the results obtained for iterative inverses.

TaBLE. Qualitative comparison of various iterative inverses.

Moore-Penrose Conditions

Iterative MXM | XMX | (XM)" | (Mx)?
Inverse =M =X =XM | =MX
Fully iterated
CD, CG, Lanczos, or yes yes yes yes
Modified LSQR
Full
LSQR yes no yes yes
Inverse
Partial
Lanczos, or no yes yes yes
Modified LSQR
Partial
Conjugate no yes no yes

Directions/gradients

Partial

LSQR no no yes yes

Inverse

Damped
Lanczos or no no yes yes

LSQR

3 Computational Issues: Necessity of Reorthogonalization

Suppose we want to invert a square, n X n symmetric matrix A and we want to do so using
some iterative method like Lanczos, LSQR, conjugate gradients, etc. Then the iterative
algorithm generally may be expressed in the form

AZj, = Z; Ty + Npj1zppaef (107)
for k < r where r is the rank of the matrix A and the matrix Zj, given by

Zy=(z1 22 ... 2Z), (108)
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is composed of the column vectors z; for « = 1,...,k that have been generated so far
in the iterative process. The other terms in (107) are the unit vector e, with its single
component in the kth position, and a norming constant Ny4q. The formula (107) with T
being a tridiagonal matrix is just the iterative scheme of Lanczos.

Now the model resolution matrix R,,,q4e for the iterative scheme at the kth iteration is
given by

Ry = Z,ZT. (109)

However, care must be taken to make sure that the z;s are really orthogonal as they are
expected to be in this scheme. The tridiagonalization process produces a sequence of or-
thogonal vectors in principle, but in practice the orthogonality may break down after several
iterations when the calculations are performed at finite precision. To demonstrate how the
lack of orthogonality affects the process consider the following facts. Let the eigenvalues of
the matrix A be ordered so that A2 # 0 fori =1,...,rand M =0fori =7+ 1,...,n.
(We write the eigenvalues as squares because A often takes the form of a normal matrix
A = MTM, in which case the singular values of M are the A;s.) Then the trace of the
matrix is just

TrA =) A% (110)

=1

The model resolution Ry is a projection operator onto a k-dimensional Krylov subspace
(the one explored so far by the iterative method) of the n-dimensional space that is both
the range and domain of A. Taking the trace of Rz A shows that

k
Tr |2,2] A] = Tr (2] AZ:] = Y 2] Az, (111)
=1
Let v; for ¢ = 1,...,r be the normalized eigenvectors associated with the eigenvalues

A2, Then, assuming only that z; has no components in the null-space of A, each of the
iteration vectors z; can be expanded in terms of these eigenvectors with the result that

zi = Y (ijvj. (112)
i=1

Similarly, the eigenvectors can be expanded in terms of the full set of normalized iteration
vectors z; according to

vi=Y_ Gijzi, (113)
1=1

where the same set of coefficients (;; is used in both
2 2
DCG=1=20] (114)
=1 71=1
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in order for both sets of vectors to be normalized to unity.
Substituting (112) into (111), we find easily that

T [2,2] A] = iA? l k
j=1 i

2
Cij
=1

<AL (115)
7=1

The inequality follows, since the coefficients (;; are all real, and therefore

k r
YN =1 (116)
7=1 7=1

Thus, we can expect that as long as the vectors returned by the iterative scheme are
orthogonal, the effective trace of the operator T must remain smaller than that of the
original operator A. If this constraint is violated (we provide examples of this in the next
section), then we know that the z;s generated so far are not orthogonal and furthermore
that this lack of orthogonality is having serious negative consequences on our ability to
compute the resolution operator correctly.

For a more extensive discussion of the effects of finite precision on such computations,
the reader is referred to Greenbaum and Strakos [1992].

4 Crosswell Tomography Application

Figures 1-4 provide some numerical examples comparing and contrasting the results ob-
tained using standard SVD resolution calculations with the LSQR [Paige and Saunders,
1982] resolution calculations as described in an earlier paper [Berryman, 1994b]. We con-
sider a 4 X 4 model using strictly crosswell data, so there are 16 source/receiver pairs as well
as 16 cells in 2D. Model slowness values are shown in the upper block of each figure, while
diagonal resolution values are shown in the lower block. The first two examples (Figures 1
and 2) show results for the actual model used to compute the traveltime data (see Berryman
[1990] for a description of the code used to generate both the forward and inverse solutions).
The second two examples (Figures 3 and 4) show results obtained after 15 iterations of the
reconstruction code of Berryman [1990]. The LSQR resolution examples (Figures 2 and 4)
were computed using ten iterations of the LSQR algorithm, so the maximum size of the
resolved model vector space has dimension ten. To aid in the comparison, the SVD reso-
lution examples use only the 10 eigenvectors associated with the 10 largest eigenvalues of
the ray-path matrix. We find the results are in qualitatively good agreement. Better quan-
titative agreement is not anticipated because the 10-dimensional vector spaces spanned by
these two approximations, although having large regions of overlap, will nevertheless almost
always differ to some degree.

4.1 Tests of orthogonalization

For the LSQR algorithm, it is easy to check the trace of the effective operator since it is
just the sum of the squares of the elements in the resulting bidiagonal matrix. To test
the ideas of the preceding section, we first perform an LSQR inversion while imposing full
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reorthogonalization [Arnoldi, 1951] at each step. Doing so, we obtain Figure 5, showing
that the effective operator trace converges monotonically to the true trace from below as
expected.

In contrast, Figure 6 shows that without reorthogonalization the trace of the effective
operator has already exceeded the upper bound — thus demonstrating that the eighth
direction vector found by LSQR has at least some component parallel to one of the earlier
vectors and also along some singular vector with large singular value. Observing the later
behavior of this curve, regions of small slopes may correspond to allowable (orthogonal)
direction vectors, but the regions of large slope must be resampling the regions of the
vector space with the largest singular values. This observation shows that the rebirth
of nonorthogonal vectors does not happen just at the eighth iteration, but is a recurring
problem.

These two examples show clearly that full reorthogonalization works very well and that
failure to do any reorthogonalization can lead to serious problems with the set of direction
vectors generated by such schemes. To make progress, we want to know whether full
reorthogonalization is required, or whether some type of partial reorthogonalization might
be as effective as full reorthogonalization. We want to explore the tradeoffs between cost of
the partial reorthogonalization and the benefits to be derived from it. Figures 7-11 explore
these issues.

Figures 7-9 refer to the same model considered in Figures 1-6. Figure 7 shows that
orthogonalizing against the first 1, 2, or 3 vectors improves the results progressively, the
more vectors are used for the reorthogonalization. Figure 8 shows that reorthogonalization
against the 1, 2, or 3 most recently generated vectors does not work as well as the previous
Figure. Reorthogonalizing against both 1, 2, or 3 early and late vectors gives virtually
identical results in Figure 9 as those results observed in Figure 7.

Figures 10 and 11 refer to a model of 16 x 8 cells similar to that considered earlier by
Berryman [1990]. Figure 10 shows that reorthogonalizing against only the first and last
vectors generated in the iteration sequence is quite ineffective at reducing the nonorthogo-
nal vectors generated. Figure 11 shows that reorthogonalizing against the first 35 vectors
produces a major improvement, without significant orthogonalization problems out to 90
iterations, instead of the less than 35 iterations found for serious errors to arise with only
one vector reorthogonalization.

We conclude that reorthogonalization is effective and the partial reorthogonalization is
most effective when the vectors chosen for the reorthogonalization set are those from the
early part of the iteration sequence. The reason that these vectors are best to use is pre-
sumably because they correspond to directions that have components parallel to directions
in the space that are singular vectors of the operator being inverted with largest singular
values. These vectors like to be reborn in this process and reorthogonalization is an effec-
tive means of preventing multiply copies of the same dominant vectors from recurring in
the iteration sequence.
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5 Conclusion

The methods of computing resolution matrices that have been illustrated here may be easily
generalized to a variety of other iterative and approximate inversion methods. We have
explored partial reorthogonalization methods for iterative methods and have found that
using a subset of the early vectors generated in the iteration sequence is most effective at
reducing unwanted occurrences of nonorthogonal vectors in the later parts of the iteration
sequence. These early vectors correspond to directions that have components along the
singular vectors with the largest singular values, and these are precisely the vectors we
most need to exclude from the later iterations. Such recurrences may not adversely affect
the inversion itself, but do make the computation of the resolution matrices (operators)
much more complicated than if the orthogonality is enforced.
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Figure 1: Target model slowness (a) and resolution (b) for truncated SVD using 10 largest
eigenvalues.
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Figure 2: Target model slowness (a) and resolution (b) for LSQR after 10 iteratons.
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Figure 3: Slowness (a) and resolution (b) for truncated SVD using 10 largest eigenvalues.
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Figure 4: Reconstructed slowness (a) and resolution (b) for LSQR after 10 iterations.
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Trace of Effective Operator

Arnoldi: Full Reorthogonalization

Trace
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Iterations

Figure 5: LSQR with full (Arnoldi) reorthogonalization.
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Trace of Effective Operator

No Reorthogonalization
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T T T T T T T 1
2 4 6 8 10 12 14 16

Iterations

Figure 6: LSQR with no reorthogonalization.
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Reorthogonalize Early Vectors
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Figure 7: LSQR with partial reorthogonalization — first one, two, or three.
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Reorthogonalize Latest Vectors

Trace

Trace of Effective Operator

o T T T T T T T 1
0 2 4 6 8 10 12 14 16

Iterations

Figure 8: LSQR with partial reorthogonalization — last one, two, or three.
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Reorthogonalize Both Early and Latest Vectors
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Figure 9: LSQR with partial reorthogonalization — using both first and last one, two, or
three.
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Reorthogonalize against 1 Early and 1 Late
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Figure 10: LSQR with partial reorthogonalization — using first and last vector.
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Reorthogonalize Against Early Vectors
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Figure 11: LSQR with partial reorthogonalization — using first, or first 35 vectors, or full
reorthogonalization.
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