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Abstract

The process of using physical data to produce images of important physical parameters
is an inversion problem, and these are often called tomographic inverse problems when
the arrangement of sources and receivers makes an analogy to x-ray tomographic methods
used in medical imaging possible. Examples of these methods in geophysics include seismic
tomography, ocean acoustic tomography, electrical resistance tomography, etc., and many
other examples could be given in nondestructive evaluation and other applications. All
these imaging methods have two stages: First, the data are operated upon in some fashion
to produce the image of the desired physical quantity. Second, the resulting image must be
evaluated in essentially the same timeframe as the image is being used as a diagnostic tool.
If the resolution provided by the image is good enough, then a reliable diagnosis may ensue.
If the resolution is not good enough, then a reliable diagnosis is probably not possible. But
the first question in this second stage is always “How good is the resolution?” The concept
of resolution operators and resolution matrices has permeated the geophysics literature
since the work of Backus and Gilbert in the late 1960s. But measures of resolution have
not always been computed as often as they should be because, for very data rich problems,
these computations can actually be significantly more difficult /expensive than computing
the image itself.

It is the purpose of this paper and its companion (Part II) to show how resolution
operators/matrices can be computed economically in almost all cases, and to provide a
means of comparing the resolution characteristics of many of the common approximate
inverse methods. Part I will introduce the main ideas and analyze the behavior of standard
methods such as damped least-squares, truncated singular value decomposition, the adjoint
method, backprojection formulas, etc. Part II will treat many of the standard iterative
inversion methods including conjugate gradients, Lanczos, LSQR, etc.



1 Introduction

The primary goal of tomography is to take a set of data and produce an image, in either two
or three dimensions, of some physical quantity of interest. For example, x-ray tomography
uses data on attenuation of x-rays to image density contrastsin a body, while seismic tomog-
raphy uses measured traveltimes of soundwave propagation to deduce and image velocity
structure of the earth. A secondary, but often equally important, goal of tomography is to
make some statement about how reliable the resulting image is, or about how much more
reliable certain parts of the image are compared to other parts. This secondary goal of to-
mography will be the main topic of the present work. A short name for the issue in question
is analysis of “resolution” in tomography, but the resolution to which we refer is a technical
quantity that may not agree with the reader’s notion of what the term “resolution” should
mean. To avoid this possible conflict between common and technical meanings of the term
“resolution,” we will refer to our current enterprise as “analysis of approximate inverses in
tomography.” By this phrase we mean that we intend to proceed towards the secondary
goal of tomography by analyzing many of the types of procedures used to produce images,
providing whenever possible a straightforward computational means of assessing the reli-
ability of the images produced, and also gaining some insight into the practical issues of
“resolution” in both the common and technical senses of the term.

The first part of this article focuses on qualitative aspects of the analysis, while the sec-
ond part [Berryman, 1999] focuses on more quantitative aspects. The qualitative aspects of
the analysis entail trying to seek common and desirable features in the approximate inverses
and their resolution operators. For example, one desirable feature for problems involving
real operators/matrices is a symmetric resolution operator, since it is very dificult to in-
terpret and therefore to make any practical use of a nonsymmetric one. The quantitative
aspects of the analysis entail construction of practical computational methods that allow
direct computation of the resolution operators for any of the methods considered and in
particular for the iterative methods that tend to be used for the larger problems occuring
in modern imaging problems.

Before beginning the analysis, we will motivate our choice of problem formulation in
the next section. Then, the seismic traveltime tomography problem is introduced as our
generic example of the inverse problems to be studied. Section 4 introduces the Moore-
Penrose pseudoinverse of the pertinent matrices, and emphasizes the role of the resolution
projection operator both in the defining relations for the pseudoinverse and in its analysis.
The l,-norms are introduced in Section 5 and the significance of the absolute value norm ()
is discussed in Section 6. Regularization of least-squares solutions is discussed in Section
7 and other approximate methods of generating pseudoinverses are presented in Section 8.
Section 9 provides an overview of the analysis of approximate inverses.

2 Continuous Versus Discrete Operators

The methods to be treated here can be applied to many different problems in imaging and
inversion. We will take Farth imaging as our primary example, but the reader who has
other interests should view the methods presented as just one concrete example of the very



general linear inversion problem of the form Az = y, where A is some linear operator, y is
data function or vector, and z is a model function or vector to be determined.

When studying the Earth, geophysicists often like to remind us that the physical prop-
erties of the Farth are highly variable from location to location and from scale to scale.
Therefore, the student of the Earth should always keep in mind that whatever model of
the Earth is being constructed, by whatever combination of experiment and analysis, will
always be inadequate in some sense. For the present purposes, we will say such models are
underparameterized. We could perhaps imagine the ideal Earth model would actually be a
continuum model, while any model we can construct in practice is merely a crude cartoon
of that continuum. Discretely parameterized models are, of course, very commonly used in
computer codes. To believe that discretely parameterized models have meaning, we must
have enough faith in the chosen parameters to think that they represent the “true” Earth
locally at least in some average sense. Presumably it will always be hopeless to parameter-
ize the full Earth continuum, but we hope it will also be unnecessary to do so. Processes
taking place on a scale smaller than the grid spacing (call these the subgrid processes) can
(we hope) be usefully approximated by treating a model with relatively few well-chosen
parameters.

The methods we will describe in this paper could be formulated in at least two different
ways: (1) in terms of an operator language that would apply to virtually any means of
computing the desired quantities appearing in the analysis, or (2) in terms of matrices,
which we may view as a discrete version of the equivalent operator. It is somewhat easier
and more concrete to discuss the methods in terms of matrices and that is what we choose
to do here.

3 Example: Seismic Traveltime Tomography

Various examples of the methods to be discussed in this article could be provided, but
to be keep the analysis both simple and concrete we will limit most of our discussion to
physical problems based on seismic traveltime tomography [Aki and Richards, 1980; Nolet,
1987]. Other choices such as ocean acoustic tomography [Munk et al., 1995] or electrical
impedance tomography [Yorkey et al., 1987], among many others, could have been made,
but an understanding of seismic traveltime tomography is sufficient to introduce all the
main ideas and yet complex enough to be a good introduction to the main difficulties with
these methods as well. We will introduce the problem of seismic traveltime tomography in
this section and then return to it when we provide some worked examples at the end of the
article.

A typical problem in seismic traveltime tomography is to infer the (isotropic) compres-
sional-wave velocity distribution of an inhomogeneous medium, given a set of observed first-
arrival traveltimes between sources and receivers of known location within the medium. This
problem is common for borehole-to-borehole seismic tomography in oil field applications
[Bording et al., 1987; Rector, 1995]. We might also consider the problem of inverting for
wave slowness when the absolute traveltimes are not known, as is normally the case in
earthquake seismology.



3.1 Slowness Models

We can consider three kinds of slowness (reciprocal of velocity) models. If we permit the
slowness to be a general function of position, s(x), then this is a continuum model, which is
explicitly excluded from consideration here. We can instead make one of two more restrictive
assumptions that (¢) the model comprises homogeneous blocks, or cells, with s; denoting
the slowness value of the jth cell, or (7i) the model is composed of a grid with values of
slowness assigned at the grid points with some interpolation scheme to assign the values
between grid points.

When it is not important which type of slowness model is involved, we will refer to the
model abstractly as a vector s in a vector space. For a block model with n blocks, the
model becomes a vector in R"™, the n-dimensional Fuclidean vector space.

3.2 Fermat’s Principle and Traveltime Functionals

The traveltime of a seismic wave is the integral of slowness along a ray path connecting the
source and receiver. To make this more precise, we will define two functionals for traveltime.
Let P denote an arbitrary path connecting a given source and receiver in a slowness
model s. We will refer to P as a trial ray path. We define a functional 7 which yields the
traveltime along path P. Letting s be the continuous slowness distribution s(x), we have

P(s) = /P s(x) dIF, (1)

where dI¥ denotes the infinitesimal distance along the path P.

Fermat’s principle states that the correct ray path between two points is the one of
least overall traveltime, i.e., it minimizes TP(s) with respect to path P. [Actually, Fermat’s
principle is the weaker condition that the traveltime integral is stationary with respect to
variations in the ray path, but for traveltime tomography using measured first arrivals it
follows that the traveltimes must truly be minima.]

Let us define 7* to be the functional that yields the traveltime along the Fermat (least-
time) ray path. Fermat’s principle then states

* : P
"= T ) @)
where Paths denotes the set of all continuous paths connecting the given source and receiver.
The particular path that produces the minimum in (2) is denoted P*. If more than one
path produces the same minimum traveltime value, then P* denotes any particular member
in this set of minimizing paths.
To summarize, we have

T"(s) = /* s(x)dif” = m];n/Ps(x) dif = m];n P (s). (3)

The traveltime functional 7*(s) is stationary with respect to small deviations from the path
P*(s).

Snell’s law is a well-known and easily derived consequence of the stationarity of the
traveltime functional [Feynman et al., 1963; Whitham, 1974].
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Figure 1: Schematic illustration of acoustic ray paths through a discrete, constant veloc-
ity /slowness model.

3.3 Seismic Inversion

Suppose we have a set of observed traveltimes, 11, ..., {,,, from m source-receiver pairs in a
medium of slowness s(x). Let P; be the Fermat ray path connecting the ith source-receiver
pair. Neglecting observational errors, we can write

/s(x)dlp': i ot=1,...,m. (4)
F;

Given a block model of slowness, let /;; be the length of the ith ray path through the
7th cell:

li; = / . (5)
Pincell;



Given a model with n cells with the jth cell having constant slowness s;, (4) can then be
written

Zlijsj:tia 1=1,...,m. (6)
=

Note that for any given ¢, the ray-path lengths /;; are zero for most cells j, since a given
ray path will in general intersect only a few of the cells in the model. Figure 1 illustrates
the ray path intersections for a 2-D block model.

We can rewrite (6) in matrix notation by defining the column vectors s and t and the
matrix M as follows:

$1 ty i ha - by
‘o S92 7 ¢ t2 7 M — 1%1 lag -+ oy (7)
Sn tm lml lm? e lmn

Equation (6) then becomes
Ms = t. (8)

Equation (8) is just the discretized form of (3).

Equation (8) will be become our generic inversion problem in the remainder of this
article. The right hand side is the data m-vector t, whose elements are the m traveltime
measurements in this application. The left hand side has as one of its factors an m X n
matrix M, which for this article will be assumed known (but for real applications is often
another unknown in the problem [Berryman, 1990]). The remaining factor is the model
n-vector s, which is the model we seek in the inversion process. In practice, either m < n
or m > n may occur in real problems. We refer to the case m < n as underdetermined and
the case m > n as overdetermined, although this terminology is an oversimplification of
the situation usually encountered in practice [Jackson, 1972]. Most of the remainder of the
article will concentrate on solving this equation approximately for s, and simultaneously
providing some means of analyzing how well the method of approximate solution has worked.
We return to the specific application to seismic traveltime tomography at the end of Part

II.

4 Matrix Analysis and the Pseudoinverse

Various peculiar properties of a rectangular matriz M of size m x n (with m # n) can cause
the innocent looking equation

Ms=t (9)

to be very difficult to solve for the model vector s in terms of the data vector t. Although
generalized matrix inverses may be defined, each definition requires the choice of some figure
of merit. The most common choices are based on error norms: the resulting model vector



should minimize an objective functional of the errors t — Ms. Although each objective
functional generally leads to a unique approximate inverse, the choice of the objective
functional itself is somewhat arbitrary. Therefore, it is important to analyze the range of
useful choices and to determine general characteristics that help to distinguish among these
choices.

Least-squares objective functionals are the ones most commonly used for several reasons:

1. The solution of the least-squares minimization problem is linear and therefore requires
only linear algebraic computations.

2. A well-developed theory of generalized inverses exists and the most natural one of
these (the Moore-Penrose pseudoinverse [Moore, 1920; Penrose, 1955a]) is intimately
related to the least-squares solution [Penrose, 1955b].

3. Resolution properties of the least-squares solutions are well-understood.

Other types of approximate inverses may be and often are considered. For example,
elementary backprojection formulas are themselves approximate inverses. More sophisti-
cated objective functionals based on other measures of the error — instead of the squared
error — are most often considered when the data are found and/or expected to be erratic.
Robust inversion techniques sometimes use the /;-norm (absolute error) either instead of or
in combination with the ly-norm (squared error) to reduce and/or eliminate the effects of
outliers, which tend to dominate least-squares analyses but have little or no effect on the
solution for /1-based analysis. The biggest problems with these approximate inverses is that
the minimum of an objective functional based on absolute values is found by linear pro-
gramming (rather than linear algebra) and, furthermore, the minimum may not be unique.
(More about this in Section 6.) Another important problem is that the resolution properties
of these other approximate inverses (including the commonly used one-shot backprojection
formulas) are not well-understood.

We examine these questions in this section. Our main purpose is to find qualitative
means of comparing the performance of various approximate inversion techniques. Since the
Moore-Penrose pseudoinverse is probably the most thoroughly analyzed of the generalized
inverses, we check each approximate inverse for satisfaction of the four Moore-Penrose
uniqueness conditions. Because of the uniqueness result, any inverse that satisfies all four
is equivalent to the Moore-Penrose inverse. Most of the approximate inverses mentioned
violate one or more of these conditions.

The more quantitative aspects of this problem will be examined in some detail in Part II.
Important practical results of this analysis are explicit formulas for computing both model
and data resolution matrices for many of the more common iterative methods, including
conjugate directions/gradients [Hestenes and Stiefel, 1952], Lanczos [Lanczos, 1950], and

LSQR [Paige and Saunders, 1982].

4.1 Moore-Penrose conditions

The Moore-Penrose pseudoinverse is very well-known, but we want to approach it from an
unusual angle and so give a different derivation in this subsection. The advantage of this



approach will be seen when we are able to give a definite interpretation to each of the four

Moore-Penrose uniqueness conditions.

We need the following fact to prove our main results in this section:

ProrosiTioN 4.1 For any real matriz A,

ATA=0
Proof:
..., a,, then
aj
T
a
T 2
A A= (a1
a,
T T
T T
aa; azap
T T
a.a; ajaz

implies

A =0. (10)

If A is an arbitrary m X n real matrix whose column m-vectors are a;, ag, ag,

az ... ap)

T
aja,

T
aja,

(11)
ala,

The diagonal components of AT A are the squares of the magnitudes of the column vectors.
Then clearly, if ATA = 0, all the column vectors a; = 0 and therefore A = 0. 1

THEOREM 4.1 The three equations

(XM)*

MXM =
(MX)T =

M,
MX,
XM,

have a unique solution X for any real matric M of full rank.

Proof: Suppose there are two solutions X and Y, both satisfying the three conditions
of the theorem. The first condition of the theorem applied to both X and Y gives

MXM =M =

and, therefore, implies that

M (X - Y)M = 0.

Then, using XTM? = (MX)" = MX,

X-Y)YIMMX-Y)=MX-Y)M(X-Y)=0.

MYM (12)

(13)

(14)



Because all the diagonal elements of the left-hand-side of (14) are sums of squares, it can
only vanish (see PrRoposITION 4.1) if

M(X-Y)=0, (15)

showing that the columns of (X — Y) must all lie in the right null space of M.
Using MTXT = (XM)¥ = XM, we also find that

MIX- Y)Y (X-Y)M=(X-Y)MX-Y)M=0 (16)
implies
(X -Y)M =0, (17)

showing that the rows of (X —Y) must all lie in the left null space of M. [Note that (15)
and (17) were obtained without using the assumption that M is of full rank.] However,
since M is assumed to be of full rank, one or both of these equations — either (15) or (17)
or both — can only be satisfied if (X —Y) = 0. Thus, X =Y, and the solution is unique.
]

THEOREM 4.2 (Moore-Penrose) The four equations

MXM = M,
XMX = X,

(MX)T = MX,
(XM)T = XM,

have a unique solution X for any real matriz M.

Proof: Suppose there are two solutions X and Y, both satisfying all four conditions
of the theorem. Then, the proof of the preceding theorem requires only the three boxed
relations of THEOREM 4.1 to derive (15) and (17) and therefore shows that the first, third,
and fourth conditions of the present Theorem imply

MX = MY (18)
and
XM = YM. (19)
Multiplying (18) on the left by X and (19) on the right by Y, we find
XMX = XMY = YMY. (20)

Substituting the second condition from the statement of the present theorem into (20) on
both the left and the right shows that

X = XMY = Y. (21)



Thus, the solution X is unique. 1

The unique generalized inverse satisfying the conditions of THEOREM 4.2 is the Moore-
Penrose pseudoinverse X = M, where the dagger notation means simply that M' is the
Moore-Penrose pseudoinverse of M. The unique generalized inverse found in THEOREM
4.1 is also the Moore-Penrose inverse, but we see that the additional condition XMX = X
is a consequence of the other three conditions when M is of full rank — since then either
MX =1,, or XM = I,, must hold, when m # n.

4.2 Significance of the Moore-Penrose conditions

Recalling the physical interpretation of Ms = t given after (8), we will consistently refer to
s as the model vector and to t as the data vector. Following this convention, any n-vector
that might be multiplied on the right hand side of M is a vector in the “model space,” while
any m-vector whose tranpose might be applied to the left hand side of M (or equivalently
the vector itself to the right hand side of M) is a vector in the “data space.”

To interpret the Moore-Penrose conditions, we must first define two types of ideal res-
olution operator in terms of the Moore-Penrose pseudoinverse Mf. The model resolution
operator is defined as

Ronodet = MTM7 (22)
while the data resolution operator is defined as
Riata = MM, (23)

By considering the singular-value decompositions of M and M, it is easy to see that these
two operators are projection operators respectively on the parts of the model and data spaces
spanned by the left and right singular vectors of M corresponding to nonzero singular values.
Precisely the same resolution operators arise if we consider the normal matrix MTM for
overdetermined systems or the normal matrix MM for underdetermined systems. The
unique resolution matrix for the symmetric matrix MM is Rpoger as defined in (22), and
similarly Rgq¢q as defined in (23) is the unique resolution matrix for MM,

The resolution matrices defined in this way are ideal resolution matrices that define the
subspaces spanned by the singular vectors having nonzero singular values. Knowledge of
these matrices/operators helps us to gain insight into the degree of trustworthiness of the
model s constructed by using the exact M and also the degree to which the information
in the data vector t has been used in the reconstruction. If both resolution matrices are
identity matrices, then a perfect inverse has been achieved. But in realistic inverse problems,
this essentially never happens. If the matrix is rank deficient or if it is so large that it is
impractical to compute MT, then one or the other and often both R,,.4c and Rgq:q differ
from the identity matrices of the ideal case.

In particular, we will define analogs of these matrices for problems in which an approx-
imate inverse X is used in place of M. In such circumstances, we will call the resulting
matrices the “effective resolution matrices.” However, we want to be clear that effective
resolution matrices do not necessarily provide good approximations to the ideal resolution
matrices. In fact, the ideal resolution matrices may be completely irrelevant to the problem

10



obtained using some choices of the approximate inverse. Instead we want to define the “ef-
fective resolution matrices” so they correctly compute the appropriate projection operator
for the approximate inverse X no matter how crude it may be.

Fach of the four Moore-Penrose conditions can now be given a simple interpretation. For
example, the last two conditions are constraints on the form of what we will call “effective
resolution matrices.” In particular, the effective model resolution [Backus and Gilbert,
1968; Jackson, 1972] is

gmodel = XM7 (24)
so the last condition
(XM)! = XM (25)

is a statement that the effective model resolution should be symmetric. Similarly, the third
condition

(MX)" = MX (26)
states that the effective data resolution [Wiggins, 1972; Jackson, 1972]
Edata = MX (27)

should be symmetric. If these symmetry conditions are violated by an approximate inverse,
we will generally find it difficult to interpret the off-diagonal terms in these resolution
matrices. Thus, symmetry of the resolution matrices is a desirable quality and one we
should therefore seek to enforce in any approximate inverse.

An understanding of the significance of the second condition of Moore-Penrose follows
easily from the analysis of the last section. We see that the condition

XMX = X. (28)

is a uniqueness condition on the approximate inverse X. Lack of uniqueness for the matrix
X may arise if it contains contributions from the null space of M. To see that (28) explic-
itly excludes the possibility of having such contributions in X, consider the singular-value
decompositions (SVDs) [Lanczos, 1960; Golub and Van Loan, 1989]

M = E /\Z-uinT and X = Z /\Z»_IVZ'UZT + €0V011(1;7 (29)

where the vectors u; and v; are the singular vectors of M as well as the eigenvectors of
MM and MTM respectively, the ); are the corresponding singular values with A2 being
the nonvanishing eigenvalues of both MM? and M?M. The vectors vy and ug are any
vectors from the left and right null spaces of M, i.e., satisfying Mvg = 0 and ugM = 0.
Then, since the presence of M in (28) guarantees that the left hand side of (28) cannot
have any contribution of the form voul while the right hand side does have such a term
if €9 # 0, equality in (28) clearly implies g = 0, which is a uniqueness (minimum norm)
condition.

11



Similarly, the first condition of Moore-Penrose
MXM =M (30)

is a type of uniqueness condition on the matriz M. It explicitly excludes the possibility that
terms from the null space of the approximate inverse X contribute to the matrix M. Thus,
(28) requires that a given M has only one X, while (12) requires that X is the approximate
inverse for only one M. Of course, strict uniqueness holds only if all four conditions are
satisfied simultaneously. In fact, we will see this point elucidated further in the following
discussion of the various approximate inverses considered. We find that these approximate
inverses may be conveniently characterized by which subset of the Moore-Penrose conditions
they violate.

Finally, we note that (28) and (30) can be rewritten to emphasize the importance of the
resolution operators as

RmodelX = XRdata =X (31)
and
MRmodel = RdataM = M. (32)

Thus, X is uniquely determined by its projections on the resolved parts of the data and
model spaces, and M uniquely determines what these resolved parts are when the resolution
operators are both symmetric.

All these interpretations may be understood very easily by considering the singular-value
decompositions of the matrices M and X, as we did to demonstrate our interpretation of
(28) as another type of uniqueness condition.

5 Significance of [, Norms

The most often used objective function in optimization theory is the squared-error func-
tional, but a more general objective function commonly considered is

P

Vp(s) = D wi |y lijsj —ti| (33)
=1 =1

where 1 < p < oo [Claerbout and Muir, 1973; Claerbout, 1976; Dines and Lytle, 1979;
Scales and Gersztenkorn, 1988; Scales et al., 1988; Scales et al., 1990]. This functional
is the sum of the absolute values of the errors taken to the power p. When p = 2, the
functional reduces to the least-squares functional. Nonnegative weights w; # 1 may also be
used in this sum if desired, but we will take w; = 1 here and concentrate instead on the
major differences between these functionals for p # 2 and for the most common exponent
p = 2. (We discuss weighted least squares in Section 8.3.)

To gain some understanding of the effect of the exponent p in the objective functional,
it will be helpful to consider a simpler problem first. If we want to estimate a variable z

12



from a series of measurements x; for 2 = 1,...,m, we may also consider
m
Qpla) =)l — il (34)
=1
Differentiating (34) with respect to z and setting the result equal to zero gives
dQ = _
d—;:p2|x—xi|p lsgn(w—xi):(), (35)
=1

where

sgun(r) = r/|r| if r#0,
=0 if r=0. (36)

If an z can be found that satisfies (35), then that z corresponds to the location of the
minimum of €,. Equation (35) shows that ps less than unity would have the undesirable
property of making the equation singular at points where variable & approaches one of the
data points x = z;, and furthermore one stationary point of the equation occurs at infinity;
thus, to avoid these difficulties, the previously stated requirement that 1 < p follows.

Rewriting (35) using the definition of the sign function, we find the condition for the
minimum is

m

Z|x—xi|p_2 (z —a;)=0. (37)

=1

When p = 2, Equation (37) has the simple solution

1
= 2] 38
z m;l” (38)

showing that the minimum for the squared-error choice of exponent occurs when z is the
arithmetic mean of the data. When p = 1, (37) shows that

m

> sgn(z — ;) =0, (39)

=1

which can be seen to be a formal definition of the data median for the set {z;} if there is
a unique solution to (39). Otherwise, the median need not be unique. (See Figure 2.) The
most significant advantage of the median over the mean is that it is independent of the
values of any outliers, whereas the mean depends linearly on these values and, therefore,
can be quite sensitive to the presence of very bad (extreme) data.

The other fairly common choice of exponent is p = oo. However, it is a bit easier to
understand the significance of this limit by first considering finite p’s that are large and
even. Then, (37) becomes

Z(f — )P =0, (40)



where exponent p — 1 is large and odd. For the sake of argument, we assume that the
smallest (2,,) and largest (#,,4) values are unique and satisfy 2,,;;, < Tpaz. Then, if pis
very large and z takes (as it must for satisfaction of the equality) some intermediate value
(i.€., Timin € & € Tymay) so that both positive and negative terms occur on the left hand
side of (40), the only terms that make a significant contribution to (40) are the extreme
ones in the data sequence {z;}. Thus, (40) reduces (with very small corrections) to

(z — .rmm)p_l + (z — .rm(m)p_l ~ 0, (41)
or equivalently
(z — xmm)p_l ~ (Taz — m)p_l. (42)
Taking the (p — 1)-th root and solving for z gives

T %(-rmzn + -rmaoj)v (43)

showing that the minimum of the objective functional for large p is the average of the
smallest and largest values in the sequence x;, i.e., it depends only on the outliers. In the
limit of p — oo, ~ is replaced by = in (43). Such behavior clearly tends to overemphasize
extreme values and to produce results hypersensitive to errors in the data, so values of p > 2
are seldom considered for use with real, noisy data.

6 Absolute Value Norm (/)

Now that we understand why p > 2 is not a desirable alternative for use with real data, we
limit consideration to the main alternative to least-squares, i.e., the absolute value norm
with p=11in (33). To find the minimum of (33), we take the derivative with respect to s;
and find the set of conditions for a minimum is

Zlijsgll (E liksk — ti) =0 for j=1,...,n. (44)

There are n conditions in (44) — one for each of the n cells in the model. It is not hard to
see that all n conditions in (44) cannot be satisfied in general for an arbitrary set of ray-path
lengths /;;. For example, if a particular cell has only three ray paths passing through it and
if the lengths of the paths are comparable, there is no combination of pluses and minuses
such that *ly; £ l; £ I3; = 0. This difficulty is not at all exceptional for our problem.
Rather it is expected to be the rule that > /", (%)l;; # 0 for almost all cells j. So the
minimum generally cannot be found in this manner — the technical reason being that the
function to be minimized is simply nonanalytic (nondifferentiable) at the actual minimum,
or minima. Since the only points of nonanalyticity for this problem are those for which the
argument of the sign function vanishes, the minimum of ¥; (or possibly minima since they
may not be unique) is found by solving a linear programming problem (rather than a linear
algebra problem). An example of how this works is presented in Figure 3.

We assume the mathematical inversion problem has been formulated so the number of
data (m) exceeds the number of unknowns (n) in the discretized model. (This choice is not
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<~median range »

Figure 2: A median is found by varying z in (1.38) until the number of pluses and minuses
balances. An arrow pointing upward corresponds to a positive contribution and an arrow
pointing downwards corresponds to a negative contribution. As in the case illustrated, the
median is not necessarily unique if the total number of data is even, or if the total number
is odd but there are multiple (n) occurrences of some values.
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S1

Figure 3: The minimum of the objective functional generally occurs at some point that
solves a determined subset of the overdetermined set exactly.
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universal. Some authors prefer to deal with underdetermined systems such that m < n.)
In general, the solution s minimizing the /;-norm of the errors may then be expressed as
the solution of the rearrangement of (8) given by

(0= (5).

where the m rows of the ray-path matrix have been reordered so that M’ is an n X n
(generally) invertible submatriz of M and the data vector t has also been reordered so that

-1

M's=t'" or s=(M)" t. (46)

The remaining ray-paths contained in M” and the corresponding data t” are used only in
the process of selecting a particular rearrangement of M out of the total of m!/n!(m — n)!
possible rearrangements. The final choice is made by finding a segmentation of the matrix
such that

i Zn:lijsj' —1; (47)

i=n+1 |7=1

is minimized. The values for ¢ = 1,...,n do not appear in (47) because, by assumption,
these terms vanish identically due to (46). We will call any rearrangement of the rows and
columns of M into parts to be satisfied (M') and parts to be ignored (M") a segmentation
of M; a particular choice that minimizes (47) is an optimal segmentation. If only one
segmentation optimizes (47), then it is the unique optimal segmentation.

The approximate inverse resulting from this /;-norm analysis is easily seen to be

X= (M) Oupn), (48)

where O, ,—p, is an n X (n — m) matrix of zeroes. Then, the effective model resolution
matrix is trivial for this problem, since

gmodel = XM = In (49)

The model is apparently perfectly resolved for this subset of the ray-path data, assuming
only that M’ is invertible. The effective data resolution matrix is not so simple however,
since

L, O,m—n
gdata =MX = < ' ) 5

M (M/)—l Om—n,m—n (50)

showing that the first n traveltime constraints are satisfied exactly while the other m — n
traveltime constraints are essentially ignored. This interpretation is not entirely correct
however, since the apparently ignored data were actually used in (47) while making the
choice of optimal matrix segmentation.

Note that the data resolution matrix for the /;-norm is not symmetric, so (MX)T # MX.
Checking the other Moore-Penrose conditions by multiplying (50) on the right by M, we
find that

MXM = M, (51)
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and by multiplying (49) on the right by X that
XMX = X. (52)
Since the identity matrix I, is symmetric, (49) also shows directly that
(XM = XM. (53)

Thus, X for the absolute value norm satisfies three out of four of the Moore-Penrose condi-
tions — failing only to have a symmetric data resolution matrix. For most applications, this
is a rather minor failing since the data resolution is seldom computed — or even considered.

This analysis of the resolution for the absolute value norm is somewhat unsatisfactory,
since it suggests that the model resolution is not only symmetric but also always perfect. A
more sensible alternative to this overly optimistic result is desirable, but so far has not been
found. A statistical measure of resolution constructed by considering various nonoptimal
matrix segmentations might be useful, but we will not pursue this possibility further here.

7 Regularized Least-Squares

There are two main approaches to regularizing least-squares methods: (i) damping [Lev-
enberg, 1944; Marquardt, 1963, 1970; Tikhonov and Arsenin, 1977] and (i) truncated
singular-value decomposition (SVD) [Eckart and Young, 1936; Lanczos, 1960; Golub and
Kahan, 1965; Golub and Van Loan, 1989]. Damping typically involves adding a positive
diagonal term to the singular matrix M” M appearing in the normal equations for the least-
squares solution. Truncated singular-value decomposition involves computing the SVD of
the ray-path matrix M and then, when computing the approximate inverse of M, dis-
carding not only the singular vectors with zero singular value as is normally done in the
Moore-Penrose pseudoinverse, but also discarding other singular vectors if the correspond-
ing singular values lie below some threshold e. Penrose [1955b] has shown that the full SVD
actually gives the generalized inverse required for solution of the least-squares problem. So
the truncated SVD is a type of regularized least-squares method; it eliminates terms that
would introduce very noisy behavior into the final solution due to the presence of small
denominators (i.e., the inverses of the smallest eigenvalues).

To illustrate these concepts, consider an approximate inverse for M using damped least-
squares of the form

X, = (M™M + 1) M7, (54)

where 1 is a small positive constant. (Various other choices of damping term are possible
if we substitute for the term pI, which is just the simplest and most common form used.)
In contrast, the truncated SVD approach gives

q 1 T

Xy =) 37V (55)

i=1""
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where A; is the ¢th singular value of M and the SVD of the ray-path matrix is
M=) \yiz . (56)
=1
The upper limit of the sum in (56) satisfies ¢ < 7 such that Ay > Ay > ... > A, > e.

7.1 Damped least-squares

To check satisfaction of the Moore-Penrose conditions for a damped least-squares inverse,
we first compute the effective resolution matrices

r 22
gdata = MX;L Z A _T_ YZYZ (57)
and
/\2 T
Emodel = XM = 227, 58
del = Z AQ + i ( )

showing that both resolution matrices are symmetric. It is characteristic of damped least-
squares that — unlike the truncated SVD approach — all the eigenvalues A? get perturbed
additively. If we think of the multiplicative factor

A2
At

(59)

as a measure of our ability to resolve the ith eigenvector, then the resolution of y; and z; is
high (unity) when g = 0 and very low when p is a large number. So this method degrades
the resolution of all eigenvectors simultaneously, though not at the same rate, since the
rate is dependent on the ratio p/A%Z. This reduces the impact of the smallest (noise-like)
eigenvalues on the final reconstruction, but simultaneously reduces the resolvability of the
largest (signal-like) eigenvalues. Checking the other Moore-Penrose conditions, we find that

3 T
Z; 2 M
for any value of g > 0, and that
X, MX Z N T AX Z N T (61)
= Z,y; = Z;y; »
g g i=1 (’\22 +p)? 8 i=1 (’\22 + 1)

again for any positive p. Thus, the damped least-squares method produces an inverse that
satisfies only the two symmetry conditions of Moore-Penrose for the resolution matrices.
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7.2 Truncated SVD

By contrast, it is easy to see that the truncated SVD inverse satisfies all but one of the
Moore-Penrose conditions. Clearly, X,MX, = X, and both MX, and X,M are symmetric.
However, MX,M # M, instead we have

q
MX,M = > \iyiz] =X} (62)

=1

We see that the pseudoinverse of X, given by X; is just a truncated version of M, where
a set of the smallest (r — ¢) nonzero eigenvalues have been discarded. The same truncated
SVD may serve as the approximate inverse for many Ms, since X; does not satisfy the
first Moore-Penrose condition. Thus, one of the Moore-Penrose uniqueness conditions is
violated.

It should already be clear from the foregoing analysis that the truncated SVD is pre-
ferred over the damped least-squares method when accuracy of the inversion is the only
concern. Damping shifts all the singular values/eigenvalues away from zero, while trun-
cated SVD preserves the largest singular values and preferentially sets the smallest ones
to zero. However, when the matrices involved are very large, it is usually not practical to
compute the full SVD of the (ray-path) matrix M; then it may be preferable to sacrifice
some accuracy for the sake of computational economy.

8 Other Methods and Alternative Criteria

Many alternative approximate inversion criteria may be considered. We present four of
the more important ones in this section: (1) backprojection, (2) the adjoint method, (3)
weighted least-squares, and (4) the Backus-Gilbert inverse. None of these methods (except
for weighted least-squares with trivial weighting) is equivalent to least-squares or the Moore-
Penrose inverse, as we shall see.

8.1 Backprojection formulas

The concept of backprojection is very common in tomographic imaging of all types. First,
we measure some kind of line integral (traveltime or decay of intensity) through a body.
Then we try to image a relevant property of the body (wave speed or attenuation coefficient)
by guessing the distribution of that property (the first guess might be a constant value) and
then predicting the values of the various line integrals. The difference between the predicted
value and the measured value of each line integral is information we have about values of
the body’s properties along the line associated with the line integral. If we assume (for lack
of other information) that the differences are equally probable to have arisen at all points
along the line, then we can “backproject” these differences to obtain an update. These
backprojections are done separately for each line and then summed (averaged) to obtain
the image from the backprojection technique. This approach is very easy to implement in
any application, and gives useful and qualitatively correct images. Many more sophisticated
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versions of this idea may also be considered to obtain improved quantitative imaging and
inversion of the data.

Let C be a diagonal n X n matrix whose diagonal elements are the column sums of M
given by

Ci; = Zlijv (63)

and let L be a diagonal m X m matrix whose diagonal elements are the row sums of M
given by

n

Lii =Yl (64)

J=1

In seismic tomography, we call C the coverage matrix and L the length matrix, since C;;
is the total length of those segments of all the ray paths that cross through cell j and L;; is
the total length of the ¢th ray-path through all cells. With these definitions, we have

Mv = Lu
M%u = Cv, (65)
with u”’ = (1,1,1,...,1) an m-vector of ones and v!' = (1,1,1,...,1) an n-vector of ones.

One convenient backprojection formula is
S ()
Si=—» L — 66
J C]] ZZ:; (¥ L“ ? ( )

since the value of the tomographic integral is ¢;, which must be spread equally over a ray
path of length L;;. The total coverage of the jth cell is C;; and is made up of the m
contributions /;;, for 7 = 1,...,m. This is a “path-length weighted” backprojection formula
with the weights adding properly to unity, since }_,l;;/C;; = 1, for ¢ = 1,..., m. Then,
using the notation introduced in (63) and (64), (66) can be rewritten as

s~ CIMIL 1, (67)

where we may assume that the diagonal matrices C and L are both invertible, for without
loss of generality we may simply remove uncovered cells or vanishing ray paths from the
problem until the resulting matrices C and L are invertible. From (67), we deduce that the
effective (approximate) inverse matrix for this backprojection formula is

X =Cc ML (68)
The effective resolution matrices associated with this approximate inverse are
Edata = MX = MC™'MTL™! (69)
for data resolution and

Emodel = XM = CT'MTL™'M (70)
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for model resolution.
Recalling our definition of O as a matrix of zeroes, the eigenvalue problem for the matrix
M may be formulated as

Om,m M u; \ L Om,n u;
< MT On,n) (Vz) B AZ <On,m C ) (Vz) (71)

and can then be manipulated into the form

L-'McC-'M7” (0 g u; 5 [ u;
< On,m C_lMTL_lM) <V2) B AZ <V2) ‘ (72)

From (72), it is not hard to show that the singular-value decomposition of the effective
resolution matrices may then be expressed as

Luz

2
gdata =MX = Z A 2TLuZ (73)
and
,vivliC
gmodel = XM = ZA VTCV 5 (74)
=1 z g

where 7 < min(m, n) is the rank of M. Recalling (65), we see that one singular value A; of
(71) is A = 1. Since this eigenvalue belongs to an eigenvector having all positive elements,
the Perron-Frobenius theorem for nonnegative matrices [Bapat and Raghavan, 1997] says
that this eigenvalue is the largest eigenvalue and that the eigenvector associated with this
eigenvalue is unique. Therefore, the eigenvalues of (71) are bounded above by unity so
that 0 < A? < 1. Using A? as a measure of the resolution of the i-th eigenvector, the
effective resolution matrices perfectly resolve only homogeneous background eigenvectors
(which have the only eigenvalues exactly equal to unity). Other eigenvectors’ contributions
to the resolution are degraded (from the optimal value of unity) in proportion to the square
of their eigenvalues.

Thus, we conclude that this particular choice of backprojection formula does not sat-
isfy any of the Moore-Penrose conditions. However, many other choices of backprojection
formula might be considered. It is not hard to think of examples that satisfy some of the
Moore-Penrose conditions, e.g., choosing X = aM” where a is some positive scalar pro-
duces an approximate inverse with symmetric resolution matrices (see the next subsection).

Since the backprojection formula performs badly in light of the Moore-Penrose condi-
tions, we may choose to consider other criteria to evaluate its performance. For example,

XMv =v, vIXM=vT, (75)
and
MXu=u, u/MX=u’, (76)

(if satisfied) show that the rows and columns of the resolution matrices all sum to unity.
These are all conditions that we would like for the resolution matrices to satisfy, since they
all would be satisfied by a perfect inverse (assuming one exists). Such criteria serve to check
the normalization of the resolution matrices.

22



8.2 The adjoint

A particularly simple variant of the backprojection formula is the adjoint approximation
X = aM?, (77)

where « is a scalar with units chosen to guarantee that X has the correct dimensions,
and its magnitude can be chosen to statisfy some additional criterion. This simple choice
satisfies the third and fourth Moore-Penrose conditions, while violating the first two. The
Moore-Penrose analysis of this case is elementary and is left to the reader.

8.3 Weighted least-squares inverse

When working with real data, we often find that data quality is far from uniform. If
some data are better than other data, we may want to exclude the bad data, or we may
to include it but give it less weight than the data we perceive to be more reliable. Such
considerations lead to the concept of weighted least-squares inversion. Using our standard
problem notation, the data may consist of m measurements ¢; for ¢+ = 1,...,m, the model
may consist of n cells each having a constant physical parameter s; for j = 1,...,n to be
determined. We may decide to assign weights 0 < W;; < 1 to each term in a least-squares
error functional, so we have

Wos(s) = iw [t; — (Ms),]*. (78)

If W is the diagonal matrix whose diagonal components are the W;;’s, then it is straight-
forward to show that the minimum of ¥,;s occurs when

MTW (t — Ms) = 0. (79)

Equation (79) is the normal equation for weighted least-squares, and the vector (or vectors)
s that satisfy the equation are the solution (or solutions) of the weighted least-squares
optimization problem.

Probably the simplest means of analyzing this problem is to note that, if we choose to
look at it in a certain way, the problem reduces to standard least-squares analysis. Since
the matrix W is diagonal with nonnegative real numbers along the diagonal, the meaning
of its square root W'/2 is clear and we can define a new problem,

Ms = t, (80)

with M = WY2M and t = WY/2t, which we want to satisfy in the least-squares sense.
Then, ¥,,;s may be equivalently redefined as

Von(s) = 3 [ic - (31) ] (81)

=1

which when minimized leads to the standard normal equations

M7 (i Ms) =0, (82)

23



having the same solution (or solutions) s as (79).

Taking the approach of the preceding paragraph, we have reduced the weighted least-
squares problem to a modified version of the original least-squares problem and all the
previous analysis of least-squares carries over, so we do not need to repeat it here. We
might ask a more subtle question however about how and to what extent the weighting
scheme has modified the solution of our original problem Ms = t. Presumably, if the
weights are all nonzero and we have found a solution such that the minimum value of
U,15(s) = 0, then and only then will the solutions (or sets of solutions) be the same in
weighted and the unweighted least-squares problems. This situation will virtually never
arise in practice, so we may expect there will usually be significant differences between the
solutions of the two problems. We will not attempt to analyze this question here, but point
out that a careful analysis of this issue would be a valuable addition to the literature. In
particular, there are many subtle and important issues yet to be addressed concerning the
choice of such weighting schemes and relationships between these schemes and a variety of
hybrid methods [Huber, 1977; Scales and Gersztenkorn, 1988] that try to make optimum
use of both l3 and [; objective functionals in the presence of very noisy data. Such methods
are a part of the broad subject of nonlinear optimization (since we might then choose the
weights in a data dependent way) and therefore beyond our present scope.

8.4 Backus-Gilbert inverse

Backus and Gilbert [1968; 1970] formulated an approach to the inverse problem that is
especially well-suited to problems in geophysics and imaging of the Earth. They stress the
finiteness of the number of data points available for any inversion process, the imprecision
of those data, and the (virtually) infinite dimensionality of the continuum quantities to
be estimated from the data. Backus and Gilbert make the further assumption in their
approach that a “good” Earth model is nevertheless available so the inverse problem may
be legitimately linearized with respect to that model.

The mathematical formulation of their approach assumes that the discrete data -; are
related to an Earth model E(r) and some set of functions G;(r) that characterize the
interaction between the Earth model and the data collected according to an integral relation
of the form

(83)

E

1
/Gi(T)E(T)dT:%, for i=1,...
0

The functions G;(r) are assumed to be known, resulting from a foward computation using
the “good” Earth model. An example of such data might be the frequencies of vibration
of either the Farth or the Sun [Lapwood and Usami, 1981; Morelli and Dziewonski, 1987;
Vorontsov and Zharkov, 1989], where ¢ is then an index over various modes of vibration.

To characterize the accuracy and resolution of the final result, Backus and Gilbert
introduce a function A(r;rg) with the desired properties that

/01 A(r;rg)dr =1 and /01 A(r;ro)E(r)dr ~ E(rg). (84)
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So A is intended to act much like a Dirac delta function é(r — rg). The goal of the method
is to try to construct such an A from the known functions G; in the form of an expansion

m

A(ryro) = Zai(ro)Gi(r). (85)

=1
Substituting (85) into (84) shows that, in terms of the measured data, we must have
one constraint on the a;’s

m 1

Z%(TO)/ Gi(r)dr=1 (86)

=1 0
and an approximate formula for the Earth model in terms of the 7;’s

m
> ai(ro)yi ~ E(ro). (87)
=1
In the Backus-Gilbert theory, the set of equations (83) plays the same role as Ms = t
in our previous discussions, while equation (87) plays the same role as XMs = Xt. Thus,
the a;(rg)’s play the role of a single row of an approximate inverse operator X, such that
Y X;ivi = E; = E(rg). We will therefore define the vector al = (ay,ay,...,a,, ) as a row
vector of the Backus-Gilbert approximate inverse X.
So far we do not have enough constraints to estimate the a;(rg)’s. Making use of the idea
that A should resemble a delta function, Backus and Gilbert introduce a spread function

S(A;1) =12 /Ol(r —10)2 A% (75 7o)dr. (88)

If A is a delta function 6(r — rg), this integral vanishes. So $ is a measure of the deviation
of A from a delta function. Substituting the expansion (85) of A in terms of the G;(r)’s
into (88), we see that S is given by

n

S(Ajro) = Z > ai(ro)aj(ro) Nij(ro), (89)

=1 j5=1

where the matrix N;;(rg) is given by

Nij(ro) = 12 /01(7' — )2 Gi{r)G(r)dr. (90)

One row of the Backus and Gilbert inverse X is then found by minimizing (89) with
respect to the a;’s, subject to the constraint (86). If we define

1
o= [ Gilny, (91)
0
then it is not difficult to show that

a(rg) = (CTN_I(T())C) -

N_l(ro)c, (92)
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where N is the matrix whose elements are the N;;’s, a is the vector whose elements are the
a;’s, ¢ is the vector whose elements are the ¢;’s. We have assumed that N is invertible. When
it is invertible, satisfaction of the constraint (86) by the result (92) is then straightforward to
check. Otherwise, we must again invoke some approximation method to solve the Backus-
Gilbert inversion problem.

The Moore-Penrose analysis for Backus-Gilbert is left to the reader, but a summary of
the results is provided in the next section.

9 Comparisons of Approximate Inverses

We have seen that the various approximate inverses can be partially characterized by noting
which and how many of the Moore-Penrose conditions they satisfy. We now present a
summary of these results in Table 1.
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TaBLE 1. Qualitative comparison of various approximate inverses. Note that many
choices of backprojection method are possible, so in general “backprojection” may not
satisfy any of the Moore-Penrose conditions. It is possible to choose a backprojection
method that guarantees satisfaction of some subset of the conditions; the adjoint is an

example of this feature. Least-squares produces a solution equivalent to that of the

pseudoinverse M and is therefore represented by the first entry. Weighted least-squares
methods produces the pseudoinverse solution of a slightly modified problem, which for our
present purposes is also represented by the first entry.

Moore-Penrose Conditions
Approximate | MXM | XMX | (XM)" | (MX)T
Inverse =M =X =XM | =MX
MT(SVD) yes yes yes yes
Truncated SVD no yes yes ves
Damped Iy no no yes yes
Adjoint no no yes yes
l4 yes yes yes no
Backus-Gilbert no yes no no
Backprojection no no no no

In Table 2 we preview results from the subsequent discussion in Part II [Berryman,
1999] on iterative methods. Note that all the iterative methods of matrix inversion lead
directly to approximations of the Moore-Penrose pseudoinverse M. In general, carrying
these iterative processes to completion will (at least in principle) produce a result closely
approximating MT. Incomplete or partially completed iteration leads to results that are

27



generally qualitatively similar to a truncated SVD, as we will show in Part II. The most
startling result found in this analysis is the fact that the LSQR algorithm of Paige and
Saunders [1982] does not satisfy the second Moore-Penrose condition, XMX = X, when
the data vector t and the ray-path matrix M are inconsistent. We find that a relatively
straightforward modification of LSQR (using a different choice of starting vector) may be
introduced to correct this flaw.
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TAaBLE 2. Qualitative comparison of various iterative inverses.

Moore-Penrose Conditions
Tterative MXM | XMX | (XM)T | (Mmx)T
Inverse =M =X =XM | =MX

Fully iterated

CD, CG, Lanczos, or yes yes yes yes

Modified LSQR
Full

LSQR yes no yes yes

Inverse

Partial

Lanczos, or no yes yes yes

Modified LSQR
Partial

Conjugate no yes no yes
Directions/gradients

Partial

LSQR no no yes yes

Inverse

Damped
Lanczos or no no yes yes

LSQR
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