The Problem

If the matrix M of ray-path lengths through the
cells has been predetermined, our basic inversion

problem looks like this:

having the formal solution

s =M1t
Of course, if life were this simple, we would

not be having this summer school.



Why We Must Work Hard

The problems are these:

1. If M is square, it is usually

not invertible (i.e., it is singular).

2. More commonly M is not square,

so some generalized inverse is required.



The Least Squares Formulation Fﬁ

By far the most common approach to solving these types

of data inversion probelms is Least Squares. First,
we define a nonnegative functional

F(s) = (t — Ms)' (t — Ms),
where we think of the term M s as the vector of
predicted data, while ¢ is the vector of real data.
So F(s) is the sum of the squares of the
discrepancies (errors). If F =0, then we
may have solved our problem. If F # 0, then
we have not solved our problem, but for small

enough F we might be close to solving it.



The Least Squares Solution Fﬁ
Taking the derivative of F with respect to s,

we can find the choice of s giving the minimum value of
the squared error, which is determined by:

MY Ms = MTt.
This expression is commonly known as the normal
equation for least-squares, and the matrix M! M
the normal matrix for the least-squares problem.
Note that this formula still does not give us a direct
formula for s. We still need to solve a matrix
inversion problem, and the normal matrix may still be

singular. But at least it is square!



Two Important Cases Fﬁ

There are two important case to consider at first for

finding the solution of the normal equation:
(1) m >n and (2) m < n.

In the first case we have more data (m) than unknowns
(n). In the second case we have more unknowns (n)
than data (m). These situations are often referred to as
being “overdetermined” and “underdetermined,”
respectively. The conditions (1) and (2) are in fact
“sufficient” to guarantee that the problem is over-

or underdetermined, but not necessary.



More Precise Language

In truth the language “overdetermined” and
“underdetermined” should be made more precise.

Bill Symes will introduce some more sophisticated
language in the next lecture. We will try to clarify the
issue by pointing out that the number of data may be
“Insufficient” to determine the model in the
“underdetermined” case, and that “inconsistent”

data certainly exist in the data space when the
problem is “overdetermined.” For example, consider

fitting a straight line to 1, 2, or 3 data points.



Inconsistent Data

A separate but important issue is that the measured
data may themselves be “inconsistent,” by which
we mean that no model within the chosen model

parameterization may be able to result in this data.



Consequences of Being Over-/Underdetermined Fﬁ

Overdetermined:
When m > n, we must have the m x m matrix
MM' being singular.

Underdetermined:
When m < n, we must have the n X n matrix

M* M being singular.

It appears that the underdetermined case is always

a problem, because the normal matrix is singular.



For the Sake of Argument:

Let us assume for the moment that the one or
the other of the inverses

ﬁ iﬂ >>5 —1

MMT]!
exists. This does not have to be true for real
problems and, in fact, it is fair to say that
this usually is not true. In typical problems,

neither inverse exists.



Formal Solutions for Least Squares Fﬁ

Formal solutions can be given to both types of

these least-squares problems.

Overdetermined: s = [MTM]~1 Mt
Underdetermined: s = MY [MM?*']~t

Note that the solution for the overdetermined case solves
just the normal equations, while the solution for the
underdetermined case is also a formal solution for the

original problem: Ms =t.



