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Robust inversion of seismic data using the Huber norm

Antoine Guitton∗ and William W. Symes‡

ABSTRACT

The “Huber function” (or “Huber norm”) is one of
several robust error measures which interpolates be-
tween smooth (l 2) treatment of small residuals and ro-
bust (l 1) treatment of large residuals. Since the Huber
function is differentiable, it may be minimized reliably
with a standard gradient-based optimizer. We propose
to minimize the Huber function with a quasi-Newton
method that has the potential of being faster and more
robust than conjugate-gradient methods when solving
nonlinear problems. Tests with a linear inverse prob-
lem for velocity analysis with both synthetic and field
data suggest that the Huber function gives far more ro-
bust model estimates than does a least-squares fit with
or without damping.

INTRODUCTION

Robust error measures such as the l 1 norm have found a
number of applications in geophysics. As measures of data
misfit, they show considerably less sensitivity to large measure-
ment errors than least-squares (l 2) measures. Since geophysi-
cal inverse problems are generally ill-posed, relatively noise in-
sensitive misfit measures can yield far more stable estimates of
earth parameters than does the l 2 norm (Claerbout and Muir,
1973; Taylor et al., 1979; Chapman and Barrodale, 1983; Scales
and Gersztenkorn, 1987; Scales et al., 1988). This insensitivity
to large noise has a statistical interpretation: robust measures
are related to long-tailed density functions in the same way
that l 2 is related to the short-tailed Gaussian density function
(Tarantola, 1987).

A simple choice of robust measure is the l 1 norm. Denoting
the residual (misfit) components by r i , i = 1, . . . . N (N being
the number of data points), the l 1 norm misfit function of the
residual vector is

∑N
i=1 |r i |. This function is not smooth: it is

singular where any residual component vanishes. As a result,
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numerical minimization is difficult. Various approaches based,
for example, on a linear programming viewpoint (Barrodale
and Roberts, 1980) or iterative smoothing (Scales et al., 1988)
have been used with success but require considerable tun-
ing. Moreover, the singularity implies that small residuals are
“taken as seriously” as large residuals, which may not be ap-
propriate in all circumstances.

These drawbacks of the l 1 norm have led to various pro-
posals which combine robust treatment of large residuals with
Gaussian treatment of small residuals. These proposals are
known as “hybrid l 1/l 2” methods. For example, Bube and
Langan (1997) apply an iteratively reweighted least-squares
(IRLS) method to minimize a hybrid objective function on a
tomography problem. More recently, Zhang et al. (2000) use
an IRLS procedure to locate bed boundaries from electromag-
netic data.

In this paper, we present a hybrid l 1/l 2 error measure (or
norm) proposed by Huber (1973):

Mε(r ) =


r 2

2ε
0 ≤ |r | ≤ ε,

|r | − ε
2

ε < |r |,
(1)

where ε is the threshold between the l 1 and l 2 norms. We call∑N
i=1 Mε(r i ) the “Huber misfit function,” or Huber function

for short. Figure 1 shows the Huber norm as a function of the
residual. It is smooth near zero residual, weights small residuals
by mean square, and treats large residuals with l 1. Because it is
differentiable everywhere, it is reasonable to suppose that the
Huber function is easier to minimize than l 1 while still robust
against large residuals.

Definition of the misfit via the Huber function results in a
nonlinear optimization problem because any residual compo-
nent ri close to the threshold ε can oscillate between the l 1

and l 2 norms. In the first section following this introduction,
we propose solving the optimization problem with a quasi-
Newton method called limited-memory BFGS (Broyden, 1969;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970; Nocedal, 1980).
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In the second section, we test our method and estimate the root
mean square (rms) velocity (or slowness) of noisy common-
midpoint (CMP) and shot gathers for synthetic and field seis-
mic data. There, we compare the Huber norm with the l 2 norm
with and without regularization.

IMPLEMENTATION OF A NONLINEAR ALGORITHM

In this section, we propose minimizing any inverse problem
involving the Huber norm with a quasi-Newton method. First,
consider the linear system Am= d, where m is a vector of model
parameters to be estimated, d a vector of observed data, and A
a matrix or a seismic operator. We want to estimate m so that

f (m) = |Am− d|Huber = |r|Huber

N∑
i=1

Mε(ri ) (2)

is minimum. Because of the definition in equation (1), although
A is linear, the minimization of f (m) in equation (2) is not a
linear problem; a particular point in the residual can oscillate
between the l 1 and l 2 norms for different iterations. This dif-
ficulty can be overcome if we design a nonlinear solver that
will converge to a minimum of f (m). Some specially adapted
Huber minimizers have been suggested (Ekblom and Madsen,
1989; Li and Swetist, 1998). One of our questions for our study
was whether a standard nonlinear method, as opposed to a
special solver, would perform satisfactorily in Huber estima-
tion. We show that it does. In addition, these specially adapted
minimizers work only when A is a matrix and not an operator.

In our implementation, we decide to use a quasi-Newton
method. The quasi-Newton method is an iterative process
where the solution to the problem is updated as follows:

mk+1 = mk − λkH−1
k ∇ f (mk), (3)

FIG. 1. Error measure proposed by Huber (Huber, 1973). The
upper part above ε is the l 1 norm (dashed line); the lower
part is the l 2 norm (solid line).

where mk+1 is the updated solution at iteration k + 1, λk the
step length computed by a line search that ensures a sufficient
decrease of f (m), and Hk is an approximation of the Hessian
(or second derivative.)

Quasi-Newton methods intend to approximate the Hessian
without explicitely computing it. The Hessian is then re-
estimated and improved at each iteration of the descent
method (Gill et al., 1986). Quasi-Newton methods can be
equivalent to conjugate-gradient methods on a quadratic func-
tion, and they are often more robust than conjugate-gradient
methods on general nonlinear problems. They also tend to re-
quire fewer iterations (Gill et al., 1986). However, one major
drawback of the quasi-Newton methods is that they require the
storage of the approximate Hessian in memory, which can be
troublesome for large-scale problems.

In the Appendix, we present a computationally effective
method that does not require the storage of the Hessian. This
method is called limited-memory BFGS (L-BFGS) (Nocedal,
1980). With this technique, we store a limited number of
solution-step and gradient-step vectors as the iterations go on.
For each new iteration, these vectors are combined to form the
approximate Hessian (see the Appendix for details). In the
case where all the solution-step and gradient-step vectors are
kept in memory at every iteration, the L-BFGS method be-
comes equivalent to the BFGS update (Nocedal, 1980). With
the L-BFGS method, the storage needed is reduced compared
to BFGS, and this makes it affordable to use for geophysical
applications.

One computational burden is the line search algorithm that
ensures sufficient decrease of the misfit function. This comes
from the need to evaluate the misfit function many times before
finding a good step length λk. In the Appendix, we propose
testing the value λk= 1 first (Liu and Nocedal, 1989). This can
save substantial computational time.

Another source of improvement is by scaling the Hessian
at each iteration (Liu and Nocedal, 1989). This scaling greatly
improves the performances of the quasi-Newton method. Liu
and Nocedal (1989) show on numerical examples for large-
scale problems that the L-BFGS method with the scaling of
the Hessian and an appropriate line search algorithm (see the
Appendix for details) is usually faster than conjugate-gradient
methods using the Polak-Ribière formula (Kelley, 1999).

One problem with our choice of quasi-Newton method, how-
ever, is that the Huber function is not twice continuously dif-
ferentiable. This assumption is at the heart of the convergence
properties of the L-BFGS method. Nonetheless, the L-BFGS
update requires the computation of the gradient only (see the
Appendix). Furthermore, given that the approximate Hessian
is not an exact representation of the real one, we expect the
violation to this initial condition to be mild. Examples in the
next section show that the method nontheless gives satisfying
results and is robust to outliers, as expected.

In this section, we have proposed an efficient algorithm that
will minimize any misfit function using the Huber norm. This
algorithm is a limited-memory BFGS technique that saves
computational time and memory requirement by (1) limiting
the number of vectors kept in memory for the update of the
Hessian Hk, (2) testing a default value for the step lengthλk, and
(3) scaling the Hessian at each iteration. In the next section, we
test our algorithm on a geophysical problem and compare the
Huber norm with the l 2 norm with and without regularization.
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APPLICATION OF THE HUBER NORM: VELOCITY
ESTIMATION WITH NOISY DATA

In this section, we test our algorithm with a geophysical in-
verse problem which is velocity estimation with noisy data.
Some possible applications of a robust solver are, for exam-
ple, tomography (Bube and Langan, 1997) and deconvolution
of noisy data (Chapman and Barrodale, 1983). Our goal is to
demonstrate that the Huber function with the L-BFGS method
gives a robust estimate of the model parameters when out-
liers are present in the data. The velocity estimation problem
with the Huber norm has potential applications when multiples
need to be separated from the signal in the velocity domain
(Lumley et al., 1995; Kostov and Nichols, 1995). More con-
ventional multiple attenuation techniques using the parabolic
Radon transform (Kabir and Marfurt, 1999; Herrmann et al.,
2000) can also benefit from using the Huber norm.

The “velocity domain” representation of seismic data using
the hyperbolic Radon transform (HRT) is an alternative to the
standard CMP gather. Transformation of CMP data into the ve-
locity domain (producing a velocity model or panel of the data)
exhibits clearly the moveout inherent in the data and, there-
fore, forms a convenient basis for velocity analysis as a linear
inverse problem.

Thorson and Claerbout (1985) were the first to define the
forward and adjoint operators of the HRT, formulating it as
an inverse problem in which the velocity domain is the un-
known space. In their approach the forward operator A maps
the model space (velocity domain) into the data space (CMP
gathers). This transformation is a superposition of hyperbolas
in the data space. The adjoint operator A† (the HRT) maps the
data space into the model space. This transformation is a sum-
mation over hyperbolic trajectories in the data space [related
to the velocity stack as defined by Taner and Koehler (1969)].
With d(t, x) being a CMP gather and m(τ, s) the correspond-
ing velocity model, the forward operation is

d(t, x) =
smax∑

s=smin

wom
(
τ =

√
t2 − s2x2,s

)
, (4)

and the adjoint transformation is

m(τ, s) =
xmax∑

x=xmin

wod
(
τ =

√
τ 2 + s2x2,x

)
, (5)

where x is the offset (xmin and xmax being the offset range), s
the slowness (smin and smax being the range of slownesses inves-
tigated), τ the two-way zero offset traveltime, andwo a weight-
ing function that compensates to some extent for geometrical
spreading and other effects (Claerbout and Black. 1997).

Having defined the forward operator A and its adjoint A†,
we can now pose the inverse problem. Inverse theory helps us
to find a velocity panel which synthesizes a given CMP gather
via the operator A. In equations, given data d (CMP gather),
we want to solve for the model m (velocity panel)

Am = d, (6)

which leads in a least-squares sense to the linear system (“nor-
mal equations”)

A†Am = A†d. (7)

This system is easy to solve if A†A≈ I, i.e., if A is close to uni-
tary. Unfortunately, A is far from an unitary operator (Sacchi
and Ulrych, 1995; Kabir and Marfurt, 1999). In addition, the
number of equations and unknowns may be large, making an
iterative data-fitting approach reasonable.

Consequently, with E being a misfit measurement function,
our goal is to iteratively calculate the model m that minimizes
the misfit function

f (m) = E(Am− d). (8)

One possibility for E is the l 2 norm (least-squares inversion).
The misfit function is then usually minimized with conjugate-
gradient methods. Another possible approach is, of course, by
taking the Huber norm along with the L-BFGS method in-
troduced in the preceding section. The two norms are com-
pared in the next section for velocity estimation problems. The
results show that the Huber norm gives the expected l 1 be-
havior when outliers (non-Gaussian noise) are present in the
data.

Synthetic data results

Figure 2 displays the synthetic model. In Figure 2a, we show
the ideal velocity space with five events at different slownesses.
In Figure 2b, we show the five corresponding hyperbolas in the
CMP domain. Finally in Figure 2c, we add four spikes to the
CMP gather in Figure 2b to make Gaussian statistics unsuitable.
The energy of the four spikes is five times the energy of the five
hyperbolas. Our goal is to find the velocity field m that will best
fit a CMP gather d via the HRT.

Figure 3 shows the result of the inversion when the l 2 norm
is used for the noise-free data. In Figure 3a, we display the
velocity space with its five events. The focusing is not perfect
and some artifacts appear (Sacchi and Ulrych, 1995). Figure 3b
shows the remodeled data after inversion, and Figure 3c dis-
plays the residual (difference between the input and remod-
eled data). We conclude that the inversion reached a mini-
mum since no coherent energy is left in the residual; the data
fitting is very good. Because the input data have Gaussian
statistics, the performance of the least-squares inversion was
expected.

We now use the same inversion scheme with the l 2 norm
but with the “contaminated” CMP gather (Figure 2c). Notice
that we do not apply any regularization on the least-squares
method. The final result is shown in Figure 4. In this case, as
expected, the l 2 inversion creates a number of artifacts both
in the model and data space. In Figure 5, we use least-squares
with a simple damping in the regularization. The model and
data space are cleaner, but the difference between the input and
the remodeled data or residual is still big (compare Figure 5c to
Figure 3c.) In addition, we see artifacts in the inverted slowness
field and the reconstructed data.

Figure 6 displays the result of the inversion with the Huber
norm. The outcome of the inversion is insensitive to the spiky
events, just like a pure l 1 norm misfit function. The residual
(Figure 6c) exhibits the four spikes very clearly. This result
demonstrates that our algorithm, although not specifically
designed to minimize the Huber function, converges to a
satisfying solution. The next section shows inversion results
with noisy field data.



Huber Function 1313

Field data results
We now test our algorithm with a field data example. We

use a shot gather from a land-data survey in the Middle East.
The trajectories of the events in Figure 7 look “hyperbolic”
enough to be inverted with our method. Note that, in theory,
we should resort the data into CMP gathers before doing the
inversion. This data set is particularly interesting because it has

FIG. 2. Synthetic data used for the inversion. (a) The true velocity model represented in slowness. (b) The noise-free input data
used for the inversion. (c) The same data but with noise added (four spikes).

FIG. 3. Result of the inversion with the l 2 norm for the noise-free data. (a) Inverted slowness field. (b) Remodeled data.
(c) Difference between the input (Figure 2b) and the remodeled data.

amplitude anomalies at short offset (the red dots in Figure 7
show the clipped values) and a low-velocity coherent noise that
is probably due to guided energy in the near surface. We could
get rid of the amplitude anomalies by applying an automatic
gain control (AGC) on the data, but AGC is a nonlinear process
that we should not use if we want to preserve the prestack
amplitudes of the data.
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We first invert this gather with the l 2 norm without regu-
larization (Figure 8). Figure 8a displays the velocity domain
obtained after the least-squares inversion. The main velocity
event is masked with horizontal stripes coming from the short-
offset amplitude anomalies. The reconstructed data (Figure 8b)

FIG. 4. Result of the inversion with the l 2 norm for the data with noise. (a) Inverted slowness field. (b) Remodeled data.
(c) Difference between the input (Figure 2c) and the remodeled data. The four spikes create artifacts in both the inverted model
and the reconstructed data space.

FIG. 5. Result of the inversion with the l 2 norm with damping for the data with noise. (a) Inverted slowness field. (b) Remodeled
data. (c) Difference between the input (Figure 2c) and the remodeled data. The three panels are cleaner than in Figure 4, but some
artifacts remain, however.

show spurious noise at large offset and other inversion artifacts.
We now show in Figure 9 the result of the damped least-squares
fit. The inverted slowness field is much cleaner, but the hori-
zontal stripes remain. We notice that we have the same velocity
from the top to the bottom in Figure 9a. This shows that our
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data are contaminated with multiples generated in the near
surface. Figure 10 displays the inversion result with the Huber
norm and demonstrates the robustness of our method. We ob-
tain a very well focused velocity corridor as opposed to the
l 2 result in Figure 8a. In addition, the horizontal stripes have
disappeared.

The synthetic and field data examples demonstrate that the
Huber norm can be an efficient alternative to the l 2 norm when
outliers (or non-Gaussian noise) are present in the data.

CONCLUSION

Since geophysical inverse problems are often ill-posed due
to the presence of inconsistent data, high amplitude anoma-
lies, and outliers, relative insensitivity to noise is a desirable
characteristic of an inversion method. The Huber function is
a compromise misfit measure between the l 1 and l 2 norms. It
not only improves robustness in the presence of noise and out-
liers with an l 1 measure, but also keeps smoothness for small
residuals with an l 2 measure.

In this paper, we have proposed minimizing the Huber
function with a quasi-Newton method called limited-memory
BFGS. This method has the potential of being faster and more
robust than conjugate-gradient methods for solving nonlinear
problems. Tests with noisy synthetic and field data examples
demonstrate that our method is robust to outliers present in
the data space, as expected.

Finally, we think that the Huber norm and the quasi-Newton
method are a possible alternative to the more traditional IRLS
method for robust inversion of seismic data. Therefore, one
value of the Huber norm is that it opens new horizons in the
design of robust solvers.

FIG. 6. Result of the robust inversion with the Huber norm for the data with noise. (a) Inverted slowness field. (b) Remodeled
data. (c) Difference between the input (Figure 2c) and the remodeled data. The Huber norm behaves like a pure l 1 norm since all
artifacts have disappeared.
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FIG. 7. The field data used for the inversion. Notice the am-
plitude anomalies at near offset and the time shift near offset
1.6 km. The red color shows the clipped value (clip= 0.3).
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FIG. 8. The result of the inversion with the l 2 norm for the field data. (a) Inverted slowness field. (b) Remodeled data. (c) Difference
between the input (Figure 7) and the remodeled data. The horizontal stripes in the velocity panel are created by the amplitude
anomalies at short offsets.

FIG. 9. The result of the inversion with the l 2 norm and regularization for the field data. (a) Inverted slowness field. (b) Remodeled
data. (c) Difference between the input (Figure 7) and the remodeled data. The model is much cleaner than in Figure 8a, but the
horizontal events remain. The shot gather in Figure 7 is contaminated with multiples generated in the near surface, which explains
the single velocity trend in the inverted slowness field.
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APPENDIX

PROPOSED ALGORITHM FOR MINIMIZING THE HUBER FUNCTION

We present a method for solving nonlinear problems that we
later use to minimize the Huber function.

A quasi-Newton method for solving nonlinear problems

The method we present in this paper is suitable for smooth
functions where local minima exist. It is not a method for global
optimization where the global minimum is sought. We define

m∗ a local minimizer for f (m), and we assume that f (m) and
m∗ satisfy the “standard requirements” (1) f is twice differ-
entiable, (2) ∇ f (m∗)= 0, and (3) ∇2 f (m∗) is positive definite,
i.e., m†∇2 f (m∗)m > 0 for all m ∈ <N (†denotes the adjoint),
where N is the dimension of the model vector m and <N the
real space for the model vector m. Any vector m∗ that satisfies
the standard requirements is a local minimizer of f (m).
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Newton’s method is an iterative process where the solution
to the problem is updated as follows:

mk+1 = mk − λkH−1
k ∇ f (mk), (A-1)

where mk+1 is the updated solution at iteration k+ 1, λk the
step length computed by a line search that ensures a sufficient
decrease of f (m), and Hk=∇2 f (mk), the Hessian (or second
derivative). In many circumstances, the inverse of the Hessian
can’t be computed directly. It happens, for example, when the
matrix H is too big or when operators are used for A rather
than matrices. Fortunately, we might be able to compute an ap-
proximation of the Hessian of f (m). This strategy gives birth
to quasi-Newton methods, where the way in which the Hessian
is computed determines the method (Kelley, 1999).

A possible update of the Hessian is given by the BFGS tech-
nique (Broyden, 1969; Fletcher, 1970; Goldfarb, 1970; Shanno,
1970). The BFGS update is given by

Hk+1 = Hk + yy†

y†s
− (Hks)(Hks)†

s†Hks
, (A-2)

where s=mk+1−mk, and y=∇ f (mk+1)−∇ f (mk). In practice,
however, we rather write the previous equation in terms of the
inverse matrices. We have then

H−1
k+1 =

(
I− sy†

y†s

)
H−1

k

(
I− ys†

y†s

)
+ ss†

y†s
. (A-3)

In addition, we use the history of the iterations to compute
the new Hessian rather than a full storage of the matrix H−1

k .
This requires that a gradient step vector y and a solution step
vector s are kept in memory after each iteration. Consequently
this method might not be affordable with large data and model
spaces. In the next section, we propose a modified version of
the BFGS method that limits the storage needed to compute
the update of the Hessian.

The limited memory BFGS method

Nocedal (1980) derives a technique that partially solves the
storage problem caused by the BFGS update. Instead of keep-
ing all the s and y from the past iterations, we update the
Hessian using the information from the ` previous iterations,
where l is given by the end user. This implies that when the
number of iterations is smaller than l . we have the usual BFGS
update, and when it is larger than l , we have a limited memory
BFGS (L-BFGS) update.

We give the updating formulas of the Hessian as presented
by Nocedal (1980). First, we define

ρi = 1
/

y†i si , vi =
(
I − ρi yi s

†
i

)
and H−1 = B.

As described above, when k (the iteration number) obeys
k+ 1≤ l , where l is the storage limit, we have the BFGS up-
date:

Bk+1= v†kv†k−1 · · · v†0B0v0 · · · vk−1vk

+ v†k · · · v†1ρ0s0s†0v1 · · · vk

... (A-4)

+ v†kρk−1sk−1s†k−1vk

+ ρksks†k.

For k+ 1 > l , we have the limited memory update:

Bk+1= v†kv†k−1 · · · v†k−`+1B0vk−`+1 · · · vk−1vk

+ v†k · · · v†k−`+2ρk−`+1sk−`+1s†k−`+1vk−`+2 · · · vk

... (A-5)

+ v†kρk−1sk−1s†k−1vk

+ ρksks†k.

These equations show how the update of the Hessian is
calculated.

Usually, the L-BFGS method is implemented with a line
search for the step length λk to ensure a sufficient decrease
of the misfit function. Convergence properties of the L-BFGS
method are guaranteed if λk in equation (A-1) satisfies the
Wolfe conditions (Kelley, 1999):

f (xk + λkdk) ≤ f (xk)+ µλk∇ f (xk)†dk, (A-6)∣∣∇ f (xk + λkdk)†dk

∣∣ ≥ ν∣∣∇ f (xk)†dk

∣∣, (A-7)

where ν and µ are constants to be chosen a priori, and
dk= −Bk∇ f (mk). For ν and µ, we set ν= 0.9 and µ= 10−4, as
proposed by Liu and Nocedal (1989). Equation (A-6) is a suf-
ficient decrease condition that all line search algorithms must
satisfy. Equation (A-7) is a curvature condition. The line search
algorithm has to be carefully designed since it absorbs most of
the computing time. We programmed a line search based on
the More and Thuente (1994) method. Because the line search
is time-consuming, the step length λk= 1 is always tested first.
This procedure saves a lot of computing time and is also recom-
mended by Liu and Nocedal (1989). We now give the algorithm
used to minimize any objective function involving nonlinear
problems.

An efficient algorithm for solving nonlinear problems

The solver works as follows:

1) Choose m0, l ,B0. Set k= 0.
2) Compute

dk = −Bk∇ f (mk), (A-8)

mk+1 = mk + λkdk, (A-9)

where λk meets the Wolfe conditions.
3) Let l̂ =min{k, `−1}. Update B0 ˆ̀+1 times using the pairs
{yi , si }kj=k− ˆ̀ , i.e., let

Bk+1= v†kv†k−1 · · · v†k− ˆ̀ B0vk− ˆ̀ · · · vk−1vk

+ v†k · · · v†k− ˆ̀+1
ρk− ˆ̀ sk− ˆ̀ s

†
k− ˆ̀ vk− ˆ̀−1 · · · vk

(A-10)
...

v†kρk−1sk−1s†k−1vk

+ ρksks†k. (A-11)

4) Set k= k+1 and go to 2 if the residual power is not small
enough.
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The update Bk−1 is not formed explicitly; instead, we compute
dk=−Bk∇ f (xk) with an iterative formula (Nocedal, 1980). Liu
and Nocedal (1989) propose scaling the initial symmetric pos-
itive definite B0 at each iteration, as follows:

B0
k =

y†ksk

‖yk‖2
2

B0. (A-12)

This scaling greatly improves the performances of the method.
Liu and Nocedal (1989) show that the storage limit for large-
scale problems has little effects. A common choice for l is
l = 5. In practice, the initial guess B0 for the Hessian is the
identity matrix I; then it might be scaled as proposed in
equation (A-12). The nonlinear solver as detailed in the previ-
ous algorithm converges to a local minimizer m∗ of f (m).

Minimizing the Huber function

So far, we have introduced a general method for solving non-
linear problems. In this section, we show how this algorithm can
be used when the Huber function is used for measuring the data

misfit. In fact, we only need to derive the gradient of the ob-
jective function in equation (2). The gradient can be written in
the following compact form (Li and Swetist, 1998):

∇ f (m) = A†(Am− d)ε−ε . (A-13)

where zε−ε is a vector with i th component

zi ← max{−1,min{1, zi /ε}}. (A-14)

A last difficulty arises in the choice of the threshold ε in equa-
tion (1). This value remains constant during the iterations; ε is
also the only parameter to choose a priori for different prob-
lems. We have not derived any analytical expression for ε, but
based on previous works with IRLS methods (Darche, 1989),
it seems that

ε = max |d|
100

(A-15)

is a good practical choice. Another possible solution is to set ε
at the 98th percentile of the data (J. Claerbout, 2000, Personal
communication).


