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Multiple attenuation in complex geology with a pattern-based approach

Antoine Guitton'

ABSTRACT

Primaries (signal) and multiples (noise) often ex-
hibit different kinematics and amplitudes (i.e., patterns)
in time and space. Multidimensional prediction-error
filters (PEFs) approximate these patterns to separate
noise and signal in a least-squares sense. These filters
are time-space variant to handle the nonstationarity of
multioffset seismic data. PEFs for the primaries and
multiples are estimated from pattern models. In an ideal
case where accurate pattern models of both noise and
signal exist, the pattern-based method recovers the pri-
maries while preserving their amplitudes. In the more
general case, the pattern model of the multiples is ob-
tained by using the data as prediction operators. The
pattern model of the primaries is obtained by convolv-
ing the noise PEFs with the input data. In this situation,
3D PEFs are preferred to separate (in prestack data) the
multiples properly and to preserve the primaries. Com-
parisons of the proposed method with adaptive subtrac-
tion with an £, norm demonstrate that for a given multi-
ple model, the pattern-based approach generally atten-
uates the multiples and recovers the primaries better.
In addition, tests on a 2D line from the Gulf of Mexico
demonstrate that the proposed technique copes fairly
well with modeling inadequacies present in the multiple
prediction.

INTRODUCTION

In the presence of complex geology where multipathing, il-
lumination gaps, and coherent noise are prevalent, the most
advanced techniques need to be used for preprocessing and
imaging. For multiple attenuation, Weglein (1999) shows that
current technology may be divided into filtering methods,
which exploit the periodicity and the separability (move-
out discrepancies) of the multiples, and wavefield methods,

which first predict and then subtract the multiples (Verschuur
etal., 1992; Dragoset and MacKay, 1993 ; Weglein et al., 1997).
Traditionally, filtering techniques are chosen because of their
robustness and low cost. However, filtering techniques have
some limitations when tackling multiples in complex media.
For example, predictive deconvolution in the ray-parameter
domain fails when the water bottom is not flat (Treitel et al.,
1982). Furthermore, numerous authors (Matson et al., 1999;
Bishop et al., 2001; Paffenholz et al., 2002) present cases where
wavefield approaches such as surface-related multiple elimi-
nation (SRME) attenuate multiples much better than filtering
techniques such as radon-based methods.

Wavefield techniques usually begin with a prediction step
where surface-related multiples are modeled from the data
with (Wiggins, 1988; Lokshtanov, 1999) or without any sub-
surface information. Then the multiples are subtracted from
the data. Both aspects of the multiple attenuation procedure
are important, but most of today’s efforts are concentrated
on prediction, not on subtraction. With SRME (Verschuur
et al., 1992), two significant assumptions are usually made for
subtraction. First, it is assumed that the signal has minimum
energy, leading to the adaptive subtraction of the multiples
with an ¢, norm. However, this assumption might not hold
where primaries and multiples interfere (Spitz, 1999). For in-
stance, Guitton and Verschuur (2004) show that when pri-
maries are much stronger than multiples, the ¢; norm should
be used instead. Second, it is assumed that the multiples are
accurately modeled. This point relies on the acquisition or the
interpolation/extrapolation of the data to provide the neces-
sary traces for the prediction step. In practice, however, the
data are never acquired densely enough and the interpola-
tion schemes are never perfect, especially with sparse acqui-
sition geometries. Consequently, the prediction is not as accu-
rate as required. Therefore, other subtraction techniques are
desirable when adaptive subtraction fails to recover the pri-
maries and when the multiple model is not precise enough. As
stated by Berkhout (personal communication, 2004), the sub-
traction step is the weakest component of SRME, and more
work needs to be done in this direction.
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A new class of multiple attenuation techniques has emerged
recently to circumvent some of the limitations of adaptive
subtraction and modeling. These techniques are called pat-
tern based because they discriminate primaries from multi-
ples according to their multidimensional spectra (Manin and
Spitz, 1995; Guitton and Cambois, 1998; Brown and Clapp,
2000; Fomel, 2002). This paper presents one implementation
of a pattern-based approach based on prediction-error filters
(PEFs). By construction, PEFs approximate the inverse spec-
trum of the data from which they are estimated (Burg, 1975).
Therefore, PEFs can serve as proxies for the patterns of both
primaries and multiples and can be used for signal-noise sepa-
ration (Guitton, 2002).

This paper begins with a description of nonstationary PEF
estimation. The helical boundary conditions (Mersereau and
Dudgeon, 1974; Claerbout, 1998) are used to estimate 2D and
3D filters. Both noise (multiples) and signal (primaries) PEFs
are needed for the attenuation. Because the signal is usually
unknown, a method that needs only the noise and the input
data to derive a pattern model for the signal is presented.
Having estimated the noise and signal PEFs, the multiple sub-
traction method (pattern-based) that separates primaries from
multiples in a least-squares sense is then described.

To illustrate the efficiency of the pattern-based approach,
multiples are attenuated for the Sigsbee2B synthetic data set.
The results of multiple attenuation are analyzed after migra-
tion to assess the effects of the proposed technique on the
primaries. This example illustrates that the pattern-based ap-
proach can lead to a very good elimination of the multiples
if an accurate pattern model for both primaries and multi-
ples is available. In addition, this data set shows that 3D PEFs
preserve the primaries better than 2D filters. Then, adaptive
and pattern-based subtractions are compared on a synthetic
data example provided by BP. This example proves that when
multiples and primaries are spatially uncorrelated (i.e., differ-
ent patterns), PEFs attenuate multiples better than adaptive
subtraction. Finally, multiple attenuation results on a Gulf of
Mexico 2D line are shown. This last example illustrates that
the pattern-based method is robust to model inadequacies.

FILTER ESTIMATION

The key assumption of the proposed multiple attenuation
technique is that primaries and multiples have different mul-
tidimensional spectra that PEFs can approximate (Claerbout,
1992; Spitz, 1999). Therefore, PEFs for primaries and multi-
ples are needed prior to the subtraction step. This section de-
scribes how these filters are estimated.

The PEFs used in this paper are time-space domain non-
stationary filters to cope with the variability of seismic data
with time, offset, and shot position. Implementing nonstation-
ary filters is not an easy task. A possible solution is to break
up the data set into patches and then estimate a filter for each
patch. However, reassembling these patches creates edge ef-
fects in the overlapping zones (Guitton and Verschuur, 2004).
Alternatively, nonstationary convolution (i.e., each filter is in
a column of a matrix) or combination (i.e., each filter is in a
row of a matrix) can be used to estimate one filter per data
point (Margrave, 1998) or, more realistically, per micropatch
(Crawley, 2000). A micropatch is made of neighboring data
points that share the same filter. With this technique, the fil-

ters can vary smoothly across the data set while leaving almost
no edge effect.

A complete description of the nonstationary filters goes be-
yond the scope of this paper, which concentrates on the most
important steps of the filter estimation procedure only. We
call Y the nonstationary combination matrix (Margrave, 1998)
with the data vector y from which we want to estimate the fil-
ters and a the unknown PEFs coefficients. One way to esti-
mate the PEFs is to minimize the length of residual vectors ry
(Claerbout and Fomel, 2004):

0~ry =Ya. 1)

Expression 1 is also called a fitting goal. By definition of the
PEFs, the first coefficient of the unknown filters is always one
(Figure 1). To take this requirement into account, equation 1
becomes

0~ry=YKa+y, ?)

where K is a masking operator that forces the first coefficient
of the PEFs to be one. If one filter is used per data point,
the matrix of unknown coefficients a can be enormous, mak-
ing the problem very underdetermined. This difficulty can be
overcome in two ways. First, the filter is kept constant inside a
micropatch. Second, a smoothing operator R is introduced to
penalize strong variations between neighboring filters. Both
strategies are considered here.

Introducing the Laplacian operator R, equation 2 is aug-
mented as follows:

0~ry=YKa+y,
0 ~ ¢ir, = ¢1Ra, 3)

where ¢; is a trade-off parameter between coefficient estima-
tion and filter smoothing. In practice, € is selected by trial
and error. The Laplacian operator smoothes filter coefficients
along two (i.e., time/offset) or three (i.e., time/offset/shot)
axes, depending on the PEF’s dimensions. A least-squares es-
timate of the PEF’s coefficients leads to the following objec-
tive function:

f(a) = lIryll* + eflrall?, @)

Time

Figure 1. Prediction error filters in (a) two and (b) three di-
mensions. The first coefficient in black is always one.
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where a is estimated iteratively with the conjugate gradient
method.

The amplitudes of seismic data vary across offset, shot,
and time. Large-amplitude variations can be troublesome with
least-squares inversion because they tend to bias the final re-
sult (Claerbout, 1992) by ignoring or overfitting some areas in
the data space. Therefore, it is important to make sure these
amplitude variations do not affect processing. One solution is
to apply a weight to the data prior to the inversion, such as
automatic gain control (AGC) or a geometric spreading cor-
rection. Alternatively, a weight W can be incorporated inside
the fitting goals in equation 3:

0~r,=W(YKa+y),
0 ~ eir, = ¢1Ra. 5)

This weight is a diagonal operator and can be interpreted as a
change of norm consistent with the data, similar to ¢; (Guitton
and Verschuur, 2004). In this paper, the weight W;; for one
data point i is obtained by computing

Wi = <M> (6)
Yi

where yacc is the data vector after AGC, making sure that
no division by zero occurs. This weight can also incorporate a
mute zone where no data are present.

Thanks to the helical boundary conditions (Mersereau and
Dudgeon, 1974; Claerbout, 1998), the PEFs can have any di-
mension. In this paper, both 2D and 3D filters (Figure 1) are
used, but 3D filters lead to the best noise attenuation results.
When 2D filters are used, the multiple attenuation is per-
formed on one shot gather at a time. When 3D filters are used,
the multiple attenuation is performed on one macrogather at
a time. A macrogather is a cube made of adjacent shots with
all offsets and time samples. There is an overlap of five shot
gathers between successive macrogathers. When the multiple
attenuation is finished, the macrogathers are reassembled to
form the final result.

The next section describes how to choose the pattern model
Y in equation 3 when PEFs for multiples and primaries are
estimated.

ESTIMATING SIGNAL AND NOISE PEFs

For multiple attenuation, nonstationary PEFs N and S for
the multiples and the primaries, respectively, are required.
Therefore, pattern models for the noise and the signal need
to be constructed. For surface-related multiples, the multiple
model may be provided by surface-related multiple predic-
tion (SRMP) (Verschuur et al., 1992; van Dedem, 2002), which
yields a correct prestack model of the multiples.

As for amplitude, an accurate surface-related multiple
model can be derived if (1) the source wavelet is known, (2)
the surface source and receiver coverage is large and dense
enough, and (3) all terms of the series that model different or-
ders of multiples are incorporated (Verschuur et al., 1992). In
practice, a single convolution of the input data (i.e., one term
of the series) is usually performed, giving a multiple model
with erroneous relative amplitudes for high-order multiples.
This single convolution can be interpreted as the first iter-
ation of the recursive formulation of SRME (Berkhout and

Verschuur, 1997). In addition, the limited size of the acquisi-
tion geometry can create inaccurate multiples if they bounce
outside the recording array. Dragoset and Jericevic (1998) de-
tail other possible flaws introduced in the prediction by defec-
tive acquisition parameters. Because PEFs estimate patterns,
wrong relative amplitudes and kinematic errors can affect the
multiple suppression results. However, as we see later, 3D fil-
ters seem to cope better with noise modeling inadequacies.

Signal PEFs are more difficult to estimate since the pri-
maries are usually unknown. As a possible solution to this
problem, Spitz (1999) estimates a signal PEF S by deconvolv-
ing a data PEF D, estimated from the data, by a noise PEF N.
With this process, Spitz assumes that

D = SN. @)

I call equation 7 the Spitz approximation. Note that D, N, and
S are matrices for the combinations with the nonstationary
PEFs (Margrave, 1998). These matrices are very sparse and
are never formed in practice (Claerbout and Fomel, 2004).
Equation 7 can be retrieved by considering a simple 1D ex-
ample using the Z-transform notations (Claerbout, 1976) for
a data PEF Dip(Z), a signal PEF S;p(Z), and a noise PEF
Nip(Z). Extension to more dimensions is straightforward us-
ing the helical boundary conditions (Claerbout, 1998). Be-
cause PEFs have the inverse spectrum of the data from which
they have been estimated (Burg, 1975), we have (omitting Z
for clarity)

1 _ 1 n 1
DTDD1D SiszlD Nl*DNlD’

®)

where the asterisk denotes the complex conjugate. Equation 8
states that the spectrum of the data is equal to the spectrum
of the noise plus the spectrum of the signal. Equation 8 can be
written as follows:

SipNipSipNip
N{pNip + SipSip

DipDip = ©)
Because PEFs are important where they are small (i.e., where
they attenuate seismic events), the denominator can be ne-
glected:

DipDip = SipNipSipNip, (10)

which leads to the Spitz approximation in equation 7. The
PEFs D and N can be estimated easily because the data vec-
tor and a noise model are often available. However, estimat-
ing the signal PEFs requires a potentially unstable nonstation-
ary deconvolution § = DN~' (Rickett, 2001) in equation 7. To
avoid the deconvolution step, the noise PEFs are convolved
with the data:

u = Nd, (11)

where u is the result of the convolution and d is the input data
vector (signal plus noise). Estimating the PEFs U for u gives
by definition of the PEFs (Claerbout and Fomel, 2004)

0 ~ Uu. (12)
Then, from the Spitz approximation in equation 7, we have

0 ~ Uu = UNd = Dd = SNd (13)
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and U = 8. Therefore, by convolving the data with the noise
PEFs, signal PEFs consistent with the Spitz approximation can
be computed. Again, an important assumption is that signal
and noise are uncorrelated.

The PEFs for the primaries S and the multiples N are esti-
mated directly from the data and the model of the multiples.
These filters approximate the multidimensional spectra of the
noise and signal. The next section describes the noise attenu-
ation step.

MULTIPLE ATTENUATION

When the noise and signal PEFs have been determined, the
task of multiple attenuation follows. First, consider that the
seismic data d are the sum of signal (primaries) and noise
(multiples):

d=s+n, (14)

where s is the signal we want to preserve and n is the noise we
wish to attenuate.

By definition of the signal and noise PEFs, the following
relationships hold:

Nn ~ 0,
Ss ~ 0. (15)

Equations 14 and 15 can be combined to solve a constrained
problem to separate signal from noise as follows:

0 ~r, = Nn,
0 ~ erg = €8s,
subjectto<>d =s+n. (16)

The scalar € is related to the S/N and is usually estimated by
trial and error. Replacing n by s — d in equation 16 yields

0~r, = Ns—Nd,
0 ~ erg = €Ss. 17)

Sometimes it is useful to add a masking operator for the noise
and signal residuals r, and r; when performing the noise at-
tenuation. For example, in parts of the data where no multi-
ples are present, the signal should be preserved. In addition,
a mute zone can be taken into account very easily. Calling
M this masking operator, the fitting goals in equation 17 are
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Figure 2. Stratigraphic interval velocity model of the Sigs-
bee2B data set.

weighted as follows:
0~r, = M(Ns — Nd),
0 ~ er; = eMSs. (18)

Solving for s in a least-squares sense leads to the objective
function

£(8) = lIrall® + € [1x )% (19)
It is interesting to look at the least-squares inverse § for s:
§ = (N'MN + ¢28'MS)"'N'MNd, (20)

where prime stands for the adjoint. Because M is a diagonal
matrix of zeroes and ones, we have M'M = M. In practice,
all computations are done in the time domain. In the Fourier
domain, equation 20 demonstrates that the least-squares esti-
mate of s is obtained by combining the spectra of both noise
and signal. Abma (1995) shows that equation 20 is similar
to Wiener filtering for random noise attenuation. Soubaras
(1994) uses a very similar approach for random and coher-
ent noise attenuation (Soubaras, 2001). Because the size of the
data space can be quite large, s is estimated iteratively with the
conjugate gradient method.

Therefore, multiple attenuation with prediction-error fil-
ters (in two or three dimensions) is a two-step process
where (1) noise and signal PEFs are estimated and (2) signal
and noise are separated according to their multidimensional
spectra. The next section illustrates this technique with the
Sigsbee2B data set.

MULTIPLE ATTENUATION WITH THE
SIGSBEE2B DATA SET

The Sigsbee2B data set was designed to generate strong
surface-related multiples. Figure 2 shows the true stratigraphic
interval velocity model for this data set. The data were cre-
ated with a 2D acoustic finite-difference modeler with con-
stant density. Two data sets were generated: one with a free
surface in Figure 3a (FS) and one without a free surface in
Figure 3b (NFS). Both receiver and source ghosts are included
in the modeling with or without free surface (Technical Uni-
versity of Delft, 2002). We can directly subtract the two data
sets to obtain a very accurate prestack model of the surface-
related multiples — without the need for SRMP.

In complex geology, multiple attenuation results should be
assessed after prestack migration; then, the effects of the mul-
tiple attenuation technique on the amplitudes of the primaries
in angle-domain common-image gathers or on migrated im-
ages (Figure 4) can be inspected. For the Sigsbee2B data set,
a split-step, double square-root (DSR) migration code with
three reference velocities is used (Popovici, 1996). It is inter-
esting to see in Figure 4a that the multiples are very weak af-
ter migration below the salt compared to the constant-offset
sections in Figure 3a. In particular, the water-bottom multiple
underneath salt seems to disappear. This is because the mul-
tiples are extremely distorted by the migration process in the
vicinity of the complex salt structure. Inspecting the migration
of the primaries only in Figure 4b, we find the multiples in
Figure 4a mask many primaries in the deepest part of the
model and need to be removed.
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Two important tests are carried out in this section. First, be-
cause the true primaries and multiples are known, the noise
and signal PEFs can be estimated ideally without SRMP or
the Spitz approximation and used for the separation. Second,
in the more realistic case where only a pattern model of the
multiples is known, noise attenuation results are shown with
2D or 3D filters. The next section demonstrates that when an
accurate pattern model of the noise and signal is available, the
signal can be recovered very well.

Estimating biases

A bias is a processing footprint left by the multiple attenua-
tion technique, e.g., edge effects from the nonstationary PEFs.
In an ideal but unrealistic case, a pattern model for both the
primaries and the multiples might be available. In this case,
a bias is also any difference between the true primaries and
the estimated primaries after attenuation of the multiples. In
this section we learn that the bias is minimal with the pattern-
based approach.

For the pattern model of the primaries, the answer, i.e., the
data modeled without the free surface condition, is used. For
the multiples, the difference between the FS (Figure 3a) and
NEFES (Figure 3b) data sets is used. Because the noise and sig-
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Figure 3. Two constant-offset sections (2 = 342 m) of the Sigs-
bee2B data set (a) with and (b) without free-surface condition.
The multiples are very strong below 5 s. The weak horizontal
striping in (a) comes from a source effect only present with the
free-surface condition modeling.

nal PEFs are estimated from accurate pattern models, only
2D filters are estimated. Three-dimensional filters can help if
the primaries and multiples are correlated in time and off-
set but are uncorrelated across shot position. With 2D fil-
ters, the attenuation is performed one shot gather at a time.
Figure 5a displays the estimated primaries, and Figure 5b
shows the difference with the true primaries (Figure 3b). The
bias introduced by the attenuation method is very small; 3D
filters probably would have given better results where the dif-
ference between Figures 5a and 3b is the strongest (e.g., near
20 km).

Looking now at the same estimated primaries after migra-
tion in Figure 6a, we see again that the attenuation gives a
very good result with little bias. Some energy is visible in the
difference plot in Figure 6b where no multiples are actually
present, however. These artifacts have two origins. First, be-
low 4000 m some primaries are affected by the multiple at-
tenuation process, especially at far offset where primaries and
multiples overlap. Second, above 4000 m the amplitude of the
reflections for the sea floor and the top of salt are slightly dif-
ferent between the FS and NFS data sets. These differences
are migrating at the reflector positions in Figure 6b but with a
very small energy.

From these results it appears that the quality of the multi-
ple attenuation depends essentially on the filters. If accurate
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Figure 4. Migrated images for the data (a) with and (b) with-
out free-surface condition. Comparing with Figure 3, the mul-
tiples appear much weaker below the salt after migration.
However, some reflectors near 10000 m are hidden in (a).
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pattern models of the primaries and multiples are available,
the primaries are recoverable while preserving their ampli-
tude. Therefore, we should always try to find the best pattern
models for the signal and the noise. In practice, a very accurate
pattern model of the multiples can often be estimated with the
autoconvolutional process of the Delft approach (Verschuur
et al., 1992). For the primaries, the next section shows that the
Spitz approximation gives a very good pattern model if 3D fil-
ters are used for multiple removal.

Testing the Spitz approximation

Now we assume that only a pattern model of the multi-
ples is known. The Spitz approximation in equation 7 shows
how the PEFs for the signal can be estimated. The primaries
are recovered with 2D and 3D filters. Figure 7 displays two
constant-offset sections after multiple attenuation with 2D
and 3D PEFs. Three-dimensional PEFs give by far the best
results and attenuate multiples very well. In particular, com-
paring with Figure 3b, the 2D PEFs leave more multiple en-
ergy below 6 s, between 10000 and 15000 m.

After migration, we see again in Figure 8 that the 3D
PEFs attenuate the multiples more effectively. The circles in
Figure 8 indicate areas where the 3D filters are the most com-
petent. A close-up in Figure 9 illustrates in more detail how

a)

Time (s)

10 000 20000

X (m)

b)

Time (s)

10

10 000 20000
X (m)

Figure 5. Two constant offset panels at # = 342 m for (a) the
estimated primaries and (b) the difference with the true pri-
maries. The true primaries and multiples are used to estimate
the PEFs.

the two results with 2D or 3D filters differ below the salt.
Events are more continuous and are preserved better with 3D
filters. Comparing with the true reflectors in Figure 9a, impor-
tant primaries (shown as 1 in Figure 9a) are attenuated with
both 2D and 3D filters. Notice that event 3 in Figure 9a and c
looks very similar to a multiple (shown as 2) left with the 2D
filters in Figure 9a.

These important observations could not have been made
before migration in the prestack domain because the pri-
maries are much weaker than the surface-related multiples
below the salt. This indicates that for complex geology, the
quality of a multiple removal technique should be assessed in
the image space. Realizing that some primaries are attenuated
in Figure 9 should motivate us in devising improved strategies
for building more accurate noise and signal pattern models.

The fact that 3D PEFs attenuate the multiples better than
2D PEFs is not surprising. With higher dimensions, primaries
and multiples are less likely to be correlated. Therefore, the
noise and signal PEFs are less prone to annihilate similar data
components. This is particularly important with the Spitz ap-
proximation, which implicitly assumes that primaries and mul-
tiples are uncorrelated.

The next section compares the pattern-based approach with
adaptive subtraction on a synthetic data set provided by
BP.
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Figure 6. (a) Migration result after multiple attenuation when
the true primaries and multiples are used to estimate the
PEFs. (b) Difference between (a) and Figure 4b. The pri-
maries are well recovered.
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ADAPTIVE VERSUS
PATTERN-BASED SUBTRACTION

The goal of this section is to compare the pattern-based
method with the more conventional adaptive subtraction on
a synthetic data set provided by BP. These two methods have
very different properties. On the one hand, adaptive subtrac-
tion assumes implicitly that the signal has minimum energy.
In addition, the separation is very fast because the matching
filters and the primaries are usually estimated simultaneously
with Wiener-Levinson methods. On the other hand, the pro-
posed approach assumes that the signal and noise have dif-
ferent patterns. Unfortunately, high-dimension filters for pri-
maries and multiples need to be estimated first before start-
ing the separation, which adds to the total cost of the method.
Therefore, the pattern-based approach can be much slower
than adaptive subtraction.

Computing considerations aside, the two methods can per-
form very differently according to the geologic setting. Here,
both are tested in a salt environment with a synthetic data set.
This data set was primarily designed to conduct blind tests for
velocity estimation methods. Consequently, no structural in-
formation is known. The adaptive subtraction technique used
in this section is based on the estimation of 2D, time-space-
varying matching filters (Rickett et al., 2001; Guitton and
Verschuur, 2004). The filters are computed for one shot gather
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Figure 7. Two constant offset sections (& = 342 m) after multi-
ple attenuation with the Spitz approximation using (a) 2D and
(b) 3D filters.

at a time. With the pattern-based approach, 3D filters are used
for the multiple attenuation. Ideally, 3D filters should also be
used with adaptive subtraction. However, matching filters are
generally not estimated that way.

The multiple model is computed with SRMP. The synthetic
model has an offset spacing of 12.5 m and a shot separa-
tion of 50 m. To make the multiple prediction work, the off-
set axis is sampled down to 50 m. This choice is clearly not
ideal to obtain an accurate model of the multiples, and the
missing shots should be interpolated. In practice with field
data, however, it is never possible to obtain all of the nec-
essary traces, either during the acquisition or with interpola-
tion. Thus, the multiple model is never perfect and this syn-
thetic model, with this choice of offset spacing, illustrates this
problem. Figure 10 shows one constant-offset section from
—15000 m to +15000 m with primaries and multiples. This
area is particularly interesting because of the presence of
diffraction hyperbolas. Because no velocity model or sedi-
mentary section is available, a possible interpretation of these
diffractions is the presence of salt bodies with a rugose top
(similar to what we see with the Sigsbee2B data set). The mul-
tiple model is shown in Figure 11 for the same offset. The label
DT points to diffraction tails where the model is not properly
matching the multiples in the data. Besides these few imper-
fections in the model, the model looks very faithful to the ac-
tual multiples.

a)
o
=
]
(=}
=)
=

-~ 8

= 2

=

o =]
@z =1

a &
=
=
©
=
g

X (m)
2
o
g
=~ g
E ©
B -
s o
=4 =]
v =}

a @
=
o
o
o
g
=1
™~

10 000 20 000
X (m)

Figure 8. Two migration results of the estimated primaries
with (a) 2D and (b) 3D filters. The circles show areas where
multiples are better attenuated with 3D filters than with 2D
filters.
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Because no velocity analysis was conducted with this
data set, no stacks are presented. Alternatively, close-ups of
constant-offset sections are shown to illustrate strengths and
weaknesses of the two different approaches. Figure 12 shows
a comparison between the input data, the multiple model, the
estimated primaries with the adaptive subtraction, and the es-
timated primaries with the pattern-based technique. Parame-
ters for the adaptive subtraction such as filter and micropatch
sizes were determined by trial and error to give the most sat-
isfying multiple attenuation results. The offset is 700 m. As
shown by the arrows, the pattern-based method generally per-
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Figure 9. Close-up of Figure 8 showing two migrated images
when (b) 2D and (c) 3D filters are used. The true primaries
are shown in (a). Arrow 1 points to primaries that are atten-
uated with the pattern-based approach. Arrow 3 is a primary
that the 3D PEFs recover. Arrow 2 points to a multiple that is
not attenuated with the 2D PEFs but which resembles 3 quite
closely. The 3D filters remove this event.
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Figure 10. Constant-offset section (4 = 500 m) of the BP syn-
thetic data set with multiples. Tails of diffracted multiples are
denoted by DT.

forms better. The same conclusions hold in Figure 13. Note
the presence of aliasing artifacts in Figure 13b as a result of
the coarse sampling of the offset axis for the multiple predic-
tion (van Dedem, 2002). These artifacts do not seem to affect
the estimated signal for either method.

Sometimes, it can be rather difficult to see if multiples are
removed by looking at 2D planes, as exemplified in Figure 14.
The multiple model in Figure 14b indicates that most of the
events seen in Figure 14a are multiples. The multiple attenua-
tion result with adaptive subtraction in Figure 14c shows one
event at 2 that seems to be a primary. However, by looking at
the shot gathers (not shown here), it appears that this event is
a multiple that the pattern-based approach was able to atten-
uate.

Time (s)

—-12000-8000 —4000 0 4000 8000 12000
X (m)

Figure 11. Constant-offset section (A = 550 m) of the esti-
mated multiples for the BP synthetic data set. The multiples
are accurately modeled except for the diffracted multiples,
shown as DT, for which the limited range of offsets and num-
ber of shots hamper any attempt at modeling the diffraction
tails.
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Figure 12. Constant-offset sections (4 = 700 m) for (a) the in-
put data, (b) the multiple model, (c) the estimated primaries
with adaptive subtraction, and (d) the estimated primaries
with the pattern-based approach. Arrows point to locations
where the pattern-based approach attenuates multiples signif-
icantly better than the adaptive subtraction.



Pattern-based Multiple Subtraction V105

One shortcoming of the pattern-recognition technique is
that it relies on the Spitz approximation to provide a signal
pattern model. By construction, the signal and noise filters
will span different components of the data space. Therefore,
the estimated primaries and multiples are uncorrelated. This
fact proves that with the Spitz approximation, higher dimen-
sion filters are preferred because primaries and multiples have
fewer chances to look similar.

Figure 15 shows an example where primaries are damaged
by the pattern-based method. For instance, in Figure 15a we
see at 2 a primary that is attenuated by the PEFs (Figure 15d)
but is well preserved by the adaptive subtraction (Figure 15c).
Here the primaries and multiples (Figure 15b) exhibit simi-

a) d)
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Figure 13. Constant-offset sections (h = 4550 m) for (a) the
input data, (b) the multiple model, (c) the estimated primaries
with adaptive subtraction, and (d) the estimated primaries
with the pattern-based approach. Arrow A points to aliasing
effects as a result of the offset sampling of the shot gathers.
The pattern-based approach attenuates the multiples better
than the adaptive subtraction in 1 and 2.
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Figure 14. Constant-offset sections (4 = 3300 m) for (a) the
input data, (b) the multiple model, (c) the estimated primaries
with adaptive subtraction, and (d) the estimated primaries
with the pattern-based approach. The 1 points to a primary
that the pattern-recognition preserves very well. The 2 points
to an event that is attenuated with the pattern-based approach
but not with the adaptive subtraction in (c). Though not shown
here, a close inspection of the corresponding shot gathers sug-
gests that 2 is actually a multiple.

lar patterns, and the signal may have minimum energy. Using
the Spitz approximation, event 2 is identified as noise and is
removed. For event 3, it is quite difficult to say if multiples
are removed in Figure 15d or if primaries are preserved in
Figure 15c. Looking at the corresponding shot gathers did
not help to make a decision; migration would probably help
answer this question. Otherwise, event 4 is preserved with
adaptive subtraction, and 1 and 5 are well recovered with the
pattern-based approach.

This synthetic example indicates that the pattern-based ap-
proach tends to attenuate the multiples more accurately than
adaptive subtraction when the multiples are not correlated
with the primaries. This illustrates that higher-dimension fil-
ters should be preferred to better discriminate between noise
and signal. The next section shows how the pattern-based
approach performs on a field data set from the Gulf of
Mexico.

GULF OF MEXICO EXAMPLE

The pattern-based approach is tested on a 2D line from the
Mississippi Canyon. This data set has been used extensively
to benchmark multiple attenuation techniques (The Leading
Edge, 1999). A stacked section of this data set is shown in
Figure 16. Strong surface-related multiples are visible below
3 s. The tabular salt near the water bottom generates peg-legs
in the data. The shot and receiver spacing is 26.6 m, and the
first hydrophone is 100 m away from the source. The miss-
ing short-offset traces were interpolated on common-midpoint
(CMP) gathers with a radon-based technique (Kabir and Ver-
schuur, 1995) before multiple prediction. The actual separa-
tion is performed with the original traces only, without the
near-offset data.

The multiple attenuation starts with the estimation of
3D PEFs from SRMP with one convolution and the Spitz
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Figure 15. Constant-offset sections (A = 5050 m) for (a) the
input data, (b) the multiple model, (c) the estimated primaries
with adaptive subtraction, and (d) the estimated primaries
with the pattern-based approach. The 1 and 5 show events
better preserved with the pattern-based method; 2 and 1 are
better recovered with the adaptive subtraction; and 4 seems
to point to a primary that the adaptive subtraction is able to
save. Because the area is contaminated with strong multiples,
it is difficult to know without a stratigraphic model if 3 is a
primary.
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approximation. Then multiples and primaries are separated
according to their multidimensional spectra. Figure 17 dis-
plays the multiple attenuation result for one shot gather out-
side the salt boundaries (x = 4500 m). The multiple model in
Figure 17c looks fairly accurate. The estimated primaries (Fig-
ure 17b) and multiples (Figure 17d) show that the subtraction
is working at short and far offsets.

A second shot gather is shown in Figure 18 from inside
the salt boundaries (x = 12000 m). Below the salt, diffracted
multiples with bounces outside the acquisition grid affect the
prediction (Kabir, 2003). However, the estimated primaries
(Figure 18b) and multiples (Figure 18d) are again separated
well. Note that second-order multiples below 5 s are also at-
tenuated. At short offset, between 0 and 1000 m, one primary
above the first water-bottom multiple has been removed in
Figure 18d. This is because this event has a pattern similar to
the water-bottom multiple.

Stacked sections of the input data, estimated multiples, and
primaries are displayed in Figure 19. These stacks are lo-

0 4000 8OO0 12000 16 000 20000
X (m)

Figure 16. Stacked section of a 2D line from the Gulf of Mex-
ico. Surface-related multiples appear below 3 s.
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Figure 17. Shot gathers outside the salt boundaries at 4500 m
for (a) the input data, (b) the estimated primaries, (c) the mul-
tiple model with SRMP, and (d) the estimated multiples.
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Figure 18. Shot gathers inside the salt boundaries at 12000 m
for (a) the input data, (b) the estimated primaries, (c) the mul-
tiple model with SRMP, and (d) the estimated multiples.
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Figure 19. A comparison of stacked sections for (a) the input
data, (b) the estimated primaries, (c) the multiple model with
SRMP, and (d) the estimated multiples. Some primaries (P)
in (b) are recovered while some multiples (M), not properly
modeled by SRMP, are remaining.

cated below the salt, as shown in Figure 19a. The estimated
primaries in Figure 19b are still contaminated with diffractions
(shown as M). The multiples are attenuated very well other-
wise. Comparing the stack of the multiple model (Figure 19c)
with the stack of the extracted multiples (Figure 19d) indicates
that no prominent primaries have been attenuated.

The Gulf of Mexico example demonstrates that the pattern-
based approach is an effective tool for multiple attenuation
in complex geology. Although the multiple model obtained
with SRMP presented some flaws (e.g., diffracted multiples),
the proposed approach is able to attenuate the multiples while
preserving the primaries.

DISCUSSION AND CONCLUSIONS

Multiple attenuation can be cast as a problem where events
are separated according to their patterns (e.g., multidimen-
sional spectra). A pattern is made up of both the kine-
matic and amplitude information that PEFs can approximate.
The pattern-based technique is a two-step procedure. First,
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nonstationary time-space domain PEFs are estimated for both
primaries and multiples. These filters are estimated from a
pattern model of the multiples usually computed with SRMP
and a pattern model of the primaries computed with the Spitz
approximation. The Spitz approximation assumes that the
noise and signal are uncorrelated. Second, multiples are sepa-
rated from the primaries in a least-squares sense according to
their multidimensional spectra.

As illustrated with the Sigsbee2B data set, this approach
has the potential to separate primaries and multiples very
well as long as an accurate pattern model exists for PEF es-
timation. When no pattern model of the primaries exist, the
Spitz approximation, which convolves the data with the noise
PEFs, leads to a very good attenuation of the multiples if
high-dimensional filters are used (i.e., three versus two dimen-
sions). Indeed, primaries and multiples are less likely to look
similar. Comparing adaptive and pattern-based subtraction in-
dicates that the latter almost always removes the multiples
better, except in areas where the primaries and multiples are
correlated. An important property of the pattern-based ap-
proach is that it seems to cope well with modeling inadequa-
cies.

Multiple attenuation can be viewed as a two-step process
where multiples are first predicted and then subtracted. Both
steps are important, but most of the efforts are usually con-
centrated on the prediction step and not the subtraction step.
Since in practice it remains impossible to get a perfect mul-
tiple model because of the limitations of the acquisition ge-
ometry and interpolation/extrapolation techniques, new sub-
traction methods are needed. The pattern-based method pre-
sented in this paper is a successful tool for removing coherent
energy in seismic data. This technique offers a viable alterna-
tive to adaptive subtraction by being less sensitive to errors
in the multiple model. In addition, compared to adaptive sub-
traction, the pattern-based technique alleviates the strong as-
sumption that primaries have minimum energy.
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