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Amplitude and kinematic corrections of migrated images
for nonunitary imaging operators

Antoine Guitton∗

ABSTRACT

Obtaining migrated images with meaningful ampli-
tudes is a challenging problem when the migration oper-
ator is not unitary. One possible solution to this problem
is iterative inversion. However, inversion is an expen-
sive process that can be rather difficult to apply, espe-
cially with 3D data. In this paper, I propose estimating
migrated images similar to the least-squares inverse im-
ages by approximating the inverse Hessian, thus avoid-
ing the need for iterative inversion. The inverse Hessian
is approximated with a bank of nonstationary match-
ing filters. These filters are not exact impulse responses
and are limited in their ability to mimic the full effects
of least-squares inversion. Tests on two data sets show
that this filtering approach gives results similar to iter-
ative least-squares inversion at a lower cost. This tech-
nique is flexible enough to be applied to images migrated
from zero-offset or angle-domain common-image-point
gathers.

INTRODUCTION

It is well known that most of the operators used for seismic
processing are nonunitary (Claerbout, 1992). This means that
for any operator L, L′L 6= I, where (′) stands for the adjoint and
I is the identity matrix. A well-known nonunitary operator is
the slant-stack operator where artifacts are created in both
data space and model space when a limited range of offsets
and ray parameters are used for the transformation (Kostov,
1990). For migration, because of the limited aperture of the
acquisition geometry, the final migrated image can be blurred
with uneven amplitudes (Gray, 1997).

Different approaches have been proposed to correct for am-
plitude effects during the migration process. Bleistein (1987),
based on earlier work by Beylkin (1985), derived an inverse op-
erator for Kirchhoff migration assuming infinite receiver cov-
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erage at the surface. A similar path is followed by Thierry et al.
(1999) with the addition of nonlinear inversion with an approx-
imated Hessian. Least-squares migration with regularization
has proved effective with incomplete surface data (e.g., Nemeth
et al., 1999) and irregular subsurface illumination due to com-
plex structures (e.g., Prucha et al., 1999; Kuhl and Sacchi, 2001).
Hu et al. (2001) introduced a deconvolution operator that ap-
proximates the inverse of the Hessian in the least-squares es-
timate of the migrated image. However, this method assumes
a v(z) medium, which means that the deconvolution operators
are horizontally invariant. Rickett (2003) proposed estimating
weighting functions from reference images to compensate illu-
mination effects for finite-frequency depth migration.

In this paper, I propose a new strategy for approximating the
inverse of the Hessian. This approach aims to estimate a bank
of nonstationary matching filters (Rickett et al., 2001) between
two migrated images that theoretically embed the effects of the
Hessian. This approach is carried out after migration and is very
cheap to apply. It can be applied to images migrated at zero-
offset or to angle-domain common-image gathers. I illustrate
this method with two data sets where the earth’s reflectivity is
estimated. The first data set is a flat-layer model with a complex
velocity field; the second is the Marmousi data set (Bourgeois
et al., 1991). I demonstrate that this approach can effectively
recover amplitudes almost identical to the ones obtained with
least-squares inversion at a much reduced cost.

THEORY

In this section, I show how the least-squares estimate of a mi-
grated image can be approximated using nonstationary match-
ing filters. Given a vector of seismic data d and a linear modeling
operator L, we seek a model of the earth m such that the length
of a residual vector rd(m) is minimized:

0≈ rd(m)=Lm− d. (1)

Equation (1) is called a fitting goal. It states the need for the
model m to best represent the data d using the modeling op-
erator L, independent of any norm. The model of the earth
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m can be parameterized in terms of reflectivity or impedance
as a function of depth or time. In this paper, I estimate the
earth’s reflectivity as a function of depth. The vector d can be
poststack or prestack data, in two dimensions or in three. I will
illustrate the proposed method with poststack and prestack
2D data. The linear modeling operator L is mathematically re-
lated to the migration operator by the adjoint state (Claerbout,
1985). Therefore, the migration operator is the adjoint of the
modeling operator L such that (Claerbout, 1985)

L′d=m1 (2)

describes the migration process from the data vector d to an
image m1. No assumptions are made about the migration op-
erator L′. This operator can be Kirchhoff migration (Nemeth
et al., 1999) or a downward continuation method (Prucha
et al., 1999). For migration, a model styling goal (regulariza-
tion) is necessary to compensate for irregular geometry arti-
facts and uneven illumination (Prucha et al., 1999). Kuhl and
Sacchi (2003) showed that ray-parameter smoothing reduces
inversion artifacts significantly. I omit the regularization in my
derivations and focus on the data-fitting goal in equation (1)
only. By estimating m in a least-squares sense, we want to min-
imize the objective function:

f (m) = ‖rd‖2 = ‖Lm− d‖2, (3)

where ‖ · · · ‖ is the `2 norm. The least-squares estimate m̂ of
the model is then given by

m̂ = (L′L)−1L′d, (4)

where L′L is called the Hessian of f (m). The inverse of the
Hessian (L′L)−1 can be regarded as a deconvolution opera-
tor (Hu et al., 2001) that corrects the amplitudes of the final
image. Unfortunately, with migration operators, the Hessian
cannot generally be inverted, and iterative procedures such
as conjugate gradient (CG) or the Newton method are often
used (Lambaré et al., 1992). Yet, iterative methods are still very
expensive to apply, and inversion is still far from being a com-
modity in the processing toolbox. The next section shows how
we can approximate the effects of the Hessian with nonstation-
ary matching filters, thus simulating the effects of least-squares
inversion at a much reduced cost.

Approximating the Hessian

I replace L′d with m1 in equation (4) to obtain

m̂ = (L′L)−1m1. (5)

In equation (5), m̂ and L′L are unknown. Since I am looking
for an approximation of the Hessian, I want to find two known
images that are related by the same expression as in equation
(5). This can be easily achieved by remodeling the data from
m1 with L, i.e.,

d1 = Lm1, (6)

and remigrating them with L′ as follows:

m2 = L′d1 = L′Lm1. (7)

It is easy to transform equation (7) into

m1 = (L′L)−1m2, (8)

which is very similar to equation (5). Note that m1 and m2 have
a mathematical significance: they are both vectors of the Krylov
subspace for the operator L and the data d. Now I assume that
we can write the inverse Hessian as a linear operator B0 such
that equation (5) can be written as

m̂ = B0m1, (9)

and equation (8) as

m1 = B0m2, (10)

where B0= (L′L)−1. In equation (10), both m1 and m2 are
known, but B0 is not. The idea of this paper is to approximate
B0 with a bank of nonstationary filters B that will take us from
m2 to m1 in equation (10) and from m1 to something similar to
m̂ in equation (9). Therefore, I approximate the Hessian with
a bank of matching filters B that are very easy and cheap to es-
timate. Choosing matching filters reflects the general idea that
the Hessian is a transform operator between two similar im-
ages. My hope is not to perfectly represent the Hessian, but to
improve the migrated image at a lower cost than least-squares
migration.

Now I describe how the matching filters are estimated. Re-
placing B0 with B gives a new fitting goal where the length of
a residual vector rm1 (B) is minimized:

0 ≈ rm1(B) = m1 − Bm2. (11)

Margrave (1998) and Rickett et al. (2001) show that equa-
tion (11) can be rewritten as follows:

0 ≈ rm1(b) = m1 −M2b, (12)

where M2 is the matrix form of the nonstationary convolu-
tion with m2, and b is the vector of unknown filter coefficients.
Because we have many unknown filter coefficients in b, I in-
troduce in equation (11) a regularization term that penalizes
differences between filter coefficients:

0 ≈ rm1 = m1 −M2b,

0 ≈ rb = Rb, (13)

where R is the helix derivative (Claerbout, 1998). Note that the
helix derivative corresponds to the spectral factorization of the
2D Laplacian operator∇2= (∂2/∂x2+ ∂2/∂z2) into a minimum
phase filter, where x is the midpoint axis and z the depth axis
(Fomel et al., 2003). Other familiar operators such as a 2D
gradient ∇ = (∂/∂x, ∂/∂z) can be used instead. I estimate b
in equation (13) in a least-squares sense by minimizing the
objective function

f (b) = ‖rm1‖2 + ε2‖rb‖2, (14)

where ε is a trade-off parameter between data fitting and
smoothing of the filter coefficients. The least-squares inverse is
thus given by

b̂ = (M′2M2 + ε2R′R
)−1M′2m1. (15)

The filter estimation process is similar to the one proposed by
Rickett et al. (2001) for the adaptive subtraction of multiples.
For this problem, I estimate 2D filters with helical boundary
conditions (Mersereau and Dudgeon, 1974; Claerbout, 1998).
One advantage of the helix is that it transforms the 2D filter
estimation step into a 1D problem. The 2D filters can be also
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estimated in patches with one stationary filter per patch. How-
ever, as opposed to stationary filters in patches, nonstationary
filters can change continuously along the depth and midpoint
axes, thus creating smooth results. Getting similar smoothness
with stationary filters in patches would be more difficult be-
cause of the transition problems inside the window overlap
zones (Guitton and Verschuur, 2004). Once the filters b̂ are
estimated, the final image is obtained by computing

m̂ ≈M1b̂ = B̂m1, (16)

where M1 and B̂ are the the convolutional operators with m1

and b̂, respectively.
Therefore, I propose the following algorithm for approxi-

mating the Hessian and obtaining better migrated images:

1) Compute a migrated image m1=L′d.
2) Compute a second image m2=L′Lm1.
3) Estimate a bank of nonstationary matching filters b̂

[equation (15)].
4) Convolve B̂ with m1 to get an improved image

[equation (16)].

In terms of cost, this approach is comparable to one-and-a-
half iterations of a CG method, the first half iteration being
the first migration to compute m1. The cost of estimating the
nonstationary filters is negligible compared to the total cost
of migration. In the next section, I illustrate this idea with the
Marmousi data set. I show that an image similar to the least-
squares migration image can be effectively obtained.

MIGRATION RESULTS

I illustrate the proposed algorithm with two data sets where
the earth’s reflectivity is sought. For L′, I use a prestack split-
step double-square root (DSR) migration method with one
reference velocity (Stoffa et al., 1990; Popovici, 1996). The for-
ward operator is therefore a DSR modeling operator (Kuhl and
Sacchi, 2003). I demonstrate with images migrated at zero off-
set and with angle-domain common-image gathers (ADCIGs)
that the approximation of the Hessian with adaptive filters
yields results comparable to least-squares migration.

Poststack migration results

This section illustrates how well the proposed technique re-
covers the reflectivity of the earth for a simple synthetic data
set. Figure 1 shows a reflectivity model as a function of depth.

Figure 1. Model reflectivity as a function of depth. The model
consists of four flat reflectors with unit amplitude. There is an
increment of fourteen between traces.

The reflectivity is kept constant with the midpoint position. It
shows four reflectors with unit amplitude. I generate poststack
data (Figure 2) from this model with the velocity function of
the Marmousi experiment (Figure 3). The density is kept con-
stant. The data are created with the DSR modeling operator.
The complex velocity model creates distortion in the wavefield
as illustrated in Figure 2. A more realistic way of modeling the
data would be with a different operator than the one used for
the migration, thus mimicking amplitude issues encountered
with field data. In particular, retrieval of the true reflectivity
would be more difficult to achieve.

Now we migrate the data in Figure 2 to compute m1

(Figure 4a), then remodel and remigrate to compute m2

(Figure 4b). Because the same operator is used to create the
data (Figure 2) and to perform the remodeling and migration
steps, the migration results are both kinematically correct and
have very few artifacts. However, looking closely at the two
images in Figure 4, we notice that the amplitudes are affected
by the migration. The reflectivity is not constant and equal to
one anymore for both m1 and m2. This example illustrates that
L is nonunitary.

From the two images m1 and m2, a bank of nonstationary
filters (Figure 5) is estimated and applied to the migration re-
sults m1. In addition, I run five CG iterations on the same data

Figure 2. Poststack data created from the reflectivity model
in Figure 1 and the velocity field in Figure 3. This data set is
generated with the DSR modeling operator.

Figure 3. Velocity model for the Marmousi data set. The ar-
rows 1 and 2 correspond to surface locations for the CIGs in
Figures 13 and 14.
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set. Figure 6 displays a comparison of the imaging results for
the filtering technique and the inversion. Both methods yield
similar amplitudes by recovering the original reflectivity.

This simple synthetic example illustrates that the migration
operator is not unitary and that the proposed approach is able
to recover the true reflectivity. Therefore, the nonstationary
filters can effectively simulate the inverse of the Hessian. A
more realistic comparison would consist in modeling the data
in Figure 2 with a different technique than the one used for the
inversion, for example, with finite differences. Because only
(L′L)−1 is approximated, the modeling of the data itself is not
an important issue, however. In the next section, I illustrate the
filtering approach with the more difficult Marmousi data set.

Figure 4. (a) Migration result of the synthetic data set in Fig-
ure 2 (i.e., m1). (b) Migration result of the remodeled data (i.e.,
m2). The migration process changes the amplitude of the four
flat events.

Figure 5. Estimated filters from Figures 4a and 4b. Each cell
represents a nonstationary filter with its zero-lag coefficient
in the middle. One-fifth of the filters are actually shown in
both directions. Each filter position corresponds roughly to a
similar area in the migrated image. The size of the filters is 4× 4
coefficients. The filter coefficients are the strongest at the four
reflector positions.

Zero-offset prestack migration results

Here, we estimate the earth’s reflectivity of the Marmousi
data set with prestack data. First, I show in Figures 7 and 8
a comparison between the migration result of the Marmousi
data set (m1) and the remodeled data (m2). We notice that the

Figure 6. (a) Image estimated after applying the adaptive fil-
ters in Figure 5 to m1 in Figure 4a. (b) Image estimated after
five CG iterations. Both methods recover the correct reflection
coefficient for each reflector.

Figure 7. Migration result of the Marmousi data set (i.e., m1).

Figure 8. Migration result of the remodeled data from m1
(i.e., m2).
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migration of the remodeled data (Figure 8) has lower ampli-
tudes in the upper part of the model. Therefore, we expect the
filters to correct for this difference. Figure 9 displays a few es-
timated filters for the Marmousi result. The filters are 10× 10
coefficients with 40 patches in depth and 80 patches along the
horizontal axis. I show only one-fifth of these filters along both
axes. It is interesting to notice that these filters have their high-
est value at zero lag, meaning that we have a strong amplitude
correction with few kinematic changes. The zero-lag values are
also larger at the top of the model, as anticipated. Looking
more closely at these filters, we see that the coefficients follow
the structure of the Marmousi model.

Having estimated filters b in equation (15), I apply them to
m1 to obtain an improved image. To validate this approach,
I show in Figure 10 the result of five CG iterations with the
Marmousi data. This results show higher amplitudes at the top,
but with inversion artifacts. This problem should be addressed
with a proper regularization scheme (Prucha et al., 1999). In
Figure 11, I show the corrected image with the approximated
Hessian. The amplitude behavior is very similar to Figure 10,
without the inversion artifacts.

Note that the filters are not exact impulse responses: they are
band-limited filters which depend heavily on the two images
m1 and m2. As an illustration, two fault-planes shown as F
in Figures 10 and 11 are better recovered with least-squares
inversion. Finally, I show in Figure 12 the ratio of the smoothed

Figure 9. Estimated filters from Figures 7 and 8. Each cell rep-
resents a nonstationary filter with its zero-lag coefficient in the
middle. One-fifth of the filters are actually shown in both di-
rections. Each filter position corresponds roughly to a similar
area in the migrated image. After close inspection of the fil-
ter coefficients, these filters seem to follow the structure of
the Marmousi model. They are also stronger at the top of the
model, as expected.

Figure 10. Image estimated after five iterations of CG. The
model is noisy because no regularization has been applied dur-
ing the inversion. Fault planes are indicated by F.

envelopes of Figures 7 and 11. Figure 12 illustrates that the
effects of the nonstationary filters (i.e, the Hessian) are stronger
on the top of the model. Interestingly, no shadow zones or
focusing effects are visible in this image. This proves that the
model is well illuminated by the acquisition geometry.

Additionally, the cost of estimating the matching filters is
much lower than running five CG iterations. For the Marmousi
data set, on eight processors, it took 132 minutes to compute
five iterations. For the filtering technique, it took 10 minutes
with only one processor to estimate the filters (given m1 and
m2), which is almost two orders of magnitude faster.

Angle-domain results

As stated in the presentation of the filtering technique, we
can apply this method with very different data sets: earth mod-
els and imaging operators. In this section, we derive the earth’s
reflectivity as a function of angle and test our proposed ap-
proach in the context of amplitude variation with angle (AVA)
estimation. However, it is not the goal of this work to determine
if we can recover the true AVA curves. The objective here is
to validate the proposed technique with another possible out-
put of the DSR migration method, that is, angle gathers. The
angle panels are directly created after migration from the off-
set panels (Stolt and Weglein, 1985; Weglein and Stolt, 1999;
Sava et al., 2001; Sava and Fomel, 2003). The workflow is very
similar to the one used in the preceding section:

1) Compute a migrated image m1 = L′d at different offsets,
and transform offset gathers into angle gathers.

Figure 11. Image estimated after applying the adaptive filters
in Figure 9 to m1 in Figure 7. Amplitudes are similar to the
ones observed in Figure 10 without the artifacts. Fault planes
are indicated by F.

Figure 12. Ratio of the envelopes of Figures 7 and 11. Bright
colors correspond to high values. The main effect of the filters
is clearly visible at the top.
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2) Compute a second image m2=L′Lm1 at different offsets,
and transform offset gathers into angle gathers.

3) Estimate a bank of 2D nonstationary matching filters b̂
for each ADCIG.

4) Convolve B̂ with the corresponding ADCIG from m1.
5) Stack ADCIGs across angle to form the final image.

I show in Figures 13 and 14 the ADCIGs at two locations of the
model (shown as 1 and 2 in Figure 3) for the migration result
(m1), the inversion result after five CG iterations, and the fil-
tering result (B̂m1). Again, the angle gather after filtering has
fewer artifacts than with inversion, which has a similar ampli-
tude pattern throughout the section. Note that these gathers
are not perfectly flat because only one reference velocity is
used for this complex model. In Figure 13, the amplitude of
the reflectors increases at the top of the section (shown as H

Figure 13. A comparison of migration, inver-
sion, and filtering technique on one common-
image gather (CIG). The CIG location is
3050 m (1 in Figure 3). (a) Migration re-
sult. (b) Inversion result after five iterations
of CG. (c) Filtering result (B̂m1). The filter-
ing result is comparable in amplitude to the
inversion panel with less artifacts. Hs point
to regions of higher amplitudes compared to
the simple migration. Ls point to regions of
lower amplitudes compared to the simple mi-
gration. Os point to regions where the ampli-
tudes increase with angle.

Figure 14. A comparison of migration, inver-
sion, and filtering technique on one CIG. The
CIG location is 5550 m (2 in Figure 3). (a) Mi-
gration result. (b) Inversion result after five
iterations of CG. (c) Filtering result (B̂m1). C
points to a reflector that is more continuous
after filtering than after migration.

in Figures 13b and Figures 13c) and decreases at the bottom
(shown as L in Figures 13b and Figures 13c). These observa-
tions are consistent with the migrated images at zero offset in
Figures 7 and 8. The amplitude of some reflectors increases
at large offsets (shown as O). This behavior is similar to what
Sava et al. (2001) observed for wave-equation migration with
amplitude corrections. In Figure 14, we notice that the filtering
approach improves the continuity of some reflectors (shown as
C) compared to the inversion result. I display in Figure 15 the
estimated filters for the angle gather in Figure 13. Again, we
see that we have higher amplitudes for filters at large aperture
angles. In addition, we notice a smoothing effects of the filters
along the angle axis.

Finally, I show in Figures 16 and 17 stacked images across
angle for the CIGs of m1 and m2, respectively. The bottom re-
flectors are stronger than in Figures 7 or 8 with fewer migration
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artifacts, as expected from the stack. The differences between
the two stacked-data panels in Figures 16 and 17 are similar
to what we observe between Figures 7 and 8, that is, stronger
amplitudes at the top of the image for m1 and fewer migration
artifacts for m2. Figures 18 and 19 show a comparison between
the filtering and inversion approaches for the stacked data.
Again, the amplitude pattern is the same for both images, with
fewer artifacts in the filtering result (Figure 18).

Figure 15. Sample of the estimated matched filters for Fig-
ure 13a. One-fifth of the filters are displayed in both directions.
Each filter is 10× 10. The shapes of these filters prove that they
tend to smooth energy along angle.

Figure 16. Stacked section of the ADCIGs for the migrated
image m1.

Figure 17. Stacked section of the ADCIGs for the migrated
image m2.

DISCUSSION

In this paper, I presented a method for correcting migrated
images by approximating the Hessian of the imaging operator
with nonstationary matching filters. These filters are estimated
from two migration results. One migrated image, m1, corre-
sponds to the first migration result. The second image, m2, is
computed by remodeling the data from m1 and then by rem-
igrating it. It turns out that the relationship between m1 and
m2 is similar to the relationship that exists between the least-
squares inverse m̂ and m1. In the proposed approach, this rela-
tionship is simply captured by matching filters. These filters are
not impulse responses. They are spatially band-limited filters
constrained by the two images m1 and m2 used for the filter
estimation step.

I demonstrated with the Marmousi data set that this ap-
proach gave a better image than with least-squares without
regularization at a lower cost. In addition, this approach is flex-
ible enough to be used on images migrated at zero offset or on
ADCIGs. As opposed to Hu et al. (2001), the correction in
the image is completely data driven, does not depend on the
velocity, and can be applied with any migration operator. It
also works in the poststack or prestack domain without any
extra effort. Given the data and the computer resources to run
at least two migrations to estimate m2, this method would be
easy to apply with 3D migrated images. The helix also makes
possible the use of high-dimensionality filters very easily (e.g.,
3D) for higher accuracy. Compared to Rickett (2003), this pro-
posed approach does not need reference images. In addition,
the multidimensional filters offer more degrees of freedom for
the correction than does a simple zero-lag weight in correcting
kinematic changes and moving energy locally in the image.

Figure 18. Stacked section of the filtered ADCIGs from m1.

Figure 19. Stacked section of the ADCIGs for the image ob-
tained after five CG iterations.
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Kuhl and Sacchi (2003) show that inversion is particularly
valuable to attenuate artifacts from acquisition footprint by
applying a regularization in the ADCIGs. The proposed filter-
ing technique can be easily adapted to this case by adding a
second term in equation (7) as follows:

m2 = (L′L+ ε2A′A)m1, (17)

where A is a regularization operator and ε a trade-off param-
eter. The roughening operator can be a simple gradient in the
angle domain or filters with geological constraints (Clapp and
Biondi, 2002). These possibilities are subject of future research.
Alternatively, these filters can be used as preconditioning op-
erators providing faster convergence for iterative inversion.
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