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Least-squares joint imaging of multiples and primaries

Morgan P. Brown1 and Antoine Guitton2

ABSTRACT

Multiple reflections contain subsurface reflectivity in-
formation which often complements that found in pri-
mary reflections. Previous attempts to combine the ad-
ditional information by summing prestack images of the
primaries and multiples have generally failed because
of crosstalk leakage between the images. We present a
general linear least-squares joint imaging of multiples-
and primaries (LSJIMP) inversion method to simulta-
neously suppress crosstalk noise and combine pegleg
multiples and primaries in a prestack sense. In general,
LSJIMP is compatible with a wide variety of prestack
imaging methods and can be extended to jointly im-
age primaries and other embedded wave modes such as
shear-wave conversions.

We present a particular LSJIMP implementation that
utilizes an efficient linear operator to model and im-
age pegleg multiples in a true relative-amplitude sense.
Applied to a given type of pegleg multiple in the data,
our imaging operator produces an image directly com-
parable to primaries after NMO. Our operator’s kine-
matic component is an extension of the NMO equation
that independently images split peglegs in a moderately
heterogeneous earth. Its amplitude component corrects
multiples for their differences in angle-dependent re-
flection strength and illumination, relative to a primary.
We test our LSJIMP implementation on 2D and 3D
prestack field data examples and show that the method
cleanly separates primaries and multiples and also uses
joint information in the events to interpolate the signal
in acquisition gaps.

INTRODUCTION

Seismic data acquired in marine environments almost al-
ways contain observable multiple reflections from the air-
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water interface. Multiples may significantly impede the con-
struction and interpretation of an image of the primaries, es-
pecially in regions with strong reflectors (e.g., hard water bot-
tom or salt bodies). Multiple suppression techniques have, by
necessity, advanced contemporaneously with reflection imag-
ing for many years.

Despite its usual classification as noise, however, energy
from multiples often penetrates deeply enough into the earth
to illuminate the prospect zone. In this sense, the multiples
can be viewed as a perfectly viable signal, rather than noise.
Moreover, since they illuminate different angular ranges and
reflection points (see Figure 1), a primary and its multiples are
more than redundant. In theory and in practice, multiples pro-
vide subsurface information not found in the primaries.

To use the new information provided by multiples, one must
first map the multiples and primaries to a domain where they
are directly comparable and then combine them in some fash-
ion. Imaging algorithms such as migration reduce the signal
— either primaries or multiples — to a compact form by re-
moving the effects of wave propagation through the overbur-
den. Additionally, if the prestack primary and multiple images
are arranged in angle-domain common-image gathers (CIGs)
[e.g., Sava and Fomel (2003)], the events can be analyzed
jointly for angle-dependent phenomena. Thus, the angle do-
main after prestack imaging represents a natural domain in
which to combine multiples and primaries.

An important class of multiple suppression techniques pre-
dicts multiples by adding a multiple bounce to the recorded
data with wavefield extrapolation (Morley, 1982; Berryhill and
Kim, 1986; Wiggins, 1988; Lu et al., 1999) or with autocon-
volution (Riley and Claerbout, 1976; Tsai, 1985; Verschuur
et al., 1992). Conversely, reversing the extrapolation direc-
tion removes a multiple bounce from the data and transforms
pegleg multiples into pseudo-primary events (Berkhout and
Verschuur, 2003; Shan, 2003). While conventional migration
can image the pseudo-primaries (Shan, 2003), most published
multiple-imaging techniques perform the reverse modeling
process implicitly and image the multiples directly with Kirch-
hoff migration (Reiter et al., 1991; He and Schuster, 2003)
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or wave-equation (Berkhout and Verschuur, 1994; Yu and
Schuster, 2001; Guitton, 2002).

These techniques correctly image multiples to the position
of an equivalent primary, but they fail to seriously tackle the
equally important problem of combining the multiple and pri-
mary images. Primaries and each mode of multiples consti-
tute semi-independent measurements of the earth’s reflectiv-
ity; unfortunately, they overlap one another in a single data
record. Summing the primary and multiple images (Reiter
et al., 1991; Berkhout and Vershuur, 1994; Shan, 2003) could
potentially improve signal-to-noise ratio (S/N) and fill illumi-
nation gaps, but this strategy encounters a significant prob-
lem. Just as multiples constitute noise on the primary image,
primaries and higher-order multiples constitute noise on the
first-order multiple image (Figure 2). We refer to these con-
tamination events as crosstalk (Claerbout, 1992). Correspond-
ing crosstalk events on the primary and multiple images have
similar kinematics, so summing the images does little to in-
crease S/N or to improve signal fidelity unless the individual
modes are separated before imaging and combination. Un-

Figure 1. Small-angle and far-angle reflectivity information
contained in multiples but not in primaries.

Figure 2. Illustration of crosstalk on images of primaries and
multiples. On the primary image, signal events are primaries;
everything else is crosstalk. On the multiple image, signal
events are first-order, receiver-side multiples; everything else
is crosstalk. Corresponding crosstalk events are quite consis-
tent between images, so summing them will not markedly in-
crease S/N or signal fidelity.

fortunately, cleanly separating a variety of different multi-
ple modes from prestack data is both expensive and difficult.
Moreover, if mode separation is performed as a preprocessing
step, amplitude bias in the separated modes will likely inhibit
the later integration of primaries and multiples.

In this paper we introduce the least-squares joint imag-
ing of multiples and primaries (LSJIMP) method, which aims
to solve the separation and integration problems simultane-
ously as a global least-squares inversion. The model space
of the inverse problem (Figure 3) consists of images corre-
sponding to primaries and to each important multiple mode.
Correct partitioning of the energy from each mode into one
and only one image implies that (1) multiples and primaries
have been separated and that (2) the modeled data fit the
recorded data. However, because the inverse problem is un-
derdetermined, minimizing the modeling error alone does
not ensure a correct partitioning of energy, since forward-
modeled crosstalk is indistinguishable from forward-modeled
signal (see Figure 4). To overcome this problem, we de-
vise three model-regularization operators that discriminate

Figure 3. LSJIMP schematic. Assume that the recorded data
consist of primaries and pegleg multiples. Here, we model only
first-order source-side and receiver-side peglegs with the mul-
tiple bounce on the shallow reflector. By definition, the im-
ages mi,k contain only energy from a specific multiple mode
di,k and are consistent with the other mi,k with respect to both
kinematics and amplitudes. Indices i and k correspond to mul-
tiple order and type (source side or receiver side). Li,k maps
events in mi,k to events that should fit recorded events di,k . The
LSJIMP inversion adjusts mi,k to fit the recorded data d in a
least-squares sense. Model-regularization operators suppress
the crosstalk in each mi,k and exploit the intrinsic redundancy
between and within the images to increase signal fidelity and
fill illumination gaps.
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crosstalk from signal and thereby properly partition each
mode’s energy into the correct image.

The model-regularization operators serve a higher purpose
than crosstalk suppression alone, however, and represent the
novelty of the LSJIMP method. Differential operators applied
across the reflection angle and between images spread signals
from other angles or images to fill illumination gaps and in-
crease signal fidelity. By exploiting an additional, previously
ignored dimension of data redundancy — that between pri-
maries and multiples — we can, with a degree of rigor, claim to
have solved a joint imaging problem and actually to have used
the multiples constructively. LSJIMP’s use of multiples to con-
strain the least-squares imaging problem is a novel general-
ization of existing regularized, least-squares prestack imaging
schemes that exploit signal redundancy across the reflection
angle to fill illumination gaps (Kuehl and Sacchi, 2001; Prucha-
Clapp and Biondi, 2002; Wang et al., 2003).

LSJIMP INVERSE PROBLEM

Generalizing the LSJIMP forward model from Figure 3,
we conceptualize the recorded data as the superposition of
primary reflections and p orders of pegleg multiples from
nsurf multiple-generating surfaces. In Figure 3, p = 1 and
nsurf = 1. Whereas a first-order pegleg splits into source-side
and receiver-side legs, an ith-order pegleg splits into i + 1 legs.
Denoting the primaries as d0 and the kth leg of the ith-order
pegleg from the mth multiple generator as di,k,m, the modeled
data take the following form:

dmod = d0 +
p∑

i=1

i∑
k=0

nsurf∑
m=1

di,k,m. (1)

We can cast di,k,m as linear functions of prestack images. Let
us denote the modeling operator for primaries as L0 and the
image of the primaries as m0. Similarly, for the pegleg di,k,m we
denote the modeling operator and image as Li,k,m and mi,k,m,
respectively. We can now rewrite equation 1 as

dmod = L0m0 +
p∑

i=1

i∑
k=0

nsurf∑
m=1

Li,k,mmi,k,m (2)

= Lm. (3)

Note that signal events in m0 and mi,k,m are assumed consistent
with respect both to kinematics and to angle-dependent am-
plitudes. This assumption implies that signal events are com-
parable between images and thus implies that Li,k,m must be
true-amplitude modeling operators relative to L0.

The LSJIMP method optimizes (e.g., using the conjugate
gradient method) the primary and multiple images by mini-
mizing the �2-norm of the data residual, defined as the differ-
ence between the recorded data d and the modeled data:

min
m

‖Wd[d − Lm]‖2, (4)

where the residual weighting operator Wd forces the resid-
ual to be independent and identically distributed (iid) or,
more intuitively, uncorrelated and evenly scaled. Even sim-
pler choices are possible; in our LSJIMP implementation, we
choose Wd as a diagonal weighting operator (0.0 at missing
trace locations; 1.0 elsewhere).

Other authors have solved a similar least-squares problem.
Nemeth et al. (1999) jointly images and separates compres-
sional waves and various (nonmultiple) embedded coherent
noise modes. Guitton et al. (2001) use a prior multiple model
and nonstationary prediction-error filters to model primaries
and surface-related multiples.

Minimization 4 is generally underdetermined, implying an
infinite number of optimal solutions. The nonuniqueness
problem is closely related to crosstalk leakage, as illustrated
by Figure 4. Recall that all energy from pegleg di,k,m must
be partitioned to mi,k,m if we hope to combine the primary
and multiple images meaningfully. To better constrain the
LSJIMP inversion, we regularize the problem.

LSJIMP regularization

Quite simply, an underdetermined minimization problem
has more unknowns than equations; model regularization con-
sists of adding unique equations to the system. More rig-
orously, model regularization is closely related to the prior
model’s covariance, or how we believe model parameters de-
pend on one another (Tarantola, 1987). Figure 3 motivates
the desired model covariance for the LSJIMP problem. After
optimization, the primary and multiple images should contain
energy from only one particular primary or multiple mode. In
other words, the images should be crosstalk free.

We can rewrite minimization 4 after adding a generic linear
model-regularization operator R:

min
m

‖Wd[d − Lm]‖2 + ε‖Rm‖2. (5)

We call the second term of equation 5 the model residual.
Scalar ε balances the relative importance of the data and
model residuals in the minimization. If we design R to (coun-
terintuitively) boost unwanted components of m, then to min-
imize equation 5, a solver will tend to suppress those compo-
nents.

To the basic LSJIMP inverse problem we add three model-
regularization operators, which boost crosstalk energy rela-
tive to signal energy. These operators also exploit the signal’s

Figure 4. Nonuniqueness of the LSJIMP problem without
regularization. Residual multiple energy on m0 (crosstalk)
mapped to data space by L0 is indistinguishable from a cor-
rectly imaged multiple on mi,k,m (signal) mapped to data space
by Li,k,m.
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redundancy within and between images to increase signal fi-
delity and to fill illumination gaps and missing traces.

Differencing across angle

After prestack imaging with the correct velocity, sig-
nal events are flat with angle/offset, while crosstalk events
generally have residual moveout. Provided that the sig-
nal’s amplitude-versus-angle (AVA) response varies slowly,
a differencing operator applied across angle tends to boost
crosstalk amplitude but not signal amplitude. We denote this
operator Dh. Other authors use similar methodologies to pe-
nalize illumination gaps in least-squares prestack migration
(Kuehl and Sacchi, 2001; Prucha-Clapp and Biondi, 2002;
Wang et al., 2003). If a signal event is not flat, Dh will dam-
age it in the LSJIMP inversion. Conversely, Dh cannot distin-
guish crosstalk from signals at near angles/offsets, where both
events are usually flat.

Differencing between images

After prestack imaging, signal events on the primary and
multiple images are by definition consistent with respect
to kinematics and amplitudes. Conversely, corresponding
crosstalk events on two images (e.g., first-order multiples on
m0 and second-order multiples on mi,k,m) generally have dif-
ferent residual moveout. The moveout differences are usually
small at near angles/offsets but increase at far offsets and in
the presence of subsurface complexity (Brown, 2004). Where
the moveout differences are larger than a quarter of a wave-
length, a differencing operator applied between images tends
to boost crosstalk amplitude but not signal amplitude. We de-
note this operator Dm.

A central motivation for LSJIMP is the desire to combine
information from the multiple and primary images by aver-
aging. As a regularization operator, Dm accomplishes the av-
eraging by penalizing differences between images. Addition-
ally, because the averaging occurs within the framework of a

Figure 5. Application of crosstalk weights to a real CMP
gather after prestack imaging. (a) Primary image LT

0 d. (b)
Crosstalk weight |c0|. (c) Weighted image |c0|LT

0 d.

least-squares minimization, we can combine the multiples and
primaries as well as quantitatively fit the data.

In using Dm, we assume that signal events on all images are
perfectly consistent. Imperfections in the modeling operator
Li,k,m lead to differences in the signal events, which violate this
assumption and cause Dm to damage signal events.

Both the primary and multiple images have acquisition
gaps. When implementing LSJIMP, Dm should be supple-
mented with an appropriate diagonal weighting operator that
reflects the local information content of an image. For exam-
ple, at far angles/offsets, multiples usually carry little informa-
tion, so the weighting operator would nullify the output of Dm

there.

Crosstalk penalty weights

Given a prior signal estimate m[p]
i,k,m, we can directly model

the expected crosstalk events on all mi,k,m. Applying Li,k,m to
m[p]

i,k,m yields an estimate of the {i, k, m} pegleg. Imaging this
estimated pegleg as if it were a different multiple — say, by
applying LT

i′,k′,m′ — in turn yields an estimate of the crosstalk
from the {i, k, m} multiple on mi′,k′,m′ . We then sum over all {i,
k, m} to obtain the total estimated crosstalk on mi′,k′,m′ , which
we denote as

m[c]
i′,k′,m′ =

p∑
i=i0

i∑
k=0

nsurf∑
m=1

LT
i′,k′,m′Li,k,mm[p]

i,k,m,

where k �= k′, m �= m′ and i0 =
{

1 if i ′ = 0

i otherwise
. (6)

We convert each m[c]
i′,k′,m′ into a diagonal weighting function by

computing the absolute value and denote this as operator Dc.
While Dh and Dm tend to suppress crosstalk at far angles only,
Dc suppresses crosstalk at all angles.

Strictly speaking, we lack a prior signal estimate without
performing a nonlinear iteration (Brown, 2004). However, be-
tween the seabed reflection and its first multiple, the recorded
data effectively contain only primaries, so we can limit the
crosstalk prediction to events arising from multiple generators
above the first seabed multiple. This assumption particularly
applies to deep-water marine data.

Although the crosstalk weights overlap (and damage) sig-
nal events on any image, the previous regularization operators
(Dh and Dm) spread redundant signal information from other
images and other angles/offsets to compensate for any losses.
Figure 5 illustrates the application of the crosstalk weights to
the primary image m0. The weights clearly boost the energy of
the crosstalk events (multiples).

We can now rewrite the general regularized LSJIMP mini-
mization 5 using the three regularization operators:

min
m

Q(m) = ‖Wd[Lm − d]‖2 + ε2
1‖Dhm‖2

+ ε2
2‖Dmm‖2 + ε2

3‖Dcm‖2. (7)

Effectively, R in equation 5 is replaced by the column oper-
ator [Dh Dm Dc]T, while ε1, ε2, and ε3 replace ε. A method
for quantitatively choosing ε1, ε2, and ε3 remains a subject of
research. Qualitatively, high values lead to good crosstalk sup-
pression and some damage to signal events, while low values
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lead to good signal preservation and poor crosstalk suppres-
sion.

PARTICULAR LSJIMP IMPLEMENTATION

In this section, we present a particular LSJIMP implemen-
tation that utilizes an efficient linear operator to model and
image pegleg multiples in a true-relative-amplitude sense. Ap-
plied to primary reflections after NMO, the forward opera-
tor models a particular pegleg. Applied to that particular peg-
leg in the data, the adjoint operator produces events that are
directly comparable to primaries after NMO. The operator’s
kinematic component is an extension of the NMO equation,
which images split peglegs. Its amplitude component corrects
multiples for their differences in angle-dependent reflection
strength, relative to a primary.

Kinematic pegleg imaging in a 1D earth

In a laterally homogeneous earth, the NMO equation de-
scribes a primary’s traveltime as a function of source-receiver
offset:

t =
√

τ + ‖x‖2

V 2
rms(τ )

. (8)

Applied as an offset-dependent time shift, equation 8 flattens
a primary (on a CMP gather) with offset vector x and rms ve-
locity Vrms(τ ) to its zero-offset traveltime τ .

Figure 6 motivates an analogous NMO equation for pegleg
multiples. Kinematically, a first-order pegleg can be concep-
tualized as a pseudo-primary with the same offset but with an
additional zero-offset traveltime τ ∗ to the multiple generator.
We can generalize this intuition to write an NMO equation for
an nth-order pegleg:

t =
√

(τ + nτ ∗)2 + ‖x‖2

V 2
eff

, (9)

where

V 2
eff = nτ ∗V 2

rms(τ
∗) + τV 2

rms(τ )
τ + nτ ∗ . (10)

The pseudo-primary’s effective rms velocity, Veff , can be de-
rived easily (Wang, 2003) from the definition of rms velocity.
The relative shift of the primary and pegleg reflection points
(� y in Figure 6) decreases asymptotically to zero for τ → ∞
from a maximum value at the seabed.

Figure 6. Peglegs S201G and S102G [Levin and Shah’s (1977)
notation] are kinematically equivalent to a pseudo-primary
with extra zero-offset traveltime τ ∗.

Amplitude corrections for peglegs

Primaries and multiples recorded at fixed offsets follow dif-
ferent raypaths from source to receiver. Thus, they exhibit
different amplitude-versus-offset (AVO) behavior and suf-
fer different attenuation and geometric-spreading losses. We
present two operators that normalize (relative to a primary) a
pegleg for these effects and a reflection operator that accounts
for a multiple’s extra bounces.

First, Figure 7 illustrates that in a v(z) medium there exists
a vector xp such that a pegleg with offset x and a primary with
offset xp are invariant with respect to AVO and, ignoring at-
tenuation above the multiple generator (this is often water),
also to attenuation. Noting that the multiple and primary in
Figure 7 have the same emergence angle and thus the same
time dip at x and xp , Brown (2004) obtains

xp = xτV 2
rms√

(τ + nτ ∗)2V 4
eff + ‖x‖2

(
V 2

eff − V 2
rms

) (11)

for an nth-order pegleg. Snell resampling is our name for the
resampling of the offset axis defined by equation 11. Figure 8
illustrates the process on a synthetic CMP gather. The black
lines depict the compression of the offset axis and show how
energy from the multiples fills the data coverage gaps.

Figure 7. A primary and a pegleg multiple with the same emer-
gence angle θ and midpoint y.

Figure 8. (a) Synthetic CMP gather after NMO. Note two dead
and five unrecorded near-offset traces. (b) After NMO for
first-order seabed peglegs and (normalized) Snell resampling.
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Second, Lu et al. (1999) define offset-dependent geometric
spreading corrections for a primary (gprim) and its pegleg mul-
tiples (gmult):

gprim = v∗tprim(x) =
√

(τv∗)2 + ‖x‖2

(
v∗

Vrms

)2

, (12)

gmult = v∗tmult(x) =
√

[(τ + nτ ∗)v∗]2 + ‖x‖2

(
v∗

Veff

)2

,

(13)

where v∗ is the surface velocity. We correct a pegleg for geo-
metric spreading by applying gmult /gprim.

Finally, for simplicity we assume that a multiple generator’s
reflectivity varies in space but not in reflection angle. If y is the
midpoint vector, let us denote p(t, x, y) and q(t, x, y) as small
windows in time, offset, and midpoint around, respectively, a
primary and its first pure multiple after normalized Snell re-
sampling and differential geometric spreading correction. We
optimize the reflection coefficient r(y) to minimize the follow-
ing quadratic functional:

‖diag(p)r − q‖2 + ε2
∥∥∇2

y r
∥∥2

. (14)

Operator ∇2
y is a 2D Laplacian, operating across the midpoint;

it imposes a degree of smoothness on r(y), governed by the
trade-off parameter ε. Using xp , we can compute the multi-
ple bounce points in a 1D earth for any type of pegleg. A
first-order pegleg is scaled by a single reflection coefficient, a
second-order pegleg by reflection coefficients from two loca-
tions, and so on.

Pegleg imaging in a moderately heterogeneous earth

An ith-order pegleg actually consists of i + 1 unique events.
Dipping reflectors cause the events to split into individual legs
(Figure 9a) on field data. Legs with a high apparent velocity
hamper Radon demultiple and velocity analysis. Even if not
visible, splitting can cause far-offset tuning effects between the
legs, introducing a false multiple AVO signature. Therefore,

Figure 9. (a) Real CMP gather with split first-order top-of-
salt pegleg (labels indicate the two legs). Pegleg apexes shift
away from zero offset. (b) and (c) HEMNO (plus previous
amplitude corrections) applied to the two legs.

to model peglegs accurately, we must extend the previous 1D
theory to handle splitting.

Levin and Shah (1977) deduce moveout equations for split
2D peglegs, and Ross et al. (1999) extend the work to three di-
mensions. While the equations are exact in a constant-velocity
earth, an extension even to v(z) could prove difficult. We
present a related earth-model-based imaging method called
heterogeneous earth multiple NMO operator (HEMNO),
which can handle variable velocity. In the small dip and
constant-velocity limit, Brown (2004) shows that HEMNO re-
duces to Levin and Shah’s result.

Figure 10 illustrates HEMNO. When reflectors dip, reflec-
tion points move both laterally and vertically. For small dips,
the lateral component of reflection-point movement is negli-
gible. We can analytically compute the location of a multiple’s
reflection points in a 1D earth. The basic idea of HEMNO
is to measure the zero-offset traveltimes at the assumed 1D
reflection points and then input those measured traveltimes
to the 1D NMO for peglegs (equation 8). HEMNO requires
that the earth not deviate too far from one dimensional (small
dip magnitude, small lateral dip changes, small lateral velocity
variation).

If τm is the total zero-offset traveltime of the multiple
bounces along a pegleg’s raypath, and τp is the zero-offset
traveltime of the primary bounce, then we can easily extend
equation 8 to HEMNO:

t2 = (τm + τp)2 + ‖x‖2

V 2
eff

. (15)

For the particular case of the S102G pegleg, illustrated in Fig-
ure 6,

τm = τ ∗
(

y0 − xp

2

)
and τp = τ

(
y0 + (x − xp)

2

)
.

(16)

Figure 10. HEMNO schematic. (a) True S102G pegleg ray-
path. (b) Assumed 1D earth reflection points. (c) Raypath
stretched vertically to match measured τ ∗[y0 − (xp/2)] and
τ (y0 + [(x − xp)/2]). (d) Legs of composite raypath connected;
solid line is final result.
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Relations for other pegleg types are readily derived. Figure 9b
and c show that HEMNO can independently flatten each leg
of a first-order split salt-related pegleg when the salt geometry
obeys HEMNO’s dip assumptions.

Implementation of equation 15 requires two quantities: τm,
obtained by hand or autopicking, and, more challengingly, τp ,
an arbitrary reflector’s zero-offset traveltime. We obtain τp

automatically by event tracking, using measured zero-offset
reflector dip, which can be estimated automatically (Fomel,
2002) or manually with picked reflectors and spline interpola-
tion (Brown, 2004).

Combined imaging/modeling operator

Now that we have defined a kinematic multiple imaging op-
erator and a suite of amplitude-correction operators, we can
define Li,k,m. We map the primary image m0 into data space
d0 by applying the adjoint of normal moveout N0. We map
the pegleg image mi,k,m into data space di,k,m by applying the
differential-geometric-spreading correction Gi,m, Snell resam-
pling Si,m, HEMNO Ni,k,m, and reflection coefficient Ri,k,m:

d0 = N0m0 = L0m0, (17)

di,k,m = Ri,k,mNi,k,mSi,mGi,mmi,k,m = Li,k,mmi,k,m. (18)

Equation 18 retains distinct computational advantages. Since
the operator images peglegs with a vertical stretch, it is effi-
cient to apply (important in iterative inversion), is robust to
poor crossline sampling (the norm with 3D data), and allows
the LSJIMP model space to consist of
one midpoint location only (advanta-
geous for parallel computing), which al-
lows the amplitude component of the
operator to be intuitive and effective.
However, this pegleg modeling/imaging
strategy begins to break down when re-
flectors dip strongly (>5◦), when dips
change rapidly, and when large velocity
contrasts are present. It cannot model
diffracted multiples; it ignores the rela-
tive shift in reflection point of a primary
and the primary bounce of a pegleg.

Extension to three dimensions

A common geometry for 3D marine
speculative data consists of sail-line spac-
ing chosen just small enough to ensure
even crossline midpoint coverage. Ignor-
ing cable feathering, the crossline offset
axis in this geometry contains only one
live bin per common-midpoint (CMP)
gather, so a CMP gather is effectively
two-dimensional, allowing us to reduce
the size of the LSJIMP model space by
the number of crossline offset bins and
greatly speeding up our LSJIMP imple-
mentation’s performance. We are still

imaging the multiples in a 3D sense, since (1) HEMNO uses
reflector geometries measured from a 3D zero-offset section,
and (2) we supply the nonzero crossline offset of the assumed
2D CMP gathers.

FIELD DATA RESULTS

WesternGeco released 2D data from Mississippi Canyon,
Gulf of Mexico, for multiple-suppression benchmarking. Fig-
ure 11 shows that the data contain a variety of strong surface-
related multiples that hamper interpretation.

Multiple-prediction benchmark

We can use our multiple-imaging/modeling operator to pre-
dict multiples, given a prior estimate of the primaries, similar
to the crosstalk prediction of equation 6. A simple primary
estimate comes by applying NMO to the data: NT

0 d. The pre-
dicted multiples dmult are computed by modeling each pegleg
and summing:

dmult =
p∑

i=1

i∑
k=0

nsurf∑
m=1

Ri,k,mNi,k,mSi,mGi,mNT
0 d. (19)

To benchmark the accuracy of our multiple imaging/modeling
operator against an industry standard, in Figures 12 and 13
we compare equation 19’s predicted multiples with those pre-
dicted by one convolution of the surface-related multiple elim-
ination (SRME) method (Verschuur et al., 1992) on 2D Mis-
sissippi Canyon field data.

Figure 11. Stacked 2D Gulf of Mexico data, after automatic gain control. Picks denote
the four multiple generators: water bottom (WB), R1, R2, and top of salt (TS). For a
pure first-order water-bottom (WB) multiple, the naming convention is WBM. For a
pegleg multiple with a target reflection of the top of salt (TS) and the multiple bounce
on the water bottom (WB), the naming convention is TSPLWB.
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Figure 12 shows a CMP gather with strong top-of-salt mul-
tiples, including the train of split peglegs between τ = 4.0 and
4.3 s. Both approaches accurately model the multiple splitting.
Our method’s predicted multiples generally reproduce the
offset-dependent amplitude and wavelet of the multiples in
the data. Figure 13 shows a medium-offset slice. SRME accu-
rately predicts the split peglegs. Our method performs well in
some areas (circle) but underperforms (tall oval) where dips

Figure 12. (a) Raw CMP gather (CMP = 9150 m). (b) Our predicted multiples.
(c) SRME predicted multiples.

Figure 13. (a) Raw medium-offset section. (b) Our predicted multiples. (c) SRME
predicted multiples.

steepen or change rapidly. SRME predicts diffracted events
(flat oval), which our method does not.

These examples show that away from complex geology, our
multiple-imaging/modeling strategy can accurately transform
primaries into events resembling pegleg multiples. It follows
that our method can transform pegleg multiples into events
comparable with primaries — a principal criterion that any
LSJIMP multiple-imaging/modeling pair must satisfy.

2D LSJIMP field data results

We tested our particular LSJIMP im-
plementation on 750 CMPs of the 2D
data, modeling only first-order multiples
from the four labeled multiple gener-
ators in Figure 11 (p = 1, nsurf = 4 in
equation 1). We ran 20 conjugate gradi-
ent iterations.

Figure 14 shows stacks of the raw
data after NMO, the LSJIMP estimated
primary image (m0), and the difference
between the two. LSJIMP cleanly sepa-
rates primaries from a variety of surface-
related multiples. However, much sub-
salt (midpoints >6000 m) multiple
energy remains for a variety of reasons,
especially salt rugosity, which causes
diffracted multiples and complex focus-
ing — neither of which HEMNO can
handle. Still, our LSJIMP implemen-
tation effectively removes the specular
components of most strong, salt-related
multiples without harming primaries. In
general, increasing the trade-off param-
eters ε1, ε2, and ε3 in equation 7 removes
more multiple energy from m0 at the
cost of harming primary signal.

Figure 15 shows prestack LSJIMP re-
sults at a single CMP location over the
salt (midpoint = 9150 m). Figure 15c, d,
g, and h show the estimated total first-
order pegleg from the seabed, R1, R2,
and top-of-salt reflectors, respectively.
For example, to compute the estimated
seabed pegleg (Figure 15c), we construct
a vector:

mwb =
[0 m1,0,1 m1,1,1 0 0 0 0 0 0]T ,

(20)

where vector 0 has the same dimension
as a CMP gather and m1,0,1 and m1,1,1

are the seabed source and receiver pe-
gleg images. We apply the LSJIMP for-
ward model to compute the total first-
order seabed pegleg:

dwb = Lmwb. (21)
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The modeled data (Figure 15e) are
the sum of the estimated primaries (Fig-
ure 15b) and Figure 15c, d, g, and h. The
residual error (Figure 15f) is the difference
between the input data and the modeled
data.

Since there are no flat events on
the residual (Figure 15f) we conclude
that LSJIMP preserves obscured primaries
such as those seen between 3.5 and 4.0 s
in (Figure 15b). Comparing Figure 15a and
e, note that even the complex, visibly split
salt-related multiples are modeled and
separated fairly well. However, the multi-
ples remaining in the residual Figure 15f
imply that the forward model has not per-
fectly modeled the physics of the mul-
tiples. The LSJIMP model-regularization
operators have interpolated the missing
near-offset information.

Figure 16 compares the results of
LSJIMP and a least-squares, high-
resolution Radon demultiple [see Trad
et al. (2003) for a review] on the CMP
gather at the same location as in Figure 15.
The high apparent velocity of one leg
of the split top-of-salt pegleg (circled
in Figure 16b) significantly degrades a
Radon demultiple’s ability to attenuate it.
LSJIMP directly models splitting behavior
of the event and can thus better separate
it from the estimated primaries.

3D LSJIMP field data results

Compagnie Générale de Géophysique
(CGG) acquired a 3D speculative survey
in the Gulf of Mexico’s Green Canyon.
We processed a small subset (192 by 14
CMP locations) with nontrivial crossline
dip (>3◦) extracted from a sedimentary
minibasin. As noted earlier, we ignored
the crossline offset axis of the data, leav-
ing a 4D prestack data cube and thereby
strongly accelerating LSJIMP’s perfor-
mance.

Figure 17 zooms into the multiple-
infested zone before and after LSJIMP.
Stacking mostly suppresses multiples; but
from the difference panel (Figure 17c),
note that LSJIMP nonetheless subtracts
much remaining multiple energy without
seriously harming primaries. The time slice
on the 3D cube transects a strong seabed
pegleg; it shows up prominently on the raw
data stack and the difference panel but is
largely absent from the LSJIMP estimated
primaries stack.

Figure 18 shows LSJIMP’s performance
on a CMP gather (for a single nonzero

Figure 14. Stacked images before and after LSJIMP. All panels gained with t2

and clipped to same level. (a) Raw data. (b) LSJIMP estimated primaries m0.
(c) Difference.

Figure 15. Two-dimensional Gulf of Mexico CMP 344 (9150 m) before and after
LSJIMP. Panels are defined in text. All panels are NMO’ed, windowed from 3.5 to
5.5 s, and gained with t2 for ease of viewing.
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Figure 16. LSJIMP versus least-squares, high-resolution hy-
perbolic Radon demultiple on CMP 344 (9150 m) of the Mis-
sissippi Canyon 2D data set. (a) Raw data. (b) Radon esti-
mated primaries. (c) Radon estimated multiples. (d) LSJIMP
estimated primaries. (e) LSJIMP estimated multiples.

Figure 17. Zoom of stacked subset of CGG 3D data before and after LSJIMP. All
panels are windowed in time from 4.0 to 5.0 s. (a) Raw data stack. (b) Stack of esti-
mated primary image m0. (c) Stack of the subtracted multiples.

crossline offset). Note strong multiples at τ = 4.3 s in the
raw data (Figure 18a) and primaries under the multiple cur-
tain. The LSJIMP-estimated primaries (Figure 18b) are effec-
tively free of multiples; moreover, since the data residual (Fig-
ure 18f) contains little correlated energy, we have preserved
the primaries and effectively modeled the important multiples
(Figure 18c and d).

Figure 18. LSJIMP results on individual midpoint location
(CMP x = 100; CMP y = 4). Panels are defined in text. All
panels are NMO’ed, windowed in time from 4.0 to 6.0 s, and
gained with t2 for ease of viewing.

CONCLUSIONS

The LSJIMP method, a general least-
squares inversion algorithm, simultane-
ously combines images of multiples and
primaries and suppresses the crosstalk
noise that inhibits simple image averag-
ing. LSJIMP’s novelty lies in the three
model-regularization operators that sup-
press crosstalk and exploit the redun-
dancy within and between images to in-
crease signal fidelity.

We presented a particular LSJIMP
implementation that uses a relatively sim-
ple time-domain, true-relative-amplitude
imaging operator for pegleg multiples.
While our pegleg-imaging/modeling
scheme is limited to specularly reflected
multiples from mildly dipping reflectors,
we demonstrate on a 2D field data exam-
ple that our method can accurately model
salt-related split peglegs. Moreover, the
method is robust to sparse 3D marine
geometries and computationally efficient,
which is crucial for iterative inversion.

Tests on real 2D and 3D marine field
data examples confirm that LSJIMP holds
promise as a novel and useful tool in the

quest to fully exploit more of the unused information in the
seismic wavefield. In both cases, LSJIMP separates primaries
from a variety of surface-related pegleg multiples. While
the separation is not perfect, the amplitude of primaries is
nonetheless preserved. Information from the multiples helps
to constrain missing near-offset primary information. On
the 2D example, we compared LSJIMP to a high-resolution
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hyperbolic Radon demultiple and found that LSJIMP sepa-
rated a split salt-related pegleg from the data better than the
Radon demultiple.

Looking ahead, we note that the continued trend toward
inexpensive parallel computing may soon allow LSJIMP im-
plementations with more accurate (and expensive) prestack
imaging operators for multiples. LSJIMP shows great promise
to jointly image other important wave modes often seen in
data. Local shear-wave conversions and internal multiples
may offer valuable information in the subsalt imaging prob-
lem; these modes fit the one data record, many data sets model
of LSJIMP. Extensions to LSJIMP for multicomponent data
are possible.
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