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ABSTRACT

Angle-gather migration creates seismic images for different reflection
angles at the reflector. We formulate an angle-gather time migration
algorithm and study its properties. The algorithm serves as an educa-
tional introduction to the angle gather concept. It also looks attractive
as a practical alternative to conventional common-offset time migration
both for velocity analysis and for AVO/AVA analysis.
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1. Introduction
Angle-gather migration creates seismic images collected by the reflection
angle at the point of reflection. Major advantages of this approach are
apparent in the case of prestack depth migration. As shown byPrucha et
al. (1999), the ray pattern of angle-gather migration is significantly differ-
ent from that of the conventional common-offset migration. The difference
can be exploited for overcoming illumination difficulties of the conventional
depth migration in complex geological areas.

In this paper, we explore the angle-gather concept in the case of prestack
time migration. The first goal of this study is educational. Since we can
develop the complete mathematical theory of angle-gather time migration
analytically, it is much easier to understand the most basic properties of the
method in the time migration domain. The second goal is practical. Angle
gathers present an attractive tool for post-migration AVO/AVA studies and
velocity analysis, and even the most basic time migration approach can find
a valuable place in the complete toolbox of seismic imaging.

We start with analyzing the traveltime relations for the basic Kirch-
hoff implementation of angle-gather time migration. The analysis follows
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Fowler’s general approach to prestack time migration methods (Fowler,
1997). Next, we derive formulas for the amplitude weighting and discuss
some frequency-domain approaches to angle gathers. Finally, we present
simple synthetic tests of the method and discuss further research directions.

2. Traveltime considerations

Figure 1: Reflection rays in a
constant-velocity medium: a
scheme.rays [NR]
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Let us consider a simple reflection experiment in an effectively constant-
velocity medium, as depicted in Figure1. The pair of incident and reflected
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rays and the line between the sources and the receiverr form a triangle
in space. From the trigonometry of that triangle we can derive simple re-
lationships among all the variables of the experiment (Fomel, 1995, 1996a,
1997).

Introducing the dip angleα and the reflection angleγ , the total reflec-
tion traveltimet can be expressed from the law of sines as

t =
2h

v

cos(α +γ )+cos(α −γ )

sin2γ
=

2h

v

cosα

sinγ
, (1)

wherev is the medium velocity, andh is the half-offset between the source
and the receiver.

Additionally, by following simple trigonometry, we can connect the
half-offseth with the depth of the reflection pointz, as follows:

h =
z

2

sin2γ

2 cos(α +γ ) cos(α −γ )
= z

sinγ cosγ

cos2α −sin2γ
. (2)

Finally, the horizontal distance between the midpointx and the reflec-
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tion pointξ is

x − ξ = h
cos(α −γ ) sin(α +γ ) + cos(α +γ ) sin(α −γ )

sin2γ
= h

sinα cosα

sinγ cosγ
(3)

Equations (1–3) completely define the kinematics of angle-gather mi-
gration. Regrouping the terms, we can rewrite the three equations in a more
symmetric form:

t =
2z

v

cosα cosγ

cos2α −sin2γ
(4)

h = z
sinγ cosγ

cos2α −sin2γ
(5)

x − ξ = z
sinα cosα

cos2α −sin2γ
(6)

For completeness, here is the inverse transformation fromt , h, andx − ξ to
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z, γ , andα:

z2
=

[
(v t/2)2 − (x − ξ )2

] [
(v t/2)2 −h2

]
(v t/2)2

(7)

sin2γ =
h2
[
(v t/2)2 − (x − ξ )2

]
(v t/2)4 −h2 (x − ξ )2

(8)

cos2α =
(v t/2)2

[
(v t/2)2 − (x − ξ )2

]
(v t/2)4 −h2 (x − ξ )2

(9)

The inverse transformation (7-9) can be found by formally solving system
(4-6).

The lines of constant reflection angleγ and variable dip angleα for a
given position of a reflection (diffraction) point{z,ξ} have the meaning of
summation curves for angle-gather Kirchhoff migration. The whole range
of such curves for all possible values ofγ covers the diffraction travel-
time surface - “Cheops’ pyramid” (Claerbout, 1985) in the {t ,x,h} space
of seismic reflection data. As pointed out byFowler (1997), this condition
is sufficient for proving the kinematic validity of the angle-gather approach.
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For comparison, Figure2 shows the diffraction traveltime pyramid from a
diffractor at 0.5 km depth. The pyramid is composed of common-offset
summation curves of the conventional time migration. Figure3 shows the
same pyramid composed of constant-γ curves of the angle-gather migration.

Figure 2: Traveltime pyramid,
composed of common-offset
summation curves. coffset
[CR]
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The most straightforward Kirchhoff algorithm of angle-gather migra-
tion can be formulated as follows:

• For each reflection angleγ and each dip angleα,

– For each output location{z,ξ},
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Figure 3: Traveltime pyramid,
composed of common-
reflection-angle summation
curves. cangle [CR]
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1. Find the traveltimet , half-offseth, and midpointx from
formulas (4), (5), and (6) respectively.

2. Stack the input data values into the output.

As follows from equations (4-6), the range of possibleα’s should satisfy the
condition

cos2α > sin2γ or |α|+ |γ | <
π

2
. (10)

The described algorithm is not the most optimal in terms of the input/output
organization, but it can serve as a basic implementation of the angle-gather
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idea. The stacking step requires an appropriate weighting. We discuss the
weighting issues in the next section.

3. Amplitude considerations
One simple approach to amplitude weighting for angle-gather migration is
based again on Cheops’ pyramid considerations. Stacking along the pyra-
mid in the data space is a double integration in midpoint and offset coordi-
nates. Angle-gather migration implies the change of coordinates from{x,h}

to {α,γ }. The change of coordinates leads to weighting the integrand by the
following Jacobian transformation:

dx dh=

∣∣∣∣∣det

(
∂x
∂α

∂x
∂γ

∂h
∂α

∂h
∂γ

)∣∣∣∣∣ dαdγ (11)
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Substituting formulas (5) and (6) into equation (11) gives us the following
analytical expression for the Jacobian weighting:

WJ =

∣∣∣∣∣det

(
∂x
∂α

∂x
∂γ

∂h
∂α

∂h
∂γ

)∣∣∣∣∣= z2(
cosα2 −sinγ 2

)2 (12)

Weighting (12) should be applied in addition to the weighting used in common-
offset migration. By analyzing formula (12), we can see that the weight
increases with the reflector depth and peaks where the anglesα andγ ap-
proach condition (10).

The Jacobian weighting approach, however, does not provide physi-
cally meaningful amplitudes, when migrated angle gathers are considered
individually. In order to obtain a physically meaningful amplitude, we can
turn to the asymptotic theory of true-amplitude migration (Goldin, 1992;
Schleicher et al., 1993; Tygel et al., 1994). The true-amplitude weighting
provides an asymptotic high-frequency amplitude proportional to the reflec-
tion coefficient, with the wave propagation (geometric spreading) effects
removed. The generic true-amplitude weighting formula (Fomel, 1996b)
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transforms in the case of 2-D angle-gather time migration to the form:

WTA =
1

√
2π

√
Ls Lr

v cosγ

∣∣∣∣ ∂2Ls

∂ξ∂γ
+

∂2Lr

∂ξ∂γ

∣∣∣∣ , (13)

whereLs andLr are the ray lengths from the reflector point to the source
and the receiver respectively. After some heavy algebra, the true-amplitude
expression takes the form

WTA =
2z sinα
√

2πv

cos2α +sin2γ(
cos2α −sin2γ

)5/2
. (14)

Under the constant-velocity assumption and in high-frequency asymptotic,
this weighting produces an output, proportional to the reflection coefficient,
when applied for creating an angle gather with the reflection angleγ . De-
spite the strong assumptions behind this approach, it might be useful in
practice for post-migration amplitude-versus-angle studies. Unlike the con-
ventional common-offset migration, the angle-gather approach produces the
output directly in reflection angle coordinates. One can use the generic true-
amplitude theory (Fomel, 1996b) for extending formula (14) to the 3-D and
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2.5-D cases.

4. Examples
We created some simple synthetic models with constant velocity backgrounds
to test our angle-gather migration method. One model is a simple dome
(Figure 4). The other has a series of flat reflectors of various dips (Fig-
ure5). Both of these figures also show the corresponding data that will be
generated by Kirchhoff methods for zero and far offsets.

4.1. Dome model
This model contains a wide range of geologic dips across the dome as well
as having a flat reflector at the base of the dome. Figure6 shows the re-
sulting common offset sections from traditional Kirchhoff migration. As is
expected for such a simple model, the near and far offset sections are very
similar and the stacked section is almost perfect. We are more interested in
the result of the angle-gather migration.
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Figure 4: Left: Model. Center: Data at zero offset. Right: Data at far offset.
data.dome[ER]

Figure7 shows the zero and large angle sections as well as the stack
for angle-gather Kirchhoff migration. The zero-angle section is weak but
clearly shows the correct shape and position. The large-angle section is
actually only forγ = 25◦. The reason for this is clear if you consider Fig-
ure1. At greater depths, the rays associated with large reflection angles (γ )
will not emerge at the surface within the model space. Therefore at angles
greater than 25◦ (the maximum useful angle), the information at later times
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Figure 5: Left: Model. Center: Data at zero offset. Right: Data at far offset.
data.lines[ER]

disappears.
We expect the stacked sections for the offset method and the angle

method to be identical. Although we sum over different paths for the offset-
domain migration (Figure2) and the angle-domain migration (Figure3),
the stack should sum all of the same information together for both methods.
Fortunately, a comparison of the stacked sections in Figures6 and7 show
that the results are identical as expected.



Section 4: Examples 15

Figure 6: Left: Migrated offset section at zero offset. Center: Migrated
offset section at far offset. Right: Stack.offset.dome[ER]

4.2. Dipping reflectors model
This model contains fewer dips than the dome model but it allows us to see
what is happening at later times. Figure8 shows the common offset sections
and stacked section from offset-domain Kirchhoff migration. Once again,
they are practically perfect. The only problem is near the bottom of the
section where we lose energy because the data was truncated.

The zero-angle and large-angle sections from the angle-domain migra-
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Figure 7: Left: Migrated angle section at small angle. Center: Migrated
offset section at large angle. Right: Stack.angle-ta.dome[ER]
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tion are in Figure9, along with the stacked section. Once again, the zero
angle section is very weak and the large angle section only contains infor-
mation down to a time of≈ .85 seconds, for the same reason as explained
for the dome model.

Once again, we expect the stacked sections in Figures8 and9 to be the
same. Although the angle-domain stack is slightly lower amplitude through-
out the section, it is clear that this is a simple scale factor so our expectations
remain intact.

Figure 8: Left: Migrated offset section at zero offset. Center: Migrated
offset section at far offset. Right: Stack.offset.lines [ER]
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Figure 9: Left: Migrated angle section at zero angle. Center: Migrated
angle section at large angle. Right: Stack.angle-ta.lines[ER]

4.3. Reflectivity variation with angle
Amplitude variation with offset (AVO) would not be expected to be very in-
teresting for the simple models just shown. Consider Figure10 which con-
tains an offset gather and a reflection angle gather taken from space location
zero from the dome model in Figure4. The offset gather shows exactly what
we expect for such a model - no variation. The angle gather also shows no
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variation for angles less than the maximum useful angle (25◦) as discussed
in the previous two subsections. However, when the angle exceeds the max-
imum useful angle, the event increases in amplitude and width. This is the
phenomenon seen in de Bruin et al. (1990).

Figure 10: Gathers taken from space location zero in the dome model. Left:
Offset domain. Center: Angle domain less than 25◦. Right: Angle domain.
reflect-ta.dome[ER]
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4.4. Velocity sensitivity
When dealing with real data we almost never know what the true velocity
of the subsurface is. Therefore it is important to understand the effects of
velocity on our angle-gather time migration algorithm. To do this we sim-
ply created data for the dome model in Figure4 at a fairly high velocity (3
km/s) and migrated it using a low velocity (1.5 km/s). The results are in
Figure11. For angles less than the maximum useful angle (γ = 25◦), the
angle-domain gather behaves exactly as the offset-domain gather does. Be-
yond the maximum useful angle, the events become even more curved and
the amplitudes begin to change.

The behavior of the angle-gather migration is very similar to that of
offset-domain migration as long as the limitation of the maximum useful
angle is recognized. Therefore, we can probably expect angle-gather migra-
tion to behave like offset-domain migration inv(z) media also.
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Figure 11: Gathers taken from space location zero inthe dome model and
migrated at too low a velocity. Left: Offset domain. Center: Angle domain
less than 25◦. Right: Angle domain.reflect-ta.fast.dome[ER]
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5. Frequency-domain considerations
As pointed out byPrucha et al.(1999), the angle gathers can be conveniently
formed in the frequency domain. This conclusion follows from the simple
formula (Fomel, 1996a)

tanγ =
∂z

∂h
, (15)

wherez refers to the depth coordinate of the migrated image. In the frequency-
wavenumber domain, formula (15) takes the trivial form

tanγ =
kh

kz
. (16)

It indicates that angle gathers can be conveniently formed with the help
of frequency-domain migration algorithms (Stolt, 1978). This interesting
opportunity requires further research.
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6. Conclusions
We have presented an approach to time migration based on angle gathers.
The output of this procedure are migrated angle gathers - images for con-
stant reflection angles. When stacked together, angle gathers can produce
the same output as the conventional common-offset gathers. Looking at an-
gle gathers individually opens new possibilities for amplitude-versus-angle
studies and for velocity analysis.

Our first synthetic tests produced promising results. In the future, we
plan to study the amplitude behavior of angle-gather migration and the ve-
locity sensitivity more carefully. We also plan to investigate the frequency-
domain approaches to this method. Initial results indicate that angle-gather
migration is comparable to offset-domain migration for angles less than the
angle at which rays exit the sides of the model, but further study will hope-
fully allow us to extract useful information from the larger angles as well.
Although the major advantages of angle gathers lay in the depth migration
domain, it is easier to analyze the time migration results because of their
theoretical simplicity.
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