Homework 10: Numerical Solution of ODE: One-Step Methods (due on April 23)

1. (a) Which of the following functions satisfy the Lipschitz condition on *y*? For those that do, find the Lipschitz constant.

i.
$$f(x, y) = \sqrt{x^2 + y^2}$$
 for $x \in [-1, 1]$

ii.
$$f(x, y) = |y|$$

iii.
$$f(x, y) = \sqrt{|y|}$$

iv.
$$f(x, y) = |y|/x$$
 for $x \in [-1, 1]$

(b) Prove that the function $f(x,y) = -\sqrt{|1-y^2|}$ does not satisfy the Lipschitz condition and find two different solutions of the initial-value problem

$$\begin{cases} y'(x) = -\sqrt{|1 - y^2(x)|} \\ y(0) = 1 \end{cases}$$
 (1)

on the interval $x \in [0, \pi]$.

2. Consider the initial-value problem

$$\begin{cases} y''(x) = y(x) \\ y(0) = y_0 \\ y'(0) = y_1 \end{cases}$$
 (2)

Write it as a system of two first-order differential equations with the appropriate initial conditions. Prove that Euler's method applied to this system can be unstable for a large step size.

Hint: Take the special case $y_1 = -y_0$.

3. Consider the initial-value problem

$$\begin{cases} y'(x) = \lambda y(x) \\ y(0) = y_0 \end{cases}$$
 (3)

(a) Prove that the Taylor series method for this problem takes the form

$$y(x_{k+1}) \approx y_{k+1} = \left[1 + \lambda h + \frac{(\lambda h)^2}{2} + \dots + \frac{(\lambda h)^n}{n!} \right] y_k,$$
 (4)

where $h = x_{k+1} - x_k$, and n is the order of the method.

- (b) Prove that every second-order Runge-Kutta method for this problem is equivalent to the second-order Taylor method.
- (c) Prove that the second-order Taylor method can be unstable for large negative λ and find the stability region for the step size h.

4. (Programming) The exact solution of the initial-value problem

$$\begin{cases} y'(x) = f(x,y) = y^2(x)e^{-x} \\ y(0) = 1 \end{cases}$$
 (5)

is

$$y(x) = e^x. (6)$$

Solve the problem numerically on the interval $x \in [0, 1]$ using

(a) Euler's method

$$y_{k+1} = y_k + h f(x_k, y_k)$$
 (7)

(b) Second-order Taylor method

$$y_{k+1} = y_k + h f(x_k, y_k) + \frac{h^2}{2} \left[\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} f(x_k, y_k) \right]$$
 (8)

(c) Midpoint method

$$y_{k+1} = y_k + h f \left[x_k + \frac{h}{2}, y_k + \frac{h}{2} f(x_k, y_k) \right]$$
 (9)

Take the step size h = 0.1 and output the error at all steps of the computation.

5. (Programming) In 1926, Volterra developed a mathematical model for predator-prey systems. If *R* is the population density of prey (rabbits), and *F* is the population density of predators (foxes), then Volterra's model for the population growth is the system of ordinary differential equations

$$R'(t) = a R(t) - b R(t) F(t);$$
 (10)

$$F'(t) = dR(t)F(t) - cF(t),$$
 (11)

where t is time, a is the natural growth rate of rabbits, c is the natural death rate of foxes, b is the death rate of rabbits per one unit of the fox population, and d is the growth rate of foxes per one unit of the rabbit population.

Adopt the midpoint method for the solution of this system. Take a = 0.03, b = 0.01, c=0.01, and d = 0.01, the interval $t \in [0,500]$, the step size h = 1 and the initial values

(a)

$$R(0) = 1.0$$
;

$$F(0) = 2.0$$

(b)

$$R(0) = 1.0;$$

$$F(0) = 4.0$$

Plot the solution: functions R(t) and F(t).