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Fixed Point Iteration
Mathematica noteboolattp://math.Ibl.gov/~fomel/128A/FixedPoint.nb

Example Function

We will study fixed-point iteration using the function

f(x)=x2—x—e X

Figure 1: Plotting the functiorf (x) shows that it has a root around 1.25

There are several ways to transform the equafi¢x) = O to the formx = g(x) suitable for the
fixed-point iteration:

a(x) = —e*+x%;
O02(X) = veX+x;
B = —In(=x+x3);
0ux) = 14—

Which of these functions cause the fixed-point iteration to converge? Let us study this graphically.
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Figure 2: The functiom;(x) clearly causes the iteration to diverge away from the root.

Convergence Analysis

Newton’s iteration

Newton’s iteration can be defined with the help of the function

f(x)
f7(x)

O5(X) = X —
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Figure 3: The functiomy(x) leads to convergence, although the rate of convergence is slow.
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Figure 4: In the case @s(x), the iteration diverges, spiraling away from the root.
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Figure 5: In the case @j(x), the iteration converges, spiraling towards the root.
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Figure 6: The iteration convergence very fast due to the fact that the furg{gh has zero slope
around the root.
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Figure 7: Another way to display the Newton iteration is by using tangent lines.



