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Fixed Point Iteration
Mathematica notebook:http://math.lbl.gov/~fomel/128A/FixedPoint.nb

Example Function

We will study fixed-point iteration using the function

f (x) = x2
− x −e−x
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Figure 1: Plotting the functionf (x) shows that it has a root around 1.25

There are several ways to transform the equationf (x) = 0 to the formx = g(x) suitable for the
fixed-point iteration:

g1(x) = −e−x
+ x2 ;

g2(x) =

√
e−x + x ;

g3(x) = − ln (−x + x2) ;

g4(x) = 1+
e−x

x

Which of these functions cause the fixed-point iteration to converge? Let us study this graphically.
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Figure 2: The functiong1(x) clearly causes the iteration to diverge away from the root.

Convergence Analysis

Newton’s iteration

Newton’s iteration can be defined with the help of the function

g5(x) = x −
f (x)

f ′(x)
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Figure 3: The functiong2(x) leads to convergence, although the rate of convergence is slow.
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Figure 4: In the case ofg3(x), the iteration diverges, spiraling away from the root.
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Figure 5: In the case ofg4(x), the iteration converges, spiraling towards the root.
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Figure 6: The iteration convergence very fast due to the fact that the functiong5(x) has zero slope
around the root.
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Figure 7: Another way to display the Newton iteration is by using tangent lines.
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