Math 128A Spring 2002 Handout # 17
Sergey Fomel March 14, 2002

Answers to Homework 6: Interpolation: Spline Interpolation

1. Inclass, we interpolated the functidiix) = % at the points< = 2,4, 5 with the cubic spline that
satisfied thenatural boundary conditions

S'(a = 0; (1)
S'b) = 0 )

fora=2 andb =>5.

(a) Change conditions (1-2) to tieteampedboundary conditions

S@ = f'@; (3)
S) = f'(b), (4)

find the corresponding cubic spline and evaluate Kk at 3. Is the result more accurate
than the one of the natural cubic spline interpolation?

Note: No programming is necessary, but a calculator might help.
Solution: Let the cubic spline in the interval froxn= 2 to x = 4 be the polynomial

Si(x) = 0.5+ by (X —2)+ ¢ (X — 2)° + 0y (x — 2)°
and the spline in the interval from= 4 to x = 5 be the polynomial
S(X) = 0.254 by (X — 4) 4 Co (X — 4>+ dp (x — 4)°..

The six coefficient$,, cq,dy, by, ¢, dy are the unknowns that we need to determine.
From the interpolation conditions, we get

Si(4) = 0.542b;+4c,+8dy = f(4)=0.25;
S(B) = 0.25+by+c+dry= f(5)=0.2.

From the smoothness conditions at the internal point, we get

S(4)=b1+2c1(4—2)+3ch(4—2 = S4)=by;
S/(4)=2c;4+6d1(4—2) = S)(4)=2c,.

Finally, from the boundary conditions, we get

S(2)=b; = f'(2)=-0.25;
S(B)=by+2c,+3d, = f'(5)=-0.04.



Thus, we have six linear equations to determine the six unknowns. In the matrix form, the
equations are

24 8 0 0 O0][bs] [ -0257
00 0 1 11| ¢qg —0.05
1412-1 oof|ld| | o
0212 0-20]||b |~| o
10 0 0 00| c ~0.25

o0 0 1 23]||[d | | —004]

The equations can be solved, for example, by successive elimination of unknowns. We get
b, = —0.25, then

4 8 0 00O C1 0.25
O 0 1 11 di —0.05
4 12 -1 0 O b, | = 0.25
2 12 0 -2 0 Co 0
O o 1 2 3 do —0.04
Takec; = 0.0625—- 2d;, then
O 1 11 d1 —0.05
4 -1 00 by | 0
8 0 -20 c | | —0.125
O 1 2 3 do —0.04

Taked; = 0.25b,, then

1 11 b, —0.05
2 -2 0 ¢ |=| —0.125 | .
1 2 3 dy —-0.04

Takeb, = —0.0625+ c,, then
21 c; | | 0.0125
3 3 d, | | 0.0225|"

Finally, takec, = 0.00625- 0.5d, and getd, = 0.0025. The final answer is

d, = 0.0025

c, = 0.005

b, = —0.0575
d, = -0.014375
c = 0.09125
by = —0.25

Evaluating the spline at = 3, we get
S(3) = S(3) = 0.5+ b1+ c3 +d; = 0.326875 .

This is closer to the exact resuft(3) = 0.3333.. than the result of the natural spline
interpolation §3) = 0.35625).



(b) Prove that ifS(x) is a cubic spline that interpolates a functib(x) € C?[a, b] at the knots
a=X1 <X <--- < Xp=band satisfies the clamped boundary conditions (3-4), then

b b

f[S”(x)]zdx5f[f”(x)]zdx. (5)

a a

Hint: Divide the interval §, b] into subintervals and use integration by parts in each subin-
terval.

Solution: Let us form the differend®(x) = f (x) — S(x). From the integral equality

b b b

b
/[f”(x)]zdx=/[S/(x)]zdx+/[D”(x)]zdx+2f:§/(x) D”(x)dx,

a a a

we can see that the theorem will be proved if we can prove that

b
/ S'(x)D’"(x)dx=0

Indeed, the integral
b

f [£/00]° dx
a
in this case will be equal to the integral

b
/ [S'(0)]? dx
a

plus some non-negative quantity
b

/ [D"()] dx

a

Applying integration by parts, we get

b b
fS/(x) D"(x)dx = S’(x)D’(x)\Z—/S’/(x) D'(x)dx.

The first term is zero because of the clamped boundary conditions:
D'a) = f'(@—-S@=0
D'(b) = f'(b)-S(b)=
The integral in the second term can be divided into subintervals, as follows:

n—1 Xk+1

f S"(x)D'(x)dx=—> / S”(x) D'(x)dx.

k=1 ¢



Integration by parts in each subinterval produces

/ S”(x) D'(x)dx = s"(x)D(x)K:”— / S¥(x) D(x)dx.

The first term in the expression above is zero because of the interpolation condition

D(xk) = f(xx) —S(xx) =0,

The second term is zero because the s in each subinterval is a cubic polynomial
and has zero fourth derivative.

We have proved that

k=1,2,...,n.

b
/ S'(x)D"(x)dx=0,

which proves the theorem.

2. The natural boundary conditions for a cubic spline lead to a system of linear equations with the

tridiagonal matrix

[ 2(hy+hy) h, 0 0 7]
h2 2(h2+h3) h3 :
0 hs - 0 , (6)
: : . . hn_»
_ 0 0 hpz2 2(hn—2+hn-1) |
wherehy = Xki1 — Xk. The textbook shows that the clamped boundary conditions lead to the
matrix B _
2h; hy 0 0
hy  2(h1+hy) ha 0 ;
0 h, 2(h2+hs)
: 0 (7)
hn_z 0
: hh—2 2(hn—2+hn-1) hn_1
0 0 hn_1 2hn_1 |

Find the form of matrices that correspond to two other popular types of boundary conditions:

(a) “not a knot” conditions:

S'(x) = S'(x); (8)
So(xn-1) = §1(Xn-1) . 9)
(b) periodic conditions:
Si(x1) Si_1(%n); (10)
Si(x1) = S_1(%)- (11)

4



Here &(x) represent the spline function on the interval frggto X1, k=1,2,...,n—1. The
periodic conditions are applied wh&(x;) = S(xy).

Solution: The central part of the matrix will always have the same tridiagonal structure, which
results from the recursive relationship

Ck—1 N1+ 2 (hk—1 4+ hi) + Cier hie = 3 (F [ X, Xier1] — F[Xk—1,X])
wherecy is the second-order coefficient in the spline expression
ScX) = e+ (X — %) + G (X —Xi) 2+ 0k (X —%k)®, Xk <X < Xey1,k=1,2,..,n—1
The boundary conditions will only affect the first and the last rows of the matrix.

(a) The “not a knot” conditions transform into the equations

dp = dy;
dn—2 = dn—l-
Using the recursive relationship
Ck+1 — Ck
k=—7"+,
<= T 3hk

wherehyg = xx11 — Xk, the conditions further transform to

C—C C3—Cz .
hy —  hy '’
Ch-1—Ch2 = Ch—Ch
hn—2 hn—l ’

wherec, = §,_;(Xn)/2. Using this two conditions, we can eliminatgandc, from the
system with the help of the expressions

ci = C 1+hl chl'
1 = 2 h2 3h2,

hn—l hn—l
Ch = Chio1ll —Ch— .
n n 1< +hn—2> n 2hn—2

The first equation in the system is then

h? h?
cithi+2c(hy+hy)+czhy=c; (3h1+ 2hy+ h_l) +C3 (hz — h_1> =3 (f[x2, %3] — f[x1,X2]) ,
2 2
and the last equation is

Ch—2hn—2+2¢Ch_1(hn_2+hn_1) +Chhp_1 =

h2 h2
Ch-2 (hn—Z — hn—;) +Ch1 <3hn—1+ 2hn_2+ hn—:) = 3(f[Xn—1,%Xn] = F[Xn—2,X%n-1]) -
n— n—




The matrix takes the form
h? 7

— 2
3hy+2hp+il  hp—gl 0 0
O h3 ", 0
: ' . hn—2
hZ h2
o L S e

Alternative forms are possible.
(b) The periodic boundary conditions lead to the equations
b1
C1

bh-1+2Ch—1hp_1+3dn_1 hﬁ_l
Cn

After eliminatingc, from the system, the first equation transforms to
2C1+C 2Ch-1+C;

3

f [x1,%2] —

hy = f [Xn_1,%Xn ]+ hn—1

or
2c1(hy+hn_1) + c2hp +cnophng = 3 (F [x2, 2] — f [Xn—1,%n])
The system matrix is

[ 2(h1+hp_1) hy 0 0 hn_1 ]
hy 2(h1+hy) hy 0
0 h2 E :
. . 0
0 . .. hn_»
| hns 0 0 hnz 2(hp2+hp1) |

Alternative forms are possible.

3. The algorithm for solving tridiagonal symmetric systems, presented in class, decomposes a
symmetric tridiagonal matrix into a product of lower and upper bidiagonal matrices, as follows:

ai

b1

0

0

0 a1 0771 8 O 0
by a b ' by a2 : 0 1 B :
0 by ° 0 =] 0 b S 0
D T bpoa c . .0 : . B

| O 0 bp1 ap | 0 0 bp1 an JLO 0 1
The algorithm for solving the linear system
[a; by O O Ml ] [ o]
by a by : C2 02
0 by - 0 =
Do . by : :
| O 0 bh1 an | Cn | [ O

6




is summarized below.
TRIDIAGONAL (a1,82,...,an,b1,b2,...,bn-1,01,02,...,0n)
1 o<«
fork <~ 1,2,..,n—1
do
Br < b /o
Otk41 < Q41— bk Bk
C1 <01
for k < 2,3,...,n
do
Ck < Ok — Pk-1Ck-1
Cn < Cn/an
fork«<~n-1,n-2,...,1
do
Ck < Ck/ak — Pk Ck+1
return c1,Cp,...,Cnh

O©CoOoO~NOOh~hwN

e =
AWNPFRO

(a) The algorithm will fail (with division by zero) if any is zero. Prove that, in the case of
cubic spline interpolation with the natural boundary conditions,

Olk>bk>0, k=1,2,...,n.

Hint: Start withk = 1 and use the method of mathematical induction.
Solution: In the case of the natural boundary conditions,

ak=2(hk+hk+1), k=1,2,..,n=-2

and
bk=hk+1>0, k:1,2,...,n—3

Let us first check the case= 1:
ar=a=2(Mh1+h2)>h,=Db;.
The theorem is satisfied. Using the method of mathematical induction, let us assume that
oy > by

for somek and prove that the analogous inequality is truekferl. Indeed, the algorithm
shows that
b
Ok41 =k+1— — -
ok
The assumed inequality implies that

b2
X < by
ok
Therefore,
oky1 > A1 — bk = 2 (hk +hi1) — herr = g +2hge > 0.
QED.



(b) Design an alternative algorithm, where the tridiagonal matrix is factored into the product
of upper and lower bidiagonal matrices, as follows:

[ a b1 0
b1 do bz
0 by °

0 .- 0

O 7 [a@ by O
: 0 a by
0 _ .
. bnoa :
b1 @& | O

0

0
bn—l

dn

1 0 0]
B 1 '
0 A

o 0
0 - 0 fng 1]

Solution: Matching the diagonal elements, we arrive at the system of equations

a14by p1

&n—l + bn—lﬁn—l

dn

an-1

Matching the off-diagonal elements leads to the system

a2 1

an Pn—

1

bn—l

Together, the two systems define theckwardrecursion

Br
ok

On =3an;

by /et 1

ax — b Bk
After the decomposition, the upper and lower bidiagonal matrices are inverted using re-

k=n—-1,n-2,...,1.

cursion in the opposite directions. The final algorithm is

TRIDIAGONAL 2(ag,ay, ...
1 an<«ay
2 fork<—n-1,n-2,...
3 do A
4 Pr<bi/owia
5 ak < ax — by Bk
6 Ch<0On
7 fork<-n-—-1,n-2,...
8 do A
9 Ck < Ok — Bk Ck+1
10 ¢ <—Cl/&1
11 fork <« 2,3,...,n
12 do
13 Cx < Ck/&k_,ék—
14 return cq,Co,...,Ch

,an,b]_,bz,..

1

1Ck-1

- bn-1,01, 92, ..

1gn)



4. (Programming) In this assignment, you can use your own implementation of the natural cubic

spline algorithm or a library function. For your convenience, here is the algorithm summary:

NATURAL SPLINE COEFFICIENTYX1,X2,...,Xn, f1, f2,..., fp)

1

©CoOoO~NO O WwWN

PR R RR R R
oA WNPRERO

-
\‘

fork<1,2,...,n—1

do
hk < Xk+1— Xk
bk < (furr— ) /i
fork < 2,3,...,n—-1
do
ax < 2 (hg+hy_1)
Ok < bk —byx_1
CL < 0
c, <0
C2,C3,...,Ch_1 < TRIDIAGONAL (8.2,8.3, ...y An—_1, h2, h3, e ,hn_z,gz,g3, e ,gn_]_)

fork <~ 1,2,...,n—1
do
dk < (Ckr1—Ck)/hk
bk < bk — (2¢k +Cky1) h
Ck < 3¢k
return bq,by,...,bn_1,C1,Co,...,Ch_1,01,d>,...,dn_1

SPLINE EVALUATION (X, X1,X2,...,Xn, f1, f2,..., fn,b1,b2,...,bn_1,C1,Co,...,Cn_1,d1,do,...,dn_1)

1
2
3
4
5
6
7

fork<~n—1,n-2,...,1
do

h < x— X
ifh>0
then exit loop

S« fk+h(bx+h(ck+hd))
return S

Using your program, interpolate Runge’s functib(x) = 1+2—15X2 on a set oh regularly spaced

spline knots
X = —1+ 2(k_11) . k=1,2,...,n.

Taken =5,11, 21 and compute the interpolation spi{&) and the erroif (x) — S(x) at 41 reg-
ularly spaced points. You can either plot the error or output it in a table. Does the interpolation
accuracy increase with the number of knots?

Answer:



0.15

0.1

0.05

-0.05

-0.1

-0.15

-0.2

-0.25

-0.3

0.015

0.01

0.005

—0.005

-0.01

—-0.015

-0.02

-0.025 1 1 1 1 1 1 ! ! !
-1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

The accuracy does increase with the number of knots.

10



Solution:

C program:

#include <stdlib.h> /* for allocation */
#include <assert.h> /* for assertion */

#include "spline.h"

/* Function: tridiagonal

Symmetric tridiagonal system solver

n - data length

diag[n] - diagonal

offd[n-1] - off-diagonal

x[n] - in: right-hand side, out: solution
*
void tridiagonal(int n, const double* diag, const double* offd, double* x)
{

double *a, *b;

int k;

/* allocate storage */

a = (double*) malloc(n*sizeof(double));
b = (double*) malloc((n-1)*sizeof(double));
assert (a != NULL && b != NULL);

/* LU decomposition */

al0] = diag[0];

for (k=0; k < n-1; k++) {
blk] = offd[k]/a[k];
alk+1] = diag[k+1] - b[k]*offd[K];

}

/* inverting L */

for (k=1; k < n; k++) {
x[k] = x[k] - b[k-1]*x[k-1];

}

[* inverting U */

X[n-1] /= a[n-1];

for (k=n-2; k >=0; k--) {
x[k] = x[kl/a[k] - b[k]*x[k+1];

free (a);
free (b);

/* Function: tridiagonal2

Alternative form of symmetric tridiagonal system solver

n - data length

diag[n] - diagonal

offd[n-1] - off-diagonal

x[n] - in: right-hand side, out: solution
*/
void tridiagonal2(int n, const double* diag, const double* offd, double* x)
{

double *a, *b;

int k;

11



/* allocate storage */

a = (double*) malloc(n*sizeof(double));

b = (double*) malloc((n-1)*sizeof(double));
assert (a != NULL && b != NULL);

/* UL decomposition */
a[n-1] = diag[n-1];
for (k=n-2; k >= 0; k--) {
blk] = offd[k]/a[k+1];
alk] = diag[k] - b[k]*offd[k];

}

/* inverting U */

for (k=n-2; k >= 0; k--) {
X[K] = x[K] - b[K]*x[k+1];

}
/* inverting L */
x[0] /= a[0];

for (k=1; k < n-1; k++) {
x[k] = x[kl/a[K] - b[k-1]*x[k-1];

free (a);
free (b);

/* Function: spline_coeffs
Compute spline coefficients for interpolating natural cubic spline
n - number of knots
x[n] - knots
fln] - function values
coeff[4][n] - coefficients
*/
void spline_coeffs(int n, const double* x, const double* f, double* coefff])
{
double *a, *h, *b, *c, *d,
int k;

h = (double*) malloc((n-1)*sizeof(double));
a = (double*) malloc((n-2)*sizeof(double));
assert (h != NULL);

/* rename for convenience */

b = coeff[1];
¢ = coeff[2];
d = coeff[3];

for (k=0; k < n-1; k++) {
hik] = x[k+1] - x[KI; /* interval length */
coeff[0][k] = fK];
blk] = (flk+1]-f[K])/h[K]; /* divided difference */
}
for (k=0; k < n-2; k++) {
alk] = 2*(h[k+1] + h[K]); /* diagonal */

c[k+1] = b[k+1] - b[K]; /* right-hand side */
}
c[0] = 0O;

/* solve the tridiagonal system */

12



tridiagonal(n-2, a, h, c+1);

for (k=0; k < n-1; k++) {
if (k < n-2) {

dik] = (c[k+1]-c[K])/h[K];

blk] -= (clk+1]+2.*c[K])*h[K];
} else {

dlk] = -c[Kl/h[k];

blk] -= 2.*c[K]*h[K];

}

clk] *= 3,
}

}

/* Function: spline_eval

Evaluate a cubic spline

n - number of knots
y - where to evaluate
x[n] - knots

coeff[4][n] - spline coefficients
*/
double spline_eval(int n, double y, const double* x, double* coeff[])
{

double h, s;

int i, k;

/* find the interval for x */
for (k=n-2; k >=0; k--) {

h =y - xKk
if (h >= 0.) break;
}

if (k<0) k=0;

/* evaluate cubic by Horner's rule */
s = coeff[3][k];
for (i=2; i >=0; i-) {
s = s*h + coeffi][k];
}

return s;

#include <stdlib.h> /* for allocation */
#include <stdio.h> /* for output */
#include <assert.h> /* for assertion */

#include "spline.h"

/* Runge’s function */
double runge (double x)

{
return (1./(1.+25.*x*x));

int main (void)

{
int i, k, n[]={5,11,21}, nx, ny=41;
double *x, *f, *coeff[4], *y, xk, s, €;

y = (double*) malloc (ny*sizeof(double));

13



assert (y !'= NULL);

/* regular grid for plotting */
for (k=0; k < ny; k++) {
yIkl = -1. + 2*k/(ny-1.);

/* three cases */
for (i=0; i < 3; i++) {
nx = n[i;

/* allocate space for table */

X = (double*) malloc (nx*sizeof(double));
f = (double*) malloc (nx*sizeof(double));
assert (x != NULL && f != NULL);

/* allocate coefficients */

for (k=0; k < 4; k++) {
coeff[k] = (double*) malloc ((nx-1)*sizeof(double));
assert (coeff[k] '= NULL);

/* build the table */

for (k=0; k < nx; k++) {
xk = -1. + 2.*k/(nx-1.);
flk] = runge(xk);
x[k] = xk;

/* compute coefficients */
spline_coeffs(nx, x, f, coeff);

/* evaluate the spline function */
for (k=0; k < ny; k++) {

xk = y[K];
s = spline_eval(nx, xk, x, coeff); /* spline */
e = runge(xk)-s; /* error */

/* print out the table */
printf("%d %f %f %g\n", k, xk, s, e);

free (x);

free (f);

for (k=0; k < 4; k++) {
free (coefflK]);

exit(0);

14



5. (Programming)
The values in the table specify, y} points on a curvéx(t), y(t)}.

Xx|25| 1.3 |-025| 0. |0.25| -1.3 |-25| -1.3|0.25| 0. |-0.25| 1.3 | 2.5
y| 0. 1-025] 13 25| 1.3 |-025] 0. |0.25| -1.3|-25| -1.3 | 0.25| 0.

In this assignment, you will reconstruct the curve using cubic splines and interpolating inde-
pendentlyx(t) andy(t). We don’t know the values dfat the spline knots but can approximate
them. For example, we can takéo represent the length along the curve and approximate it by
the length of the linear segments:

tp, = 0;

Calculate spline coefficients for the natural cubic splines interpolatftjgandy(t), then eval-
uate the splines at 100 regularly spaced points in the interval betivesrdt, and plot the
curve.

What other boundary conditions would be appropriate in this example?

Answer:

15



The periodic boundary conditions would be more appropriate in this case.
Solution:

C program:

#include <stdlib.h> /* for allocation */
#include <stdio.h> /* for output */

#include <math.h> /* for math functions */
#include <assert.h> /* for assertion */

#include "spline.h"

int main (void)

{
const int nt=13, nt1=100;
int k;
double x[] = {2.5,1.3,-0.25,0.,0.25,-1.3,-2.5,-1.3,0.25,0.,-0.25,1.3,2.5};
double y[] = {0.,-0.25,1.3,2.5,1.3,-0.25,0.,0.25,-1.3,-2.5,-1.3,0.25,0.};
double t[13], *xc[4], *yc[4], t1[100], tk, x1, y1;

for (k=0; k < 4; k++) {
xc[k] = (double*) malloc ((nt-1)*sizeof(double));
yc[k] = (double*) malloc ((nt-1)*sizeof(double));
assert (xc[k] != NULL && yc[k] !'= NULL);

}

/* find the knots */
t[0] = 0,
for (k=1; k < nt; k++) {
tk] = tk-1] + hypot(x[K]-x[k-1],y[K]-y[k-1]);
}

/* regular grid for plotting */

for (k=0; k < ntl; k++) {
ti[k] = k*t[nt-1])/(nt1-1.);

}

/* spline coefficients for x(t) and y(t) */
spline_coeffs(nt, t, X, Xc);
spline_coeffs(nt, t, y, yc);

/* evaluate the spline function */
for (k=0; k < ntl; k++) {

tk = t1[k];

x1 = spline_eval(nt, tk, t, xc);

yl = spline_eval(nt, tk, t, yc);

[* print out the table */
printf("%d %f %f %g\n", k, tk, x1, yl);
}

exit(0);

16



