
Math 128A Spring 2002 Handout # 10
Sergey Fomel February 19, 2002

Answers to Homework 3: Nonlinear Equations:
Newton, Steffensen, and Others

1. Prove that the sequence

c0 = 3 ; cn+1 = cn − tancn , n = 1,2,. . . (1)

converges. Find the convergence limit and the order of convergence.

Solution:

(a) To find a candidate for the convergence limit, we can take the limit of the both sides of the
recursion, as follows:

c = lim
n→∞

cn+1 = lim
n→∞

(cn − tancn) = c− tanc .

Therefore,
tanc = 0 .

The root of tanx closest toc0 = 3 isc = π .

(b) To prove that the iteration actually converges toπ , we need to look at the derivative of
g(x) = x − tanx:

g′(x) = 1−
1

cos2 x
= − tan2 x

In the interval34π + ε ≤ x ≤
5
4π − ε, (for some smallε > 0)

|g′(x)| = tan2 x ≤ tan2
(

3

4
π + ε

)
< 1

Since the starting pointc0 = 3 belongs to the specified interval, the fixed-point iteration (1)
converges according to the fixed-point theorem.

To show this in more detail, note that by the mean-value theorem,

tancn = tanc+
1

cos2ξn
(cn −c) = tanπ +

1

cos2ξn
(cn −π) =

1

cos2ξn
(cn −π) ,

whereξn is some point betweencn andc. Therefore,

c−cn+1 = c−cn + tancn = (c−cn)

(
1−

1

cos2ξn

)
= − tan2ξn (c−cn)

We know that the starting pointc0 = 3 belongs to the interval34π+ε ≤ x ≤
5
4π−ε where

tan2(x) ≤ tan2
(3

4π + ε
)
= M < 1. The pointξ0 should be in the same interval, therefore

|c−c1| =
∣∣tan2ξ0

∣∣ |c−c0| ≤ M |c−c0|< |c−c0| ,

1

and we see thatc1 is also in the specified interval. By induction, this will be true for all
cn, and

|c−cn+1| ≤ M |c−cn| ≤ M2
|c−cn−1| ≤ . . .≤ Mn+1

|c−c0| .

Taking the limit,
lim

n→∞
|c−cn+1| ≤ lim

n→∞
Mn+1

|c−c0| = 0 ,

and the convergence is proved.

(c) The convergence order is 3 (cubic convergence). To show that, we can expand tancn in a
Taylor series aroundc = π :

tancn = tanc+
(cn −c)

cos2c
+

tanc

cos2c
(cn −c)2

+
3−2 cos2ξn

3 cos2ξn
(cn −c)3

Since tanπ = 0, the first and the third term are zero, and

tancn = (cn −c)+
3−2 cos2ξn

3 cos2ξn
(cn −c)3

Therefore,

c−cn+1 = c−cn +cn −c−
3−2 cos2ξn

3 cos2ξn
(cn −c)3

= −
3−2 cos2ξn

3 cos2ξn
(cn −c)3

and

lim
n→∞

|c−cn+1|

|c−cn|
3 = lim

n→∞

3−2 cos2ξn
3 cos2ξn

=
3−2 cos2π

3 cos2π
=

1

3
.

This can also be proved using the result of problem two.

2. Prove that ifg(x) ∈ Cm for somem> 1 (continuous together with its derivatives to the order
m), g(c) = c, g′(c) = g′′(c) = . . .= g(m−1)(c) = 0, g(m)(c) 6= 0, and the fixed-point iteration

cn+1 = g(cn) (2)

converges toc, then the order of convergence ism.

Hint: Use the Taylor series ofg(x) aroundx = c.

Solution: The Taylor series takes the form

g(cn) = g(c)+ g′(c) (cn −c)+ . . .+
g(m−1)(c)

(m−1)!
(cn −c)m−1

+
g(m)(ξn)

m!
(cn −c)m

where only two terms can be different from zero:

g(cn) = g(c)+
g(m)(ξn)

m!
(cn −c)m ,

whereξn is some point betweenc andcn. Taking the differencec−cn+1, we see that

c−cn+1 = g(c)− g(cn) = −
g(m)(ξn)

m!
(cn −c)m .

Therefore,

lim
n→∞

|c−cn+1|

|c−cn|
m = lim

n→∞

∣∣g(m)(ξn)
∣∣

m!
=

∣∣g(m)(c)
∣∣

m!
6= 0 .

By definition, this means that the order of convergence ism.

2

3. Determine the order of convergence for the following methods:

(a) ThemodifiedNewton’s method

cn+1 = cn −m
f (cn)

f ′(cn)
(3)

under the conditionsf (x) ∈ Cm+1 (m ≥ 1), f (c) = f ′(c) = f ′′(c) = . . .= f (m−1)(c) = 0,
and f (m)(c) 6= 0.

Solution: The order of convergence is at least 2. The Taylor series off (cn) aroundc is

f (cn) = f (c)+ f ′(c) (cn −c)+ . . .+
f (m)(c)

m!
(cn −c)m

+
f (m+1)(ξn)

(m+1)!
(cn −c)m+1 ,

whereξn is a point betweenc andcn, and only two terms can be different from zero:

f (cn) =
f (m)(c)

m!
(cn −c)m

+
f (m+1)(ξn)

(m+1)!
(cn −c)m+1

Analogously, from the Taylor series forf ′(cn), we obtain

f ′(cn) =
f (m)(c)

(m−1)!
(cn −c)m−1

+
f (m+1)(ξ ?n)

m!
(cn −c)m

Hereξn andξ ?n are points betweenc andcn, not necessarily equal to each other. Forming
the differencec−cn+1, we get

c−cn+1 = c−cn +m
f (cn)

f ′(cn)
=

f ′(cn) (c−cn)+m f(cn)

f ′(cn)

Using the expressions above,

c−cn+1 =
−

f (m)(c)
(m−1)! (cn −c)m

−
f (m+1)(ξ?n)

m! (cn −c)m+1
+m f (m)(c)

m! (cn −c)m
+m f (m+1)(ξn)

(m+1)! (cn −c)m+1

f (m)(c)
(m−1)! (cn −c)m−1

+
f (m+1)(ξ?n)

m! (cn −c)m
.

Collecting terms in the numerator,

c−cn+1 =
−

f (m+1)(ξ?n)
m! (cn −c)2

+m f (m+1)(ξn)
(m+1)! (cn −c)2

f (m)(c)
(m−1)! +

f (m+1)(ξ?n)
m! (cn −c)

In the limit,

lim
n→∞

|c−cn+1|

|c−cn|
2 = lim

n→∞

∣∣∣∣∣∣ −
f (m+1)(ξ?n)

m! +m f (m+1)(ξn)
(m+1)!

f (m)(c)
(m−1)! +

f (m+1)(ξ?n)
m! (cn −c)

∣∣∣∣∣∣
By assumption,cn converges toc asn approaches infinity. So doξn andξ ?n . Using the
continuity of f (m)(x) and f (m+1)(x), we get

lim
n→∞

|c−cn+1|

|c−cn|
2 =

(m−1)!
m!

(
1−

m
m+1

) ∣∣ f (m+1)(c)
∣∣∣∣ f (m)(c)

∣∣ =
1

m(m+1)

∣∣∣∣ f (m+1)(c)

f (m)(c)

∣∣∣∣ .

3

(b) Olver’s method

cn+1 = cn −
f (cn)

f ′(cn)
−

1

2

f ′′(cn) f (cn)2[
f ′(cn)

]3 (4)

under the conditionsf (x) ∈ C4, f (c) = 0, and f ′(c) 6= 0.

Solution: The order of convergence is at least 3. To prove that, let us differentiate the

functiong(x) = x −
f (x)
f ′(x) −

1
2

f ′′(x) f (x)2

[f ′(x)]3 . For convenience, let us write it in the form

g(x) = x + f (x)h1(x)+ f (x)2h2(x) ,

whereh1(x) = −
1

f ′(x) , andh2(x) = −
1
2

f ′′(x)

[f ′(x)]3 . The first three derivatives are

g′(x) = 1+h1(x) f ′(x)+2 f (x)h2(x) f ′(x)+ f (x)h′

1(x)+ f (x)2h′

2(x)

g′′(x) = 2h2(x)
[

f ′(x)
]2

+2 f ′(x)h′

1(x)+4 f (x) f ′(x)h′

2(x)+h1(x) f ′′(x)+

2 f (x)h2(x) f ′′(x)+ f (x)h′′

1(x)+ f (x)2h′′

2(x)

g′′′(x) = 6
[

f ′(x)
]2

h′

2(x)+6h2(x) f ′(x) f ′′(x)+3h′

1(x) f ′′(x)+6 f (x)h′

2(x) f ′′(x)+

3 f ′(x)h′′

1(x)+6 f (x) f ′(x)h′′

2(x)+h1(x) f ′′′(x)+2 f (x)h2(x) f ′′′(x)+

f (x)h′′′

1 (x)+ f (x)2h′′′

2 (x)

Evaluating them at the rootc (such thatf (c) = 0) produces

g′(c) = 1+h1(c) f ′(c) = 0

g′′(c) = 2h2(c)
[

f ′(c)
]2

+2 f ′(c)h′

1(c)+h1(c) f ′′(c) = 2h2(c)
[

f ′(c)
]2

+
f ′′(c)

f ′(c)
= 0

g′′′(c) = 6
[

f ′(c)
]2

h′

2(c)+6h2(c) f ′(c) f ′′(c)+3h′

1(c) f ′′(c)+3 f ′(c)h′′

1(c)+h1(c) f ′′′(c)

=
3

[
f ′′(c)

]2[
f ′(c)

]2 −
f ′′′(c)

f ′(c)

According to the general theorem from the second problem, this shows that the iteration
cn+1 = g(cn) converges at least cubically:

lim
n→∞

|c−cn+1|

|c−cn|
3 =

∣∣g′′′(c)
∣∣

3!
=

∣∣∣∣∣12
(

f ′′(c)

f ′(c)

)2

−
1

6

f ′′′(c)

f ′(c)

∣∣∣∣∣ .

We could also obtain this result directly by using the Taylor series expansions.

(c) Steffensen’s method

cn+1 = cn −
f (cn)2

f
[
cn + f (cn)

]
− f (cn)

(5)

under the conditionsf (x) ∈ C2, f (c) = 0, and f ′(c) 6= 0.

Solution: The convergence is at least quadratic.

To prove it, consider the Taylor series off
[
cn + f (cn)

]
aroundcn:

f
[
cn + f (cn)

]
= f (cn)+ f ′(cn) f (cn)+

f ′′(ξn)

2
f (cn)2 ,

4

whereξn is a point betweencn andcn + f (cn). Therefore,

f (cn)2

f
[
cn + f (cn)

]
− f (cn)

=
f (cn)

f ′(cn)+ f ′′(ξn)
2 f (cn)

.

Forming the differencec−cn+1, we obtain

c−cn+1 = c−cn+
f (cn)

f ′(cn)+ f ′′(ξn)
2 f (cn)

=
f (cn)+ f ′(cn) (c−cn)+ f ′′(ξn)

2 f (cn) (c−cn)

f ′(cn)+ f ′′(ξn)
2 f (cn)

.

The Taylor series off (c) aroundcn gives us

0 = f (c) = f (cn)+ f ′(cn) (c−cn)+
f ′′(ξ ?n)

2
(c−cn)2 ,

whereξ ?n is a point betweencn andc, not necessarily equal toξn. Additionally,

0 = f (c) = f (cn)+ f ′(ξ†
n)(c−cn) ,

whereξ†
n is another point betweencn andc, not necessarily equal toξn or ξ ?n .

Putting it all together,

c−cn+1 = −

f ′′(ξ?n)
2 (c−cn)2

+
f ′′(ξn)

2 f ′(ξ†
n) (c−cn)2

f ′(cn)+ f ′′(ξn)
2 f (cn)

.

In the limit of n approaching infinity, we utilize the continuity off ′(x) and f ′′(x) to get

lim
n→∞

|c−cn+1|

|c−cn|
2 = lim

n→∞

∣∣∣∣∣
f ′′(ξ?n)

2 +
f ′′(ξn)

2 f ′(ξ†
n)

f ′(cn)+ f ′′(ξn)
2 f (cn)

∣∣∣∣∣ =
1

2

∣∣∣∣ f ′′(c)

f ′(c)

∣∣∣∣ ∣∣1+ f ′(c)
∣∣ .

4. (Programming) In this assignment, you will study the convergence of different methods experi-
mentally using graphical tools. Note that the convergence limit

lim
n→∞

|c−cn+1|

|c−cn|
p

= z (6)

corresponds to the linear function
y = logz+ p x (7)

in logarithmic coordinatesxn = log|c−cn|, yn = |c−cn+1|. Plotting the points{xn, yn} against
the theoretical line verifies experimentally the order of convergence.

In the previous homework, we found that the equation

x +ex
= 0 (8)

has the root atc ≈ −0.567143 (accurate to six significant digits).

The figure shows the logarithmic plot of bisection iterations{xn, yn} plotted against the line
y = log(1/2)+ x. We can see that the iterations oscillate chaotically around the line. You will
investigate whether the convergence behavior of other methods is more predictable.

-14 -12 -10 -8 -6 -4 -2 0

-14

-12

-10

-8

-6

-4

-2

0

Implement and apply the following methods:

5

(a) Fixed-point iteration. Apply it tog(x) = −ex starting withc0 = −1.

(b) Newton’s method. Apply it tof (x) = x +ex starting withc0 = −1.

(c) Secant method. Apply it tof (x) = x +ex starting withc0 = 0 andc1 = −1.

In each case, find the root with the accuracy of six significant digits and plot the pointsxn, yn

and the theoretical convergence line. Since some methods converge faster than others, you will
need to use different number of points. Use at least 19 points for (a), 2 points for (b), and 3
points for (c).

Answer:

(a) -12 -10 -8 -6 -4 -2 0

-12

-10

-8

-6

-4

-2

0

6

(b) -4 -3 -2 -1 0

-8

-6

-4

-2

(c) -6 -5 -4 -3 -2 -1 0

-10

-8

-6

-4

-2

0

Solution: C program

#include <stdio.h> /* for output */

#include <math.h> /* for mathematical functions */

#include <assert.h> /* for assertion */

/* function: fixed

7

Implements fixed-point iteration

func - a pointer to function g(x)

c0 - initial value

tol - tolerance in position and value

nmax - maximum number of iterations

*/

double fixed(double (*func)(double),

double c0, double tol, int nmax)

{

int n;

double g, c;

c = c0;

for (n=0; n < nmax; n++) {

g = func(c);

/* print out the table */

printf("n=%d c=%f |f(c)|=%e\n",n,c,fabs(g));

/* return if the root is located to the tolerance */

if (fabs(g-c) <= tol) return g;

c = g;

}

fprintf(stderr,"Warning: Exact root is not found after %d iterations\n",

nmax);

return g;

}

/* function: newton

Implements Newton’s method

func - a pointer to a function

der - a pointer to the function derivative

c0 - initial value

xtol, ftol - tolerance in position and value

nmax - maximum number of iterations

*/

double newton(double (*func)(double),

double (*der)(double),

double c0,

double xtol, double ftol, int nmax)

{

int n;

double f, fp, c, d;

c = c0;

for (n=0; n < nmax; n++) {

f = func(c);

fp = der(c);

assert(fp != 0.); /* avoid division by zero */

d = f/fp;

/* print out the table */

printf("n=%d c=%f |f(c)|=%e\n",n,c,fabs(f));

8

/* return if the root is located to the tolerance */

if (fabs(d) <= xtol && fabs(f) <= ftol) return c;

c -= d;

}

fprintf(stderr,"Warning: Exact root is not found after %d iterations\n",

nmax);

return c;

}

/* function: secant

Implements Secant method

func - a pointer to a function

c0, c1 - initial values

xtol, ftol - tolerance in position and value

nmax - maximum number of iterations

*/

double secant(double (*func)(double),

double c0, double c1,

double xtol, double ftol, int nmax)

{

int n;

double f0, f1, c;

f0 = func(c0);

for (n=0; n < nmax; n++) {

f1 = func(c1);

/* print out the table */

printf("n=%d c=%f |f(c)|=%e\n",n,c1,fabs(f1));

/* return if the root is located to the tolerance */

if (fabs(c1-c0) <= xtol && fabs(f1) <= ftol) return c1;

if (c0 == c1 || f0 == f1) {

fprintf(stderr,"Error: The line is degenerate\n");

return c1;

}

c = c1 - f1*(c1-c0)/(f1-f0);

c0 = c1;

c1 = c;

f0 = f1;

f1 = func(c);

}

fprintf(stderr,"Warning: Exact root is not found after %d iterations\n",

nmax);

return c1;

}

9

/* test function */

static double function (double x)

{

return (x + exp(x));

}

/* test function */

static double gfunction (double x)

{

return (-exp(x));

}

/* derivative of the test function */

static double derivative (double x)

{

return (1. + exp(x));

}

int main (void)

{

int nmax=20; /* maximum number of iterations */

double xtol=1.e-7, ftol=1.e-15, c0=-1., c1=0., c;

c = fixed(&gfunction, c0, xtol, nmax);

c = newton(&function, &derivative, c0, xtol, ftol, nmax);

c = secant(&function, c1, c0, xtol, ftol, nmax);

return 0;

}

5. (Programming) In this assignment, you will compute the motion of a planet according to Ke-
pler’s equation — one of the most famous nonlinear equations in the history of science. Kepler’s
equation has the form

ω t = ψ− ε sinψ , (9)

wheret is time,ω is angular frequency,ε is the orbit eccentricity, andψ is the angle coordinate.
To find the planet location at timet , we need to solve equation (9) forψ . The planet coordinates
x andy are then given by

x = a (cosψ− ε) ; (10)

y = a
√

1− ε2 sinψ , (11)

wherea is the major semi-axis of the elliptical orbit. For our planet, we will takea = 1AU
(astronomical unit), and the eccentricityε= 0.6 (which is much larger than the orbit eccentricity
of the Earth and other big planets in the Solar system). The picture shows the orbit and the planet
positions in January (ψ = π) and July (ψ = 0).

10

-1.5 -1 -0.5 0 0.5

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Your task is to find the planet location in the other ten months, assuming that each month takes
1/12 of the rotation period. Solve Kepler’s equation (9) forω t = 0,π/6,2·π/6,. . . ,11·π/6.
You can use any numerical method to do that (either your own program or a library program).
The result should be computed with the precision of 1 second (1/3600 of 1◦). Output a table of
the form

ω t ψ x y

and then use a graphics program to plot the planet locations.

Answer:

ω t ψ x y
0.000000 0.000000 0.400000 0.000000
0.523599 1.041495 -0.095069 0.690528
1.047198 1.645523 -0.674657 0.797767
1.570796 2.091329 -1.097343 0.694043
2.094395 2.468459 -1.381872 0.498751
2.617994 2.812121 -1.546213 0.258835
3.141593 3.141593 -1.600000 0.000000
3.665191 3.471064 -1.546213 -0.258835
4.188790 3.814727 -1.381872 -0.498751
4.712389 4.191856 -1.097343 -0.694043
5.235988 4.637662 -0.674657 -0.797767
5.759587 5.241691 -0.095069 -0.690528

11

-1.5 -1 -0.5 0 0.5

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Jul

Aug
Sep

Oct
Nov

Dec

Jan

Feb

Mar
Apr

May
Jun

Solution: C program

#include <stdio.h> /* for output */

#include <math.h> /* for mathematical functions */

int main (void)

{

double x, y, t, a=1.0, c, f, fp, e=0.6, pi, tol;

int n, iter, niter=100;

pi = acos(-1.0); /* number pi */

tol = pi/180./3600.; /* accuracy */

for (n=0; n < 13; n++) {

t = n*2.*pi/12;

c = t; /* the initial estimate */

for (iter=0; iter < niter; iter++) { /* Nonlinear solver */

/* Kepler’s equation */

f = c - e*sin(c) - t; /* function */

fp = 1. - e*cos(c); /* derivative */

if (fabs(f) < tol && fabs(f) < tol*fabs(fp)) break;

c -= f/fp; /* Newton’s iteration */

}

if (iter >= niter) {

fprintf(stderr,

"Newton’s method failed to converge after %d iterations\n",

iter);

return 1;

}

/* compute coordinates */

x = a*(cos(c) - e);

y = a*sqrt(1-e*e)*sin(c);

/* output table */

printf("%d t=%f psi=%f x=%f y=%f\n", n, t, c, x, y);

}

return 0;

}

12

