Math 128A Spring 2002 Handout # 10
Sergey Fomel February 19, 2002

Answers to Homework 3: Nonlinear Equations:
Newton, Steffensen, and Others

1. Prove that the sequence
Co=3,; Cyr1=Cy—tanc,, n=12,... (1)

converges. Find the convergence limit and the order of convergence.
Solution:

(a) Tofind a candidate for the convergence limit, we can take the limit of the both sides of the
recursion, as follows:

c= lim cyy1 = lim (c, —tanc,) = c—tanc.
n—oo n—o00

Therefore,
tanc=0.

The root of tarx closest tocg = 3 isc = .
(b) To prove that the iteration actually convergesrttowe need to look at the derivative of
g(Xx) = x —tanx:

/ _ _ l ———
gx)=1 odx = tarf x

In the interval2 = + ¢ < x < 37 —e, (for some smalk > 0)
, 3
Ig'(x)| = tarf x < tar? (Zn +e) <1
Since the starting poirty = 3 belongs to the specified interval, the fixed-point iteration (1)
converges according to the fixed-point theorem.

To show this in more detail, note that by the mean-value theorem,

tanc, = tanc+ (ch—m),

(ch—c) =tanz + c

: (T =
coRé&, o2e, T cog,

whereg, is some point betweety andc. Therefore,

) = —tarf&, (c—¢n)

cC—Chp1=C—cp+tanc, =(c—c 1-
n+1 n n ( n)( CO§§n

We know that the starting poikp = 3 belongs to the interv%n +e<x< %71 — € Where
tarf(x) < tar? (3 +¢€) = M < 1. The pointo should be in the same interval, therefore

lc—cal = [tarf&| Ic—col < M |c—col < |c—col



and we see that; is also in the specified interval. By induction, this will be true for all
cn, and
Ic—Cnial <M Ic—Cl =M? -Gyl <... =M™ [c—col .
Taking the limit,
lim |c—cnpa] < lim M"™ 1 c—col =0,
n—o0 n—o0
and the convergence is proved.

(c) The convergence order is 3 (cubic convergence). To show that, we can expanhtan
Taylor series around=:

(ch—c) tanc 3—2cog¢,

tanc, =t —¢)? —c)®
n=tanc+ =g T cogc O 3 cog &, i
Since tanr = 0, the first and the third term are zero, and
3—-2cog¢, 3
tanc, = (c,—¢)+ —— (¢, —C
n=(n—0)+ 3 codé, (e —0)
Therefore,
3—-2cog¢, 3 3—-2cog¢, 3
c—-Cy1=C—Cr+Ch—C——— = (cy—C)°’=————(Cy—C
n+1 n =+ Cn 3 codE, (ch—c) 3 cods, (ch—c)
and
i lc—Cnyal . 3—2cosg& 3-2cosm 1
n—oo |[c—c,[® n—o 3cogE  3cogm 30

This can also be proved using the result of problem two.

2. Prove that ifg(x) € C™ for somem > 1 (continuous together with its derivatives to the order
m), g(c) =c¢, g'(c) =g"(c) = ... = g™ Y(c) = 0, g™(c) # 0, and the fixed-point iteration
Cn+1=0(Cn) (2)
converges te, then the order of convergencens
Hint: Use the Taylor series @(x) aroundx = c.
Solution: The Taylor series takes the form

_ / g(m_l)(c) m—1 g(m) (éfn) m
g(Cn)—9(0)+Q(C)(Cn—0)+---+m(Cn—C) +T(Cn_c)
where only two terms can be different from zero:
(m) £
oen) = 90+ S @~
whereg, is some point betweenandc,. Taking the difference — c .1, we see that
(m)
¢~ it = 90— oen) =~ = (G-

Therefore, - -
|C— Cntal : |gm(§n)| ‘gm(c)|
n—oo |C—Cp|™ e ml m! #

By definition, this means that the order of convergenca.is




3. Determine the order of convergence for the following methods:
(a) ThemodifiedNewton’s method

f (cn)
f’(cn)

under the conditiong (x) e C™?1 (m> 1), f(c) = f'(c) = f’(c)=...= f(M () =0
and f(M(c) £ 0.
Solution: The order of convergence is at least 2. The Taylor seriégopj aroundc is

<m>( 9

3)

Ch+1=0Cn—

(m+1)
_C)m f + (Sn) (Cn_C)rTH—l ’

f(cn)=f(O)+ f'(c)(Ch—C)+...+ (m+1)!

(Cn
whereg, is a point betweer andc,, and only two terms can be different from zero:

G )

(m+1)!

( _ )m+1

f(cn) = (h—0)"+

Analogously, from the Taylor series fdr(c,), we obtain

e

(m—1)! m! (e = )"

f'(ca) =

Here&, and&; are points betweeaandc,, not necessarily equal to each other. Forming
the differencec — c,1, we get

f(cn) _ f'(ca) (€—cn)+m f(cn)

C—Cn+1:C—Cn+m

fr(cn) f’(cn)
Using the expressions above,
m (M+1)(ex m m
L (e~ o) D (g — o™ m 0O (g — o)™ m LD (g, et
C—Cht1= = o
—éﬁ_)&‘;% (n— ™14 ) (g gy

Collecting terms in the numerator,

f(m+l) §(Mm+1)
) (Gn— o2+ m ) (G — o)
C— Cn+l - f(m)(C) f(m+1)(%-n)
(m_]_)l (ch—0)
In the limit,
f (m+1)(§*) f (m+l)(§ )
|IC—Cntal | o (m+l)'n
N A L ey

By assumptiong, converges ta@ asn approaches infinity. So d&, and&;. Using the
continuity of fM(x) and f M*+1)(x), we get

i Il SR (-a) [T ‘ﬂm“)(c)
N0 o cyl2 HEC) m(m+1) f(c)
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(b) Olver's method
f(cn) 1 f"(cn) f(cn)?

— f/(cn) B 2 [f/(cn)]?)
under the conditiong (x) € C#, f(c) =0, andf’(c) # 0.

Solution: The order of convergence is at least 3. To prove that, let us differentiate the

functiong(x) = x — ff,((’)‘()) — % fiifz;)(]xs)z For convenience, let us write it in the form

g(x) = x+ F(x)h1(x)+ f(x)?ha(x) ,

(4)

Ch+1=2Cn

wherehy(x) = —ﬁ, andhy(x) = —1 T®) The first three derivatives are

(o]

g = 14+ha(x) ') +2f(x)ha(x) f'(x)+ f ()i () + F(x)* ()
g'(x) = 2ha(x) [/ +2 F/ ()N +4 F(x) £(x) hp(x) +hi(x) (%) +
2 £ () h2(x) £"(x) + F () h1 () + f (x)*h3(x)
g"(x) = B[ ()] hp(x)+6ha(x) f'(x) F(x) +3h;(x) /() +6 f (x) ho(x) F"(x) +
3F/(x)h](x) +6 f (x) F'(X)N3(x) +ha(x) T (x) +2 f (x) ha(x) T (x) +
F()hy'(x) + f()?h3'(x)

Evaluating them at the roat(such thatf (c) = 0) produces

g(c) = 1+hy(c)f'(c)=0

§(© = 200 [ +2 (00 +hi(©) (0 = 2na(0) [0+ O

') ~
g"(c) = 6[f'()]” hy(c)+6ha(c) f'(c) £(c)+3hi(c) () +3 F'(c)h{(c) +ha(c) f(c)
3 [f//(c)]z B f///(C)

[ F@©

According to the general theorem from the second problem, this shows that the iteration
Cnt+1 = g(cn) converges at least cubically:

0

- le—cnl _[g7(9)] _ |1 (&)2_3 £(c)
2\ (o) 6 f/(c)

n— 00 |C—Cn|3 N 3!

We could also obtain this result directly by using the Taylor series expansions.

(c) Steffensen’s method
f (cn)?

f [Cn + f(Cn)] — f(cn)
under the conditiong (x) € C2, f(c) =0, andf’(c) # 0.
Solution: The convergence is at least quadratic.

To prove it, consider the Taylor series bfc, + f(cn)] aroundcy:

D)
2

()

Cn+1=20Cn—

f(cn)?

f [en+ f(cn)] = f(ca)+ f'(cn) F(cn)+



whereg, is a point betweeg, andc, + f(c,). Therefore,
f(Cn)2 _ f(cn)
flent flen)]—flen)  f/(c)+ 280 (cy)
Forming the difference — ¢, 1, we obtain

_ f (cn) ~fen)+ F(cn) (6 — ) + 1) £(co) (c—Cn)
€1 =C—Crt 7 ) = / (e '
f'(cn) +—" f(cn) f'(cn) + —5" f(cn)
The Taylor series of (c) aroundc, gives us
f// *
0= (0= (e + F(en) (6= )+ (o ca)?.

whereé; is a point between, andc, not necessarily equal . Additionally,
0= f(c)= f(cn)+ f'(EN(C—cn),

where& is another point betweem, andc, not necessarily equal & or &
Putting it all together,

o (e + T HE]) (e )
f/(en) + 52 f (o)

In the limit of n approaching infinity, we utilize the continuity df (x) and f”(x) to get

C—Cny1=—

f// r: f// n
jim 7Ot _ o TG :}‘fﬁ(c) |14 (0)]
n—oo [c—cyl®  n=oo| fr(cy)+ ) f(c)| 2] F/(0)

4. (Programming) In this assignment, you will study the convergence of different methods experi-
mentally using graphical tools. Note that the convergence limit

. lc—=¢
lim IC—Cnial _ (6)
n—oo |C— Cp| p
corresponds to the linear function
y=logz+ px (7)

in logarithmic coordinateg, = log|c — cp|, ¥n = |C— Cn+1|. Plotting the point$x,, y,} against
the theoretical line verifies experimentally the order of convergence.

In the previous homework, we found that the equation
X+e=0 (8)
has the root at ~ —0.567143 (accurate to six significant digits).

The figure shows the logarithmic plot of bisection iteratidrs, y,} plotted against the line
y =log(1/2)+ x. We can see that the iterations oscillate chaotically around the line. You will
investigate whether the convergence behavior of other methods is more predictable.

Implement and apply the following methods:
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(a) Fixed-point iteration. Apply it tg(x) = —e* starting withcy = —1.
(b) Newton’s method. Apply it tdf (x) = x + € starting withcg = —1.
(c) Secant method. Apply it té (x) = x + €* starting withco = 0 andc; = —1.
In each case, find the root with the accuracy of six significant digits and plot the pgjyts
and the theoretical convergence line. Since some methods converge faster than others, you will

need to use different number of points. Use at least 19 points for (a), 2 points for (b), and 3
points for (c).

Answer:

of

-10+

-12+

@ iz i0 8 6 4 2o



-10

() -6 -5 -4 -3 -2 -1 0

Solution: C program

#include <stdio.h> /* for output */
#include <math.h> /* for mathematical functions */
#include <assert.h> /* for assertion */

[* function: fixed



Implements fixed-point iteration

func - a pointer to function g(x)

c0 - initial value

tol - tolerance in position and value
nmax - maximum number of iterations

*/
double fixed(double (*func)(double),
double c0, double tol, int nmax)

{

int n;

double g, c;

c = c0;

for (n=0; n < nmax; n++) {
g = func(c);
/* print out the table */
printf("n=%d c=%f |[f(c)|=%e\n",n,c,fabs(g));
/* return if the root is located to the tolerance */
if (fabs(g-c) <= tol) return g;
c=g0;

}

fprintf(stderr,"Warning: Exact root is not found after %d iterations\n",
nmax);
return g;

/* function: newton

Implements Newton’s method

func - a pointer to a function

der - a pointer to the function derivative
c0 - initial value

xtol, ftol - tolerance in position and value

nmax - maximum number of iterations

*/

double newton(double (*func)(double),
double (*der)(double),
double c0,
double xtol, double ftol, int nmax)

int n;
double f, fp, c, d;

c = c0;

for (n=0; n < nmax; n++) {
f = func(c);
fp = der(c);

assert(fp != 0.); /* avoid division by zero */
d = f/fp;

/* print out the table */
printf("n=%d c=%f |f(c)|=%e\n",n,c,fabs(f));



/* return if the root is located to the tolerance */
if (fabs(d) <= xtol && fabs(f) <= ftol) return c;

c -= d;

fprintf(stderr,"Warning: Exact root is not found after %d iterations\n”,
nmax);
return c;

/* function: secant

Implements Secant method

func - a pointer to a function

co, c1 - initial values

xtol, ftol - tolerance in position and value
nmax - maximum number of iterations

*/

double secant(double (*func)(double),
double c0, double c1,
double xtol, double ftol, int nmax)

int n;
double 0, f1, c;

fo = func(c0);

for (n=0; n < nmax; n++) {
fl = func(cl);

[* print out the table */
printf("n=%d c=%f |[f(c)|=%e\n",n,c1,fabs(f1));

/* return if the root is located to the tolerance */
if (fabs(c1-c0) <= xtol && fabs(fl) <= ftol) return c1;

if (cO == c1 || f0 == f1) {

fprintf(stderr,"Error: The line is degenerate\n");
return cl;

¢ = cl - f1*(cl-cO)/(f1-f0);

c0 = cl;
cl = ¢
fo = f1;
fl = func(c);
}
fprintf(stderr,"Warning: Exact root is not found after %d iterations\n”,
nmax);
return cl;



[* test function */
static double function (double x)
{

return (x + exp(x));

}

/* test function */
static double gfunction (double x)
{

return (-exp(x));

}

/* derivative of the test function */
static double derivative (double x)
{

return (1. + exp(x));

}

int main (void)

{
int nmax=20; /* maximum number of iterations */
double xtol=1.e-7, ftol=1.e-15, c0=-1., c1=0., c;

fixed(&gfunction, c0O, xtol, nmax);
newton(&function, &derivative, cO, xtol, ftol, nmax);
secant(&function, c1, c0, xtol, ftol, nmax);

return O;

. (Programming) In this assignment, you will compute the motion of a planet according to Ke-
pler’'s equation — one of the most famous nonlinear equations in the history of science. Kepler’'s
equation has the form

ot =y —esiny , (9)

wheret is time,w is angular frequency, is the orbit eccentricity, angt is the angle coordinate.
To find the planet location at tinte we need to solve equation (9) fg¢r. The planet coordinates
x andy are then given by

x = a(cosy —e); (10)

y = avil-—e?siny, (11)
wherea is the major semi-axis of the elliptical orbit. For our planet, we will take 1 AU
(astronomical unit), and the eccentricity= 0.6 (which is much larger than the orbit eccentricity

of the Earth and other big planets in the Solar system). The picture shows the orbit and the planet
positions in January = ) and July ¢/ = 0).
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0.75;

0. 25

-0. 25

-0.75;¢

‘1.5 -1 -0.5 0 0.5

Your task is to find the planet location in the other ten months, assuming that each month takes
1/12 of the rotation period. Solve Kepler's equation (9) ér= 0,7/6,2-7/6,...,11-7/6.

You can use any numerical method to do that (either your own program or a library program).

The result should be computed with the precision of 1 second (1/3600.0Dlitput a table of

the form

(ot [ v [x]y]

and then use a graphics program to plot the planet locations.

Answer:

|

wt

14

X

y

0.000000

0.000000

0.400000

0.000000

0.523599

1.041495

-0.095069

0.690528

1.047198

1.645523

-0.674657

0.797767

1.570796

2.091329

-1.097343

0.694043

2.094395

2.468459

-1.381872

0.498751

2.617994

2.812121

-1.546213

0.258835

3.141593

3.141593

-1.600000

0.000000

3.665191

3.471064

-1.546213

-0.258835

4.188790

3.814727

-1.381872

-0.498751

4.712389

4.191856

-1.097343

-0.694043

5.235988

4.637662

-0.674657

-0.797767

5.759587

5.241691

-0.095069

-0.690528
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-0.75;¢

0.

. 757

.57

25¢

“1.5 -1 20.5 0

Solution: C program

#include <stdio.h> /* for output */
#include <math.h> /* for mathematical functions */

int main (void)

{

double x, vy, t, a=1.0, c, f, fp, e=0.6, pi, tol;
int n, iter, niter=100;

pi = acos(-1.0); /* number pi */
tol = pi/180./3600.; /* accuracy */
for (n=0; n < 13; n++) {

t = n*2.*pi/12;
c = t; /* the initial estimate */
for (iter=0; iter < niter; iter++) { /* Nonlinear solver */
/* Kepler's equation */
f = c - e*sin(c) - t; /* function  */
fp = 1. - e*cos(c); /* derivative */
if (fabs(f) < tol && fabs(f) < tol*fabs(fp)) break;
c -= f/fp; I* Newton’'s iteration */

if (iter >= niter) {
fprintf(stderr,
"Newton’s method failed to converge after %d iterations\n",
iter);
return 1;

/* compute coordinates */

a*(cos(c) - e);

= a*sqrt(1-e*e)*sin(c);

/* output table */

printf("%d t=%f psi=%f x=%f y=%f\n", n, t, c, x, y);

< x
Il

return O;
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