
Math 128A Spring 2002 Handout # 26
Sergey Fomel April 30, 2002

Answers to Homework 10: Numerical Solution of ODE:
One-Step Methods

1. (a) Which of the following functions satisfy the Lipschitz condition ony? For those that do,
find the Lipschitz constant.

i. f (x, y) =
√

x2 + y2 for x ∈ [−1,1]

ii. f (x, y) = |y|

iii. f (x, y) =
√

|y|

iv. f (x, y) = |y|/x for x ∈ [−1,1]

Answer:

i. f (x, y) =
√

x2 + y2 for x ∈ [−1,1] satisfies the Lipschitz condition.
It is proved by the following chain of equalities and inequalities:

| f (x, y1)− f (x, y2)| =

∣∣∣∣√x2 + y2
1 −

√
x2 + y2

2

∣∣∣∣ =
|y2

1 − y2
2|√

x2 + y2
1 +

√
x2 + y2

2

=
|y1 + y2|√

x2 + y2
1 +

√
x2 + y2

2

|y1 − y2|

≤
|y1|+ |y2|√

x2 + y2
1 +

√
x2 + y2

2

|y1 − y2| ≤ |y1 − y2| .

The Lipschitz constant is 1.

ii. f (x, y) = |y| satisfies the Lipschitz condition.
We have

f (x, y1)− f (x, y2) = |y1|− |y2| .

From the equality
y1 = y2 + y1 − y2 ,

it follows that
|y1| ≤ |y2|+ |y1 − y2|

and
|y1|− |y2| ≤ |y1 − y2| .

From the equality
y2 = y1 + y2 − y1 ,

it follows that
|y2| ≤ |y1|+ |y1 − y2|

and
−|y1 − y2| ≤ |y1|− |y2| .

1

Putting it together,
−|y1 − y2| ≤ |y1|− |y2| ≤ |y1 − y2|

or
||y1|− |y2|| ≤ |y1 − y2| .

This proves the Lipschitz condition. The Lipschitz constant is 1.

iii. f (x, y) =
√

|y| does not satisfy the Lipschitz condition.
It is sufficient to consider a particular casey2 = 0. Then

f (x, y1)− f (x, y2) =
√

|y1|

and
| f (x, y1)− f (x, y2)|

|y1 − y2|
=

1
√

|y1|

The right-hand side is unbounded fory1 approaching zero, which shows that the
Lipschitz condition cannot be satisfied.

iv. f (x, y) = |y|/x for x ∈ [−1,1] does not satisfy the Lipschitz condition.
Again let us consider a particular casey2 = 0. Then

| f (x, y1)− f (x, y2)|

|y1 − y2|
=

1

|x|

The right-hand side is unbounded forx = 0, which shows that the Lipschitz condition
cannot be satisfied.

(b) Prove that the functionf (x, y) = −
√

|1− y2| does not satisfy the Lipschitz condition and
find two different solutions of the initial-value problem{

y′(x) = −
√

|1− y2(x)|
y(0) = 1

(1)

on the intervalx ∈ [0,π].

Answer: To disprove the Lipschitz condition, let us consider the special casey2 = 1. Then

f (x, y1)− f (x, y2) = −

√
|1− y2

1|

and

| f (x, y1)− f (x, y2)|

|y1 − y2|
=

√
|1− y2

1|

|1− y1|
=

√
|1+ y1|

|1− y1|

The right-hand side is unbounded fory1 approaching 1, which shows that the Lipschitz condi-
tion cannot be satisfied.

Two different solutions of the initial-value problem are, for example,

y(x) = cosx

and
y(x) = 1.

2

2. Consider the initial-value problem
y′′(x) = y(x)
y(0) = y0

y′(0) = y1

(2)

Write it as a system of two first-order differential equations with the appropriate initial condi-
tions. Prove that Euler’s method applied to this system can be unstable for a large step size.

Hint: Take the special casey1 = −y0.

Answer: Let us denotey′(x) by p(x). Then the initial-value problem takes the form of the
system {

y′(x) = p(x)
p′(x) = y(x)

with the initial conditions {
y(0) = y0

p(0) = y1

With application to this system, Euler’s method is{
yk+1 = yk +h pk

pk+1 = pk +h yk

or, in the matrix form, [
yk+1

pk+1

]
=

[
1 h
h 1

] [
yk

pk

]
In the special casey1 = −y0, the first step of Euler’s method yields[

y1

p1

]
=

[
1 h
h 1

] [
y0

−y0

]
=

[
y0 −h y0

h y0 − y0

]
= (1−h)

[
y0

y1

]
Similarly, the next step is [

y2

p2

]
= (1−h)2

[
y0

y1

]
and, afterk steps, we will have [

yk

pk

]
= (1−h)k

[
y0

y1

]
The exact solution of the initial-value problem withy1 = −y0 is[

y(xk)
p(xk)

]
= e−xk

[
y0

−y0

]
= e−h k

[
y0

y1

]
While this solution is decaying at largexk, Euler’s solution will be unstable (increase in magni-
tude) if the step sizeh > 2, and|1−h| > 1. The stability region of Euler’s method ish ≤ 2.

3

3. Consider the initial-value problem{
y′(x) = λ y(x)
y(0) = y0

(3)

(a) Prove that the Taylor series method for this problem takes the form

y(xk+1) ≈ yk+1 =

[
1+λh+

(λh)2

2
+·· ·+

(λh)n

n!

]
yk , (4)

whereh = xk+1 − xk, andn is the order of the method.

(b) Prove that every second-order Runge-Kutta method for this problem is equivalent to the
second-order Taylor method.

(c) Prove that the second-order Taylor method can be unstable for large negativeλ and find
the stability region for the step sizeh.

Answer:

(a) Differentiating the equation directly, we obtain

y′′(x) = λ y′(x) = λ2 y(x) ,

y′′′(x) = λ y′′(x) = λ3 y(x) ,

and, by induction,
y(k)(x) = λk y(x) .

The Taylor method of ordern is

yk+1 = yk +h y′

k(xk)+
h2

2
y′′

k (xk)+·· ·+
hn

n!
y(n)

k (xk)

= yk +λh yk +
λ2h2

2
yk +·· ·+

λn hn

n!
yk =

[
1+λh+

(λh)2

2
+·· ·+

(λh)n

n!

]
yk .

(b) We proved in class that the general form of the second-order Runge-Kutta method is

yk+1 = yk + (1− B)h f (xk, yk)+ B h f

(
xk +

h

2B
, yk +

h

2B
f (xk, yk)

)
,

where the constantB determines the particular method. Forf (x, y) = λ, y, the method
simplifies as follows:

yk+1 = yk + (1− B)hλ yk + B hλ

(
yk +

λh

2B
yk

)
= yk +λh yk +

(λh)2

2
yk =

[
1+λh+

(λh)2

2

]
yk .

The last expression is equivalent to the previously found expression for the second-order
Taylor method.

4

(c) The exact solution of the initial-value problem is

y(xk) = y0eλxk = y0eλh k .

It will decay forλh < 0. The numerical second-order solution is

y(xk) ≈ yk =

[
1+λh+

(λh)2

2

]k

y0 .

The numerical solution will be unstable (increase in magnitude at each step) if

1+λh+
(λh)2

2
> 1

or

1+λh+
(λh)2

2
< −1 .

The second condition is never satisfied. The first condition is satisfied if 0> λh > −2.
Therefore, the stability condition for negativeλ is

h ≤ −
2

λ

4. (Programming) The exact solution of the initial-value problem{
y′(x) = f (x, y) = y2(x)e−x

y(0) = 1
(5)

is
y(x) = ex . (6)

Solve the problem numerically on the intervalx ∈ [0,1] using

(a) Euler’s method

yk+1 = yk +h f (xk, yk) (7)

(b) Second-order Taylor method

yk+1 = yk +h f (xk, yk)+
h2

2

[
∂ f

∂x
+

∂ f

∂y
f (xk, yk)

]
(8)

(c) Midpoint method

yk+1 = yk +h f

[
xk +

h

2
, yk +

h

2
f (xk, yk)

]
(9)

Take the step sizeh = 0.1 and output the error at all steps of the computation.

5

Answer:

x Euler Taylor Midpoint
0.1 0.005171 0.000171 0.000298
0.2 0.011917 0.000397 0.000693
0.3 0.020605 0.000694 0.001208
0.4 0.031675 0.001077 0.001876
0.5 0.045656 0.001569 0.002732
0.6 0.063187 0.002195 0.003823
0.7 0.085027 0.002989 0.005205
0.8 0.112086 0.003991 0.006947
0.9 0.145447 0.005248 0.009134
1.0 0.186395 0.006822 0.011869

Solution:

C program:

#include <stdio.h> /* for output */

#include <math.h> /* for math functions */

/* example function */

double func(double x, double y)

{

double f;

f = y*y*exp(-x);

return f;

}

/* main program */

int main (void)

{

double x, euler, taylor, midpoint, exact;

double h=0.1;

int k, n=10;

euler=taylor=midpoint=1.;

for (k=0; k < n; k++) {

x = k*h;

exact = exp(x+h);

euler += h*func(x,euler);

taylor += h*func(x,taylor)*(1.+0.5*h*(2.*taylor*exp(-x)-1.));

midpoint += h*func(x+0.5*h,midpoint+0.5*h*func(x,midpoint));

printf("%f \t %f \t %f \t %f\n",x+h,

exact-euler,exact-taylor,exact-midpoint);

}

return 0;

}

6

5. (Programming) In 1926, Volterra developed a mathematical model for predator-prey systems.
If R is the population density of prey (rabbits), andF is the population density of predators
(foxes), then Volterra’s model for the population growth is the system of ordinary differential
equations

R′(t) = a R(t)−b R(t) F(t) ; (10)

F ′(t) = d R(t) F(t)−c F(t) , (11)

wheret is time,a is the natural growth rate of rabbits,c is the natural death rate of foxes,b is
the death rate of rabbits per one unit of the fox population, andd is the growth rate of foxes per
one unit of the rabbit population.

Adopt the midpoint method for the solution of this system. Takea = 0.03,b = 0.01, c=0.01,
andd = 0.01, the intervalt ∈ [0,500], the step sizeh = 1 and the initial values

(a)

R(0) = 1.0 ;

F(0) = 2.0

(b)

R(0) = 1.0 ;

F(0) = 4.0

Plot the solution: functionsR(t) andF(t).

Answer:

(a) 0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Rabbits
Foxes

7

(b) 0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Rabbits
Foxes

Solution:

C program:

#include <stdio.h> /* for output */

/* Function: volterra

Computes the right-hand side of Volterra’s equations

rf[2] - rabbits and foxes

f[2] = the right-hand side

*/

void volterra (double t, const double* rf, double* f)

{

static const double a=0.03, b=0.01, c=0.01, d=0.01;

f[0] = a*rf[0] - b*rf[0]*rf[1];

f[1] = d*rf[0]*rf[1] - c*rf[1];

}

/* Function: midpoint

Solves a system of ODEs by the midpoint method

n - number of equations in the system

nstep - number of steps

h - step size

t - starting value of the variable

y[n] - function values

f1[n], f2[n] - storage

slope(t,y,f) - function pointer for the right-hand side

*/

void midpoint (int n, int nstep, double h, double t, double* y,

double* f1, double* f2,

8

void (*slope)(double t, const double* y, double* f))

{

int k, step=0;

/* print initial conditions */

printf("%f ",t);

for (k=0; k < n; k++) {

printf("%f ",y[k]);

}

printf("\n");

for (step=0; step < nstep; step++, t+= h) {

slope(t,y,f1);

for (k=0; k < n; k++) {

f1[k] = y[k] + 0.5*h*f1[k]; /* predictor */

}

slope(t+0.5*h,f1,f2);

printf("%f ",t+h);

for (k=0; k < n; k++) {

y[k] += h*f2[k]; /* corrector */

printf("%f ",y[k]);

}

printf("\n");

}

}

/* main program */

int main (void) {

int nstep=500;

double h=1.;

double y1[]={1.,2.}, y2[]={1.,4.};

double f1[2], f2[2];

midpoint(2, nstep, h, 0., y1, f1, f2, volterra);

midpoint(2, nstep, h, 0., y2, f1, f2, volterra);

return 0;

}

9

