Math 128A Spring 2002 Handout # 26
Sergey Fomel April 30, 2002

Answers to Homework 10: Numerical Solution of ODE:
One-Step Methods

1. (a) Which of the following functions satisfy the Lipschitz conditionysh For those that do,
find the Lipschitz constant.

i f(x,y)=+vx2+y2forxe[-1,1]
i f(x,y)=1yl

i. f(x,y) =1yl

iv. f(x,y)=|y|/xforxe[-1,1]

Answer:

i. f(x,y)=+/x2+y2forx € [—1,1] satisfies the Lipschitz condition.
It is proved by the following chain of equalities and inequalities:

Vi — Y3l
\/x2+yf+\/x2+y§
ly1+ Yal

= ly1— Y2l
\/x2+yf+\/x2+y§
ly1l + 1Yol

\/x2+yf+\/x2+y§

100y = 10yl = |4yt ey

Y1 — VYol < ly1— Yol .

The Lipschitz constant is 1.

ii. f(x,y)=y| satisfies the Lipschitz condition.
We have

fx,y1) = F(X,¥2) = Iyal = Iyal -
From the equality
Yi=Y2+Y1—Y2,
it follows that
Y1l < [yl + y1 — ¥
and
Iyl — Y2l < 1y1— Yol -
From the equality
Y2=Y1+Y2— VY1,
it follows that
1Yol < Y1l +1y1— Y|
and
—lyi— Yol < Iyal = |2l -

Putting it together,
—ly1— Yol < Iyal = |y2l < Iy1— Vol
or
Nyl —1yall < 1y1—Y2l .
This proves the Lipschitz condition. The Lipschitz constant is 1.

iii. f(x,y) = 4/]y| does not satisfy the Lipschitz condition.
It is sufficient to consider a particular cage= 0. Then

f(x,y1) — f(x,y2) = /Iyl

and Foy— ooyl 1

Y1 — Yol Il
The right-hand side is unbounded fgr approaching zero, which shows that the
Lipschitz condition cannot be satisfied.

iv. f(x,y)=1y|/xfor x € [—1,1] does not satisfy the Lipschitz condition.
Again let us consider a particular cage= 0. Then

| (X, y1) — F(X,y2)l _ 1
ly1— Y2l [X|

The right-hand side is unbounded fog= 0, which shows that the Lipschitz condition
cannot be satisfied.

(b) Prove that the functiori(x,y) = —+/|1— y?| does not satisfy the Lipschitz condition and
find two different solutions of the initial-value problem

y/(X) = —V|1—y2(X)| (1)
y0 =1

on the intervak € [0,].
Answer: To disprove the Lipschitz condition, let us consider the specialygasé.. Then

f(x,y1)— f(X,¥2) = —/|11—y2|
Fooy)— oyl _ VIT-YE flatyl
[y1— Y2 11—yl |1— i

The right-hand side is unbounded firapproaching 1, which shows that the Lipschitz condi-
tion cannot be satisfied.

and

Two different solutions of the initial-value problem are, for example,
y(X) = cosx

and
y(x)=1.

2. Consider the initial-value problem

Y'(x) = y(x)
y0) = yo (2)
y©0) = v

Write it as a system of two first-order differential equations with the appropriate initial condi-
tions. Prove that Euler's method applied to this system can be unstable for a large step size.

Hint: Take the special casg = —Yo.

Answer: Let us denotg’(x) by p(x). Then the initial-value problem takes the form of the
system

{ y(x) = p(x)

pPx) = y(X
with the initial conditions

{ y0) = Yo

p0) = v

With application to this system, Euler's method is

{Yk+1 = Y+hp
Pkrr = Pk+hyk

RNy

In the special casg; = — Vo, the first step of Euler's method yields

yi | [1 h] Yo |_ | Yo=hYo | _, Yo
|:p1]_|:h 1_[—YO]_[hYO—YO]_(1 h)[h}

Similarly, the next step is

or, in the matrix form,

V2 _ (1_ h)Z Yo
P2 Y1 |

and, aftek steps, we will have

Yk — (1_ h)k Yo
Pk Y1 |

The exact solution of the initial-value problem wigh= —yp is

[Y(Xk)]:e—xk [Yo i|:e—hk|: Yo]

P(x«) —Yo Y1

While this solution is decaying at larg®, Euler’s solution will be unstable (increase in magni-
tude) if the step sizb > 2, and|1— h| > 1. The stability region of Euler’s methodls< 2.

3. Consider the initial-value problem

y(X) = ay(x)
3
{ YO = Yo)
(a) Prove that the Taylor series method for this problem takes the form
A h)? Ah)"
y(xk+1)%yk+1=[1+kh+(2) +-~+(n,)]yk, (4)

whereh = xx11 — Xk, andn is the order of the method.

(b) Prove that every second-order Runge-Kutta method for this problem is equivalent to the
second-order Taylor method.

(c) Prove that the second-order Taylor method can be unstable for large negatidefind
the stability region for the step site
Answer:

(a) Differentiating the equation directly, we obtain

y'(x) = AY(X)=22y(x),
y'(x) = Ay'(x)=23y(x),

and, by induction,
yH(x) =25 y(x) .
The Taylor method of order is
h? %
Ykt1 = Ykth %((Xk)‘F Vi (%) + - + — Vi (%)
x2h2 A"h”
= WAV = Yot

2 T

2 n
yk=[1+xh+(“') *h) }yk.

(b) We proved in class that the general form of the second-order Runge-Kutta method is

h h
Ykr1 = Yk +(1—=B)h f(Xc,yx) +Bh f(xk+ ,yk+— f (X, yk))

where the constarB determines the particular method. Fbfx,y) = A,y, the method
simplifies as follows:

Ah
Y41 = Yk+(@—=B)hiyc+Bha (W"‘Eyk)
(»h)?
2

Yk +Ah v+

2
Yk = |:1+)»h+(2) i| Yk -

The last expression is equivalent to the previously found expression for the second-order
Taylor method.

(c) The exact solution of the initial-value problem is
y(4) = Yo& X = yoe "k,

It will decay for A h < 0. The numerical second-order solution is

Ah)21¢
Y(Xk)’%YKI[l-i-)nh-l-(2)] Yo -

The numerical solution will be unstable (increase in magnitude at each step) if

(Ah)?
2

1+1h+ >1

or

1+Ah+ <-1.

(rh)?
2

The second condition is never satisfied. The first condition is satisfied-if.® > —2.

Therefore, the stability condition for negatiyes

2

h<——
A

4. (Programming) The exact solution of the initial-value problem

{y/(X) = f(xy)=y*(x)e*
y0 =1

y(x)=¢€".
Solve the problem numerically on the interva& [0, 1] using

(a) Euler's method

Yiers = Y+ h (X, Vi)
(b) Second-order Taylor method

h2 [of of
=yw+hf 4+ ——+—f
Yk+1 = Yk (XK Yk) 5 [ax 3y (Xk,yk)]

(c) Midpoint method

h h
Yer1=Yc+h f |:Xk+§,)’k+§ f(Xk,YK)j|

Take the step sizle = 0.1 and output the error at all steps of the computation.

(5)

(6)

(7)

(8)

(9)

Answer:

X

Euler

Taylor

Midpoint

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0.005171
0.011917
0.020605
0.031675
0.045656
0.063187
0.085027
0.112086
0.145447
0.186395

0.000171
0.000397
0.000694
0.001077
0.001569
0.002195
0.002989
0.003991
0.005248
0.006822

0.000298
0.000693
0.001208
0.001876
0.002732
0.003823
0.005205
0.006947
0.009134
0.011869

Solution:

C program:

#include <stdio.h> /* for output */
#include <math.h> /* for math functions */

/* example function */
double func(double x, double y)

{
double f;
f = y*y*exp(-x);
return f;

}

/* main program */
int main (void)

{
double x, euler, taylor, midpoint, exact;
double h=0.1;
int k, n=10;
euler=taylor=midpoint=1.;
for (k=0; k < n; k++) {
x = k*h;
exact = exp(x+h);
euler += h*func(x,euler);
taylor += h*func(x,taylor)*(1.+0.5*h*(2.*taylor*exp(-x)-1.));
midpoint += h*func(x+0.5*h,midpoint+0.5*h*func(x,midpoint));
printf("%f \t %f \t %f \t %f\n",x+h,
exact-euler,exact-taylor,exact-midpoint);
}
return O;
}

5. (Programming) In 1926, \Volterra developed a mathematical model for predator-prey systems.
If R is the population density of prey (rabbits), aRdis the population density of predators
(foxes), then Volterra’s model for the population growth is the system of ordinary differential
equations

R(t) =
Ft) =

aR(t)—bR)F(t);
d R(t) F(t) — c F(t),

(10)
(11)
wheret is time, a is the natural growth rate of rabbitsjs the natural death rate of foxdsjs

the death rate of rabbits per one unit of the fox population,caisdhe growth rate of foxes per
one unit of the rabbit population.

Adopt the midpoint method for the solution of this system. Take 0.03,b = 0.01, c=0.01,
andd = 0.01, the interval € [0,500], the step sizk = 1 and the initial values

(@)

R(O) = 1.0;

F(0) 2.0
(b)

R(O) = 1.0;

FO) = 4.0

Plot the solution: function&(t) and F(t).

Answer:

4.5 T T T T

35

25

0.5 -

T

T

— — Rabbits
— Foxes

@ o 50 100 150 200

250

300

350

400

450

500

4.5

— - Rabbits
—— Foxes

15f _ N

0.5

O 1 1 1 1 1 1 1

(b) o 50 100 150 200 250 300 350

Solution:
C program:

#include <stdio.h> /* for output */

/* Function: volterra
Computes the right-hand side of Volterra’s equations
rf[2] - rabbits and foxes
f[2] = the right-hand side

*/

void volterra (double t, const double* rf, double* f)

{
static const double a=0.03, b=0.01, ¢=0.01, d=0.01,
f0] = a*rf[0] - b*rfl0]*rf[1];
fl1] = d*rf[0]*rf[1] - c*rf[1];

}

/* Function: midpoint

Solves a system of ODEs by the midpoint method

n - number of equations in the system
nstep - number of steps

h - step size

t - starting value of the variable

y[n] - function values

fi[n], f2[n] - storage
slope(t,y,f) - function pointer for the right-hand side
*/
void midpoint (int n, int nstep, double h, double t, double* vy,
double* f1, double* f2,

400

450

500

void (*slope)(double t, const double* y, double* f))
int k, step=0;

/* print initial conditions */

printf("%f ".t);

for (k=0; k < n; k++) {
printf("%f ", y[K]);

}

printf("\n");

for (step=0; step < nstep; step++, t+= h) {
slope(t,y,f1);

for (k=0; k < n; k++) {
filk] = y[k] + 0.5*h*f1[k]; /* predictor */

slope(t+0.5*h,f1,f2);

printf("%f ",t+h);

for (k=0; k < n; k++) {
yIk] += h*f2[k]; [* corrector */
printf("%f "y[k]);

}

printf("\n");

/* main program */
int main (void) {
int nstep=500;
double h=1;
double y1[]={1.,2.}, y2[|={1.,4.};
double f1[2], f2[2];

midpoint(2, nstep, h, 0., y1, f1, f2, volterra);
midpoint(2, nstep, h, 0., y2, fi1, 2, volterra);

return O;

