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Velocity analysis by prestack depth migration:
linear theory

John T. Etgen

ABSTRACT

Imaging of seismic reflection data is accomplished by prestack depth mi-
gration of individual shot records followed by stacking the results at common
surface locations. If the velocity model used for shot record migration does not
correctly model the traveltimes of reflection events, the images of migrated shot
profiles at a constant surface location (CSL) will be distorted from one another.
This distortion can be used to estimate the error in the velocity model. The
distortion among the images of the shot profiles can be removed with a residual
moveout correction. In constant velocity medium the change in depth of images
in a CSL gather due to a change in the velocity model can be found by applying
a residual moveout correction in depth. The moveout is a function of the ratio
of the imaging velocities, the original depth of the image, and the source and
receiver locations. For perturbations to a general interval velocity model, the
change in migrated depth of the migrated events in a CSL gather can be calcu-
lated through ray tracing. Applying Fermat’s principle linearizes the relation
between changes in the velocity model and changes in traveltime. Linearized
geometrical relations describe how to map the change in traveltime to a change
in migrated depth. Linear least squares theory can then be applied to find
a change to the residual moveout curve that best fits the calculated changes
in migrated depth observed in a CSL gather. The result is a linear operator
that relates changes in interval velocity to changes in the parameters describing
residual moveout using the intermediaries of traveltimes and migrated depth.
The change of the stacking semblance of the images of migrated shot profiles
due to a change of interval velocity can be computed without need to remigrate
the data.
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INTRODUCTION

Normally, seismic data are recorded redundantly; a given point in the subsurface
is illuminated by many different shot profiles. Velocity analysis uses some charac-
teristic of the redundant seismic data to estimate the velocities at which acoustic
or elastic waves propagate through the subsurface. The characteristic usually mea-
sured is the variation in traveltime of waves from the sources to a reflecting point
and back to receivers. If the subsurface reflectors are horizontal and velocity does
not vary laterally, normal moveout (NMO) provides a measure of the root-mean-
square average of the velocity of the rocks above a given reflector. If the velocity
varies laterally, and the geologic structure is complicated (the two often go hand
in hand), then NMO does not adequately account for the traveltimes from source
to reflecting point to receiver. More sophisticated imaging and velocity analysis
methods are needed. If reflectors are horizontal, but velocity varies laterally, the
variations in NMO velocity can be used to estimate the laterally varying interval
velocities (Toldi, 1985). If structure is complex, but lateral velocity variation not
severe, variations in prestack time migration velocities can be used to estimate lat-
erally varying interval velocities (Fowler, 1985). When lateral velocity variation
is severe, images obtained by prestack time migration or NMO are mispositioned.
Prestack depth migration must be used to obtain a focused image of the subsurface
structure. Prestack depth migration uses interval velocities directly, there are no
intermediaries such as NMO velocity or time migration velocity. This is unfortu-
nate, because NMO or prestack time migration velocities can often be determined
reliably even in noisy data.

Al Yahya, (1987, 1985) introduced a simple measure of the accuracy of an inter-
val velocity model used for prestack depth migration. If the interval velocity model
used for prestack depth migration predicts the traveltimes of reflection events accu-
rately, the migrated images of different shot profiles at a constant surface location
(CSL) will be nearly the same. Specifically, the migrated depth of a reflector will be
the same on all migrated profiles. A gather of the images of different migrated shot
profiles at a constant surface location is a constant surface location gather. If the
estimate of the interval velocity model is in error, the images of different migrated
shot profiles in a CSL gather will be distorted from each other. Commonly, this
distortion is a residual curvature in depth of the migrated images of the images
of reflectors in a CSL gather. Curvature of migrated events at a constant surface
location can be related to errors in the interval velocity model, and corrected by
a residual moveout applied to the images of the different shots. Al Yahya’s (1987)
residual moveout correction is only exact for horizontal reflectors and constant ve-
locity, but can be extended to dipping beds, general velocity, and built into an
optimization framework much like Toldi (1985) did with stacking velocities and
Fowler (1985) did with prestack time migration velocities.

Stack semblance can be used to measure the distortion or lack of distortion
present among the images of several migrated shot profiles in a CSL gather. When
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stack semblance or power is maximized, the images are the least distorted from each
other.

In SEP-51 (Etgen, 1987), I proposed a velocity analysis method that uses
prestack depth migration to estimate interval velocities by optimization. The
method works as follows: First, image the seismic data using prestack depth migra-
tion with an estimate of the interval velocity model. Second, find a change to the
current model that improves the objective function (a gradient direction). Third,
find a new model that is a combination of the current model and the search di-
rection that extremizes the objective function. This process is iterated until the
objective function is globally optimized. In SEP-51, I proposed that the interval
velocity model be constructed from a sparse set of basis functions and that the
gradient of the second step be computed directly by finite differences. As long as
the number of basis functions is small, this can be done. This may be practical if
the velocity varies only smoothly laterally. However, if the lateral velocity gradient
is small, then it is probably not worthwhile to use prestack depth migration, as it is
too costly and other less expensive methods will provide satisfactory imaging and
velocity analysis. My present feeling is that the number of basis functions needed
to parametrize a velocity model with strong lateral velocity variation will drive the
cost of the finite-difference gradient approach too high to be useful.

The purpose of this paper is to derive a linear theory that relates changes in the
interval velocity model used for prestack depth migration to changes in the prestack
depth migrated image; and thus, to changes in the objective function that measures
the quality of the migrated image. I will describe how to incorporate this linear
theory into a velocity analysis method based upon prestack depth migration. The
linear theory will compute the gradient of the objective function more rapidly than
computing the gradient by finite differences when the number of velocity parameters
is large. Moreover, the linear operator allows a more detailed analysis of the changes
in migrated images due to changes in interval velocity than can be obtained by
applying finite-difference formulae.

ERRORS IN MIGRATED IMAGES DUE TO Av

Prestack depth migration requires specifying an interval velocity model. De-
pending on the characteristics of this velocity model and the specifics of the algo-
rithm used, changes in the prestack migrated image will be related to changes of
the velocity model in a complicated way. Rather than compute changes in images
due to changes in the interval velocity model by remigrating the data, it is possible
to make simplifying restrictions to the problem.

From waves to traveltimes

Normally the highest wavenumber components of an interval velocity model are
excluded when migrating because their inclusion will generate spurious events in the
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migrated image as the downward continued (or reverse time extrapolated) waves
scatter from the sharp contrasts in the model (Stolt and Benson, 1986), (Etgen,
1987). Omitting the high wavenumber content of the interval velocity model often
leads to little or no degradation of the imaging capability of prestack depth migra-
tion. Indeed, it may reduce artifacts. Furthermore, as long as the wavelength of
the waves propagated by prestack depth migration is small compared to the scale of
variations of the velocity model, wave propagation can be approximated by delay-
ing the source waveform by ray-theoretic traveltime and scaling with ray-theoretic
amplitude. Relating changes in interval velocity to changes in prestack migrated
images becomes much simpler. Changing the interval velocity model repositions
and scales migrated events. Wave effects, such as velocity dispersion due to het-
erogeneity and scattering are excluded. When the scale of the velocity variations
is the same size as the seismic wavelength, the ray-theory approximation breaks
down and wave equation based techniques should be used to estimate changes in
the wave field due to changes in velocity (Woodward, 1987, 1988). I will assume
the ray-theory approximation is valid, so the task of relating changes in velocity to
changes in migrated images becomes a simpler, tomography-like problem.

Residual moveout (RMO) in migrated depth

Before introducing the theory that relates general changes in interval velocity
to changes in migrated images, it is worthwhile to examine changes in migrated
images in a simple situation. In a constant velocity medium, the image of a dipping
reflector segment in a migrated shot profile is the tangent line to an ellipse whose
foci are the source and receiver as shown in Figure 1. The straight lines between
source, reflecting point and receiver are the rays along which the energy released at
the source, reflected from the image point, and recorded at the receiver propagates.
The equation of the ellipse is given by equation 1, where v is the imaging velocity,
t is the traveltime of the reflected event from source to reflector to receiver, 2z, and
z, are the coordinates of the reflecting point, and & one-half the distance between
source and receiver. The origin of coordinates is taken to be at the surface in z and
half-way between the source and receiver in = for notational convenience.

vt = \/22 + (2, — h)? + /22 + (2, + h)? (1)

Changing the imaging velocity from v to v,, will move the image point in =
and z. The traveltime ¢ of the reflected event is fixed since we are considering the
movement of the image of a specific part of the data. Figure 2 depicts the movement
of the dipping reflector segment after a change in velocity. We can follow one fixed
reflecting point as it moves in both z and z, or fix our observation horizontally at
z, and note the change in depth of the image. If we follow the reflecting point, a
residual correction has to move the event in both z and z. If the horizontal location
at which the image is examined is held constant, the movement is only a change in
the depth as shown in Figure 3. The change in depth is a function of the source to

SEP-57



Etgen 31 Velocity analysts

FIG. 1. Migrated image of a dipping reflector in a constant velocity medium. The
image is tangent to the ellipse shown. The ellipse has foci at the source and receiver.

receiver offset, the original depth of the reflector segment and the change in velocity.
The new image observed at the fixed horizontal distance z, imaged with velocity
v,,, will be tangent at z, to the ellipse with equation

v,,t=\/z,2,+(z,—h)2+ 22+ (z, +h)?. (2)

Equations 1 and 2 above can be combined to eliminate dependence on ¢t and solved
for z, in terms of z,, v, v,,, z,, and h.

vZ X v? h2z?
— | Zn2 2 2 v r

(3)

where

X =222 +2(z? + h?) + 2\/z,‘.‘ + 222(h? + z2) + (z2 — h?)? .

The movement of the dipping reflector segment from z, to 2, at fixed z, as a
function of source receiver offset (which is a function of dip) and depth is a residual
moveout (RMO) correction. Al Yahya (1987), derived the same expression (in
slightly different notation), and introduced the parameter +, as the ratio v,/v (see
Al Yahya, 1987 eqns 2.10, 2.11). Rewritting equation 3, it can be seen that the
residual moveout does not explicitly depend on the velocities v or v,, only on their
ratio ~.

1 4h?z?
7Y X

X
Zn = \/fyzz + 4(z2 + h%) + (4)

SEP-57



Etgen 82 Veloesty analysts

FIG. 2. Movement of the migrated image of a dipping reflector when the velocity is
changed (increased). The new image is also tangent to an ellipse with foci at source
and receiver. In this case we followed the movement of a given reflecting point.

When velocity varies vertically or laterally, the movement of the image of a
dipping reflector segment is more complicated; thus, the reflector segment will not
be tangent to an ellipse that has foci at the source and receiver. The equation of
an ellipse is not useful in finding the traveltime from source to reflector to receiver
because the raypaths are not straight. Figure 4 depicts the image of a dipping
reflector segment imaged with a general velocity model. The source location is S,
the receiver position is R, and the image location is z,,z,. If the interval velocity
model v(z,z) used for imaging is changed to cv(z,z) where ¢ is a constant, the
image of dipping reflector segment will move in z and 2 as shown in Figure 5. When
analyzing the change of the image with a change in velocity, I fix the observation
location at z, and observe the change in apparent depth of the event from z, to
2. The change in apparent depth from z, to 2, is a function of the arc length of
the rays, the opening angle of the rays from source to image point to receiver, and
the magnitude of the change in velocity. The greater the arc length, the more error
there will be in the traveltime to the original depth, z,; thus, the further z, will
move from z,. Also, the greater the opening angle of the rays, the further z, will
move from z,. Finally, the greater the change in velocity the further the image will
move,

Rather than solve for the new depth of the reflector at fixed = by searching or
ray tracing, it is useful to make an approximation. The dipping reflector segment
15 tangent to an ellipse that has foci not at source and receiver, but elsewhere on
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FIG. 3. Movement of the migrated image of a dipping reflector when the velocity
is changed. In this case we fix our observation at z, and observe a change in the

migrated depth of the reflector.

the surface. These foci can be found by projecting up to the surface the straight
line “rays” that have the same incidence angles at the reflector as the true rays as
shown in Figure 6. The depth of the reflected event with velocity v(z,z) can be
written as

4
ot h%z? . (5)

2t2
z,=J%——(z3+h2)+

where v, is no longer the velocity of the medium, but some function of overlying
velocities and the geometry of the rays. Think of v, as an effective constant velocity
that describes the traveltime of the rays from the apparent source to reflector to
apparent receiver. The traveltime becomes only a function of the opening angle of
the rays, the constant velocity, and depth. The origin of coordinates has shifted to
half-way between the apparent source and receiver where the straight line “rays”
strike the surface; z, and h refer to new distances defined by the straight “rays”.
Rather than follow the image of a single point on the reflector as is moves in both
z and z, fix the observation at z, and the image moves in migrated depth. Now, a
similar equation could be written for z,, the depth of the dipping reflector segment
at velocity cv(z, z) by substituting 2, and v, in the appropriate places.

242
zn=\[”"7—(z3+h2)+

4
vit? h*z} (6)
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FIG. 4. Migrated image of a dipping reflector using non-constant velocity. The
reflector segment is not tangent to an ellipse that has foci at the source and receiver.

The image of the reflector after migration with cv(z, 2) will also be tangent to an
ellipse with apparent source and receiver where the straight line “rays” strike the
surface as shown in Figure 7. Equation 6 can be combined with equation 5 to
eliminate ¢ and solved for z, in terms of 2,, z,, h, and v = v,/v,. Since we are
only interested in how 2z, changes, we do not need to know v, or v,, only -, the
ratio of v,/v,. So far no approximations have been made, equations 5 and 6 give
the ellipses to which the reflector segments are tangent. The approximation arises
when v = v, /v, is equated to cv(z, 2)/v(z, z) = c. The approximation is exact if the
true rays are straight and approximate if they are not. Under this approximation
write:

X 1 4h%z?
zn=\/'yzz+(x3+h2)+;; Xz' , (7)

Where

X =222 + 2(2 + h?) + 2y/24 + 222(h? + 22) + (22 — h?)? .
Figure 8 shows the movement in depth of the image of the reflector at a fixed z,.

The approximate change in migrated depth estimated by equation 7 may be
biased if the true rays are either much shorter or much longer than the straight
“rays” used in equation 7. In a constant velocity medium, v can be related to
the error in velocity. When velocity varies laterally, or even strongly vertically, it is
more appropriate to use v as a residual curvature parameter, and use a tomographic
approach to relate the residual curvature to changes in the velocity model. The error
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FIG. 5. Movement of the image of a dipping reflector migrated with non-constant
velocity. The velocity is changed from v(z, z) to cv(z, z). The image moves normal
to the reflector.

in the approximation will not be as important when + is used as a residual curvature
parameter, and not as a direct estimate of the change in velocity.

Equation 7 is a residual moveout equation; the RMO is applied to migrated
shot profiles that are sorted into constant surface location gathers. The complicated
nature of changes in migrated images at a reflection point due to changes in interval
velocity models is replaced by residual moveout that is function of one parameter,
depth, and the geometry of the rays at the reflection point. The ray geometry
is a function of dip, so applying equation 7 requires estimating the local dip at
the reflecting point. Dip estimates could be obtained from the staked image of all
migrated profiles. Velocity analysis, only requires the stack semblance of the image
at a given depth and a given CSL, so it will suffice to apply the RMO correction
and calculate the semblance for a number of dip ranges and weight the result by
the normalized dip spectrum at each point. RMO corrections can be applied to the
images after migrating the data with the interval velocity model v(z, z) for a range
of v values. The value of the stack semblance at each point for each dip and each ~
is stored. From this data space, the value of semblance at any point for a velocity
model v(z, z) + Av(z, 2) near v(z, z) can be obtained using the theory presented in
the next section.
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FIG. 6. The migrated image of a dipping reflector is not tangent to an ellipse that
has foci at the source anf receiver, ﬁut it is tangent to an ellipse with foci at a
virtual source and receiver. The virtual source a,nf receiver are found by projecting
to the surface the straight line “rays” from the image of the reflector that have the
same incidence angles as the true rays.

LINEAR THEORY

This section of the paper describes a linear relation between changes in the
interval velocity model used for prestack depth migration and changes in the residual
moveout governed by equation 7. A local perturbation to the interval velocity model
will produce a change in travel time of any ray passing through the perturbation.
Changes in the traveltime from source to reflector to receiver result in changes in the
position of the image of the reflector in a migrated shot profile. If our observation
is fixed at z,, the movement of the image is a movement in depth. The changes
in depth of the images of different shot profiles at a constant surface location lead
to a change in the RMO curve. The change in the shape of the RMO curve is
determined by a least squares fit of the changes of migrated depth, to changes in
~4 and 2,. A new value of the stack semblance can be obtained after correcting the
images for the change in RMO given by the least squares fit. If the semblance is
precomputed for a range of +’s then the appropriate value can be extracted from
the precomputed data space.

At due to Aw(z, 2)

If v(z,2) is changed by Av(z,z) , the traveltime of any ray passing through
Av(z,z) will change. Write the traveltime along a ray from any subsurface point
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FIG. 7. Movement of the migrated ima%e of a dipping reflector. The new image is
also tangent to an effective constant velocity ellipse. The movement is normal to

the bed.

to a surface point (a source or receiver) as
tray = / w(z, 2)dS (8)
ray

Where w(z,2) = 1/v(z, 2) and is called the interval slowness. Although we com-
monly speak of velocity analysis, it is more convenient to do computations with the
slowness. The raypath depends on w(z, 2), so calculating the change in travel time
due to an arbitrary change of w(z, z) requires computing the change in traveltime
due to the change in slowness and the change in traveltime due to the change in
the raypath. For small changes in the interval slowness model, Aw(z, z), we can
apply Fermat’s principle which states that traveltime is stationary with respect to
raypath. The change in traveltime due to a change in interval slowness can be
calculated by considering the change of w(z, z) along the original raypath since the
change in traveltime due to changes in the raypath is zero to first order.

At = /m” Aw(z,z)dS . (9)
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FIG. 8. Change in migrated depth at a fixed z, due to a change in the imaging
velocity. The change in depth is approximated by the movement of the tangent

ellipses.

Az, due to At

For a given reflector point and a given dip 8 there is a family of rays (the specular
rays) connecting sources and receivers that obey Snell’s law (angle of incidence =
angle of reflection) at the reflector point as shown in Figure 9. These are the rays
along which most reflected energy travels. A shot profile will only contain energy
from a reflector with dip 8 if there exists a specular ray from the source to the
reflector to a receiver that falls within the geophone spread. If the specular ray
does not reach the surface or falls outside the geophone spread, migrating the shot
profile will not image a reflector with dip 8 at a given point.

A change in traveltime along a specular ray caused by a change in interval
slowness will lead to a change in the location of the image of the reflector. The
reflector will move in the direction normal to the reflector. Although a given point
on the reflector moves normal to the reflector, we observe the shift by holding z
constant and noting the change in depth of the image of reflector. This presumes
that the reflectors are locally continuous in the dip direction and the dip angle does
not vary rapidly along the reflector over a small distance.

For a constant velocity medium, the derivative of the traveltime with respect
to a change perpendicular to a bed of dip 8 can be calculated using the chain rule.
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FIG. 9. Family of specular rays from sources to a given reflecting point to receivers.
The dotted ray from the source to the reflector point does not end up in the receiver

spread; it will not contribute to the image of a reflector with dip 4.

The arc length normal to the bed is s, Az, = sinfAs, Az, = cosfAs, and w is the

slowness of the medium. Write the traveltime as
t = wy/22 + (2, — h)? + w\/[22 + (2, + B)? ,

where z,, 2, are the coordinates of the reflector point and w is the slowness of the
medium. The derivative of traveltime with respect to movement perpendicular to

the bed can be written as:
dt  dt dz, dt El_zl

ds  dz, ds @ dz, ds
Where it d A B
2w I — &+ )sind ; (10)
dzrds  \[22+ (2. —h)? 22+ (z +h)

o )cost .
(@ 7

dt dz, z,

de, ds *
Y e R
The derivative of ¢ with respect to s does not depend on t,z, or z explicitly, but
only on the dip and opening angles of the rays at the bed. Referring to Figure 10,
recognizing the above quantities as functions of the ray angles, equation 10 can be
(11)

rewritten as,
dt . . C
w(costpcosl + sinysind + cosgcosd + singsind) .

ds
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FIG. 10. Geometry of specular rays at a given reflector with dip §. Near the
reflector, the rays are approximately straight, and the change in depth of an image
due to a change in traveltime along the rays only depends on the angles 4, ¥, and

#, and the local slowness w(z,, z,).

The derivative of s, the distance normal to the reflector, with respect to a change in
traveltime along the rays is just the inverse of equation 11. Although the derivation
of the equations used the fact that velocity was constant, the derivative should
be accurate even in non-constant slowness if w is taken to be the slowness at the
reflector, w(z, z), because the derivative only depends on the angles of the rays at
the reflector.

ds 1 1
dt w(z,, 2,) (costpcosd + sinipsind + cosé cos b + singsind) (12)

Equation 12 gives the derivative of the distance s, normal to the reflector with
respect to traveltime along a specular ray from source to reflector to receiver, fol-
lowing the movement of the image in both z and 2. To get the change in migrated
depth, Az,,, at fixed z,, simply project the dipping reflector along the dip direction
to find its new depth at z,. As shown in Figure 10, this is accomplished by multi-
plying ds/dt by secd. Write the derivative of the migrated depth z,,, with respect
to traveltime along the specular ray, evaluated at a fixed surface location z, as

dz,, 1 1 s 3
dt  w(z,z)cos(y — ) +cos(¢—0)sec : (13)

Finally, write the change in migrated depth due to a change in traveltime along the
specular ray from the shot to the reflector point to the receiver as
_dzy, 1 1

Az, = 5 At = w(z,2) 03 (% —0) + 03 (3 —0) sech At . (14)
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FIG. 11. A change in 2,, of a given imaged shot profile, at a given depth and surface
location may require both a change in « and 2, of the residual moveout curve. The
dotted curve is the RMO curve calculated for depth z,, with only a change in «
allowed, Az, was set to zero. To fit the distribution shown, the curve must shift
down, that is z, used to calculate z,, must change.

A~ and Az, due to Az,

The change in migrated depth Az, for different imaged shot profiles computed
in the last two sections can be related to a change in the best fitting RMO curve
generated by equation 7. The best fitting RMO curve will require not only changes
in 4, but also changes in 2, the reference depth as illustrated in Figure 11. It is
more appropriate to rewrite equation 7 and use 2z, as the “depth” parameter for
residual moveout; z, will keep its meaning as the depth of a reflector. RMO and
stacking is used as a n estimate of residual curvature of images and not as a direct
velocity indicator.

X 1 4h%z?
zn=\/12z+(z3+h2)+;5-7x’ , (15)

where

X = 227 + 2(z? + h?) + 2y/2% + 222(h? + 22) + (22 — h?)? .

If either « or 2, is changed, z,, will change. Finding the derivatives of z,, with
respect to the parameters of the best fitting RMO curve linearizes equation 15
about a given value of v and 2,. Immediately following prestack depth migration,
before the slowness model is changed we can linearize about the v and 2, that
produce no residual moveout, ¥ = 1 and 2, = z,. As the slowness model is changed,
the reference values used for linearization will change. A change in z,, due to a
change in v and 2z, can be written as

Az, (16)
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The expressions for the derivatives 9z,,/d~ and 8z,,/9z, can be found in appendix
A.

Rather than finding Az, from A~ and Az,, we need to do the opposite, find
A~ and Az, from the different Az,,; at each imaged shot profile at a given depth,
dip, and constant surface location. If we have used the results of the previous two
sections to relate Aw(z, z) to Az, for each imaged shot profile at a given surface
location, Ay and Az, can be estimated by least squares. To find A~v and Az, the
changes in the residual moveout curve that best explains the distribution of Az,
over all migrated shot profiles, minimize
oz, 02y,

A~y —

2
T~ 0 . 7
o 9z, D7) (17)

E=)> (Azm—

shots

The solution to this least squares problem for Ay and Az,, is the solution to the
normal equations

ns ns ns

> AT D AB; D> AiAzy,
nia=l i=r}3 [ A7 ] = '.:al (18)
S4B S B | 8% " BiAzm,
=1 =1 =1

The sums run from 1 to ns the number of migrated shots in a CSL gather. A;
and B; are 9z,,,/0~ and 92,,./9z, respectively, at a fixed surface location, dip, and
depth. It is important to realize that a change in the parameters describing the
RMO curve is found, and not the value of the parameters themselves. The former
is a linear problem while the latter is non-linear since z,, is not a linear function of
~ and 2,. Equation 19, the solution to equation 18, relates changes in the interval
slowness model to changes in the residual moveout that best fits the changes in
depth caused by the changes in interval slowness.

[a2) = (2] o= (o

The expressions for I, and T',, can be found in appendix B.

Equation 19 can be combined with the operators described in the previous two
sections to write one operator that relates changes in interval slowness to changes in
the parameters that describe the RMO curve. We recognize dt/8w, as a tomography
operator (Fowler, 1986), call it T. 8z,/8t is a geometry factor which depends on
depth, dip and opening angle of rays call it ©. 8v/3z2,, and 3z,/3z,, are really
equation 19. In compact notation,

(a2) = 2] orar 2

Vs 2o, A%, and Az, are functions of z,, z,, and also 6, because the part of Aw(z, 2)
felt by the ray from shot to reflector to receiver depends on the dip ; and the
geometry factors that relate At to Az, depend on 4.
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Gradient of the objective function

Residual moveout corrections for a range of 4 and for all dips in the migrated
and stacked image can be applied to the common surface location gathers after
prestack depth migration. The resulting hyper-cube serves as a data space for
estimating corrections to the interval slowness model. Changes in interval slowness
Aw(z, z) are mapped successively into changes in traveltime, changes in depth and
changes in « and z,. We are interested in finding a better estimate of the interval
slowness model, so the gradient of the objective function with respect to the interval
slowness model is needed. The objective function @ is the total stack semblance of
the migrated (and residual moveout corrected) data.

'7,30 ZZZW(” .'z:,,z, ('7, zoyzrazr,o) (21)
Ty 2y
Where S is the stack semblance at a given depth, surface location, dip, and 7.
W (0, z,, 2.) is the weight of the normalized dip spectrum at z,,2,. Assuming that
the slowness model is known on a discrete grid (or parametrized by basis functions),
the derivative of the objective function with respect to the interval slowness w;(z, 2)
can be found by applying the chain rule.

0Q B_Q dv 9z, Ot oQ 9z, 0z, Ot
ow; 00z, Ot dw; 0z,0z, Ot Ow;

(22)

If we have precomputed values of S for each z,, z,, 8, and v, the derivative of the
objective function with respect to v and 2, can be calculated by finite differences.

’YQ ZZZW x', Z,-, 6'7 [S(’Y"i'&’y,zo,zrazr’o) - S(7)ZO’ Lyy 2y, 0)] (23)

Ty 2y

Vi@ =L W (@ O) 50120+ 820070, 20,0) — S(,201722,0)] (24)

Ty 2y
Substituting the expression for @ in terms of the semblance at each reflector, the
ith component of the gradient of Q@ with respect to the interval slowness model is

3S 9y 0z, ot 38§ 9z, 9z, Ot
Vu@ = EZZW(’) Trs Zr [3'7 3z, Ot dw, 8z, 9z, ot aw,-]

Zy 2r

(25)

OW [0~ is explicitly zero since the dip spectrum is estimated at 4y = 1 and held
constant for all other 4. I also assume that dW/38z, is small, that is that the
dip spectrum does not change rapidly with depth. Recognizing the derivatives in
equation 25 to be the transpose of the linear operator derived in the previous section,

write
VuQ=TT0'rIv,Q +TTe'ITv, Q . (26)
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OPTIMIZATION

Optimizing @, the objective function, will find the interval slowness model that
best explains the residual moveout of the events on all the CSL gathers. Gradient
ascent methods (steepest ascent or conjugate gradient) can be applied to optimize
Q iteratively. The data space for the optimization is prepared as follows: i) perform
prestack depth migration using w(z, ), an estimate of the interval slowness model.
ii) Apply a range of residual moveout corrections to the images of the migrated
shot profiles at each common surface location. iii) Calculate and store the stacking
semblance for each moveout correction at each CSL gather and each depth. This
space serves as the data space for an optimization problem that estimates corrections
to the interval velocity model using RMO. iv) Ray trace the current interval slowness
model and compute the linear operator to relate changes in w(z, z) to changes in
parameters of the residual moveout equation. Once the data space is prepared, the
goal is to find Aw(z, z) that best removes the residual curvature from the images of
the shot profiles in CSL gathers. The algorithm to accomplish this can be described
as follows:

Prestack depth migrate D(s,g,t) = I(z,, 2., )
Estimate W (z,, z,,0)

Apply residual moveout for a range of v and 0 ; I(z,, 2,,8) = R(z,, zr,7,0)
Initialize y(z,,2,,0) = 1; 2,(zr,2,,0) = 2,
Ray trace current model of interval slowness w(z, 2)

Loop on interations
[ Compute V,Q, V,,Q by finite — dif ferences

Compute V,,Q =TT 07 [ITV,Q + 7 v.,Q]
Line search for a that mazimizes Q(w(z,2) + aV,Q)

Update model, ~(z,, z,,0), and z,(z,, 2, 0)
w(z, 2) = w(z,2) + aV,Q
'y(z,,z,,ﬂ) = ’7(23,-,2!,-,0) + I"y erT ava
2,(zy,2,,0) = 2o(zy,2,,0) + T,, ©T aV,Q

| Check for convergence

If the change in the interval slowness model is small, then prestack depth mi-
gration with interval slowness w(z, z) + Aw(z, z) is well approximated by prestack
depth migration followed by appropriate residual moveout. If the interval slowness
model changes a large amount, then prestack depth migration plus RMO is not a
valid approximation to prestack migration with the new velocity model. At present,
I do not know how large the region of validity is for residual moveout after prestack
depth migration. Since the method is designed to find laterally varying interval
velocities, I will anticipate that the interval slowness will need to change more than
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residual moveout will accurately handle. In this case, it is necessary to remigrate
the data. Although the optimization by RMO will not give the same Aw(z, z)
as using prestack depth migration for all computations, the Aw(z,2) estimated
by the algorithm above improve the stack semblance and reduce the distortion of
the images in constant surface location gathers. Rather than abandoning Aw(z, 2)
given by RMO, we can line search using prestack depth migration the direction
w(z,2) + BAw(z, 2) for the best B, where Aw(z, 2) is the result of optimizing the
stack semblance with RMO. Then a new residual moveout space can be initialized
at w(z,z) + fAw(z,z). Another optimization can then be carried out using resid-
ual moveout. The process can be repeated as many times as necessary to find the
optimal prestack depth migrated image of the data. We can describe the complete
velocity analysis method with a sketch of the algorithm.

Set wi(z,2) = initial model; k=1
Loop on outer iterations
Prestack depth migrate with wy(z,2); D(s,g,t) = I(z,,2,,s)

Estimate W (z,, z,,0)

Apply residual moveout for a range of v and 9 ; I(z,, z,,s) = R(z,, 2r,7,0)
Initialize ¥(z,,2,,0) = 1; 2,(z,,2,,0) = 2,

Raytrace current model of interval slowness w(z, 2)

1 =1; wi(z,2) = wi(z,2)
Loop on inner interations
[ Compute V,Q, V., Q by finite — dif ferences

Compute V,Q = TT O7 [ITV,Q + 7 V,,Q)
Line search for o that mazimizes Q(w(z,2) + aV,Q)

Update model, ~(z,, z.,0), and z,(z,, 2, 0)
wi(z, 2) = wi(z,2) + aV,Q
'7(:5” 2y 0) = 'Y(zra Ty, 0) + rq ©T aV,Q
2o(Zry 2r,0) = 25(2r,27,0) + T,, O T aV,Q

Awg = wiyy — Wi

If |Aw(z,2)| > bound, ezit inner loop

| else increment ¢

Line search for B that mazimizes Q(wy + fAwy)
using prestack depth migration

Update wii1(z, 2) = wi(z, 2) + BAw(z, 2)

Check for convergence

increment k

The method presented should be able to remove the residual curvature of mi-
grated events in all CSL gathers of a data set, while estimating a model of the
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interval slowness. The method will be less effective on distortions of the CSL gath-
ers that are not well explained by residual curvature. In this case it might be
worthwhile to forego the RMO correction and try to estimate the depth corrections
directly by shifting the images of different shot profiles independently, much like
residual statics corrections. Doing this increases the effective dimensionality of the
problem however, so it is wise to try the theory presented here, and first remove
any distortions from the data that are well explained by residual curvature.

CONCLUSIONS

Velocity analysis by prestack depth migration requires knowing how the image
changes when the velocity changes. There is no exact theory that describes the
movement of migrated events with a change to a general velocity model. Under the
ray theory approximation, it is possible to derive a linear operator to relate changes
in the interval slowness to changes in the depth of images of migrated shot profiles.
Furthermore, it is possible to relate changes in depth of images to changes in a
best fitting residual moveout curve using linear least squares. A range of residual
moveout can be applied to the data and the resulting stack semblance computed and
stored. The linear operator can be used to find the stack semblance of the migrated
image that would be obtained by prestack depth migration at any velocity model
near the velocity model used for migration by extracting the appropriate value
from the precomputed space of semblances. The linear operator also allows efficient
computation of the gradient of the total stack semblance by back-projection.
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APPENDIX A

The derivatives of z,(7,2,) at fixed z,,z, with respect to 4 and z, for each
migrated shot are used to linearize equation 15 of the text. Restating Equation 15,

write

X 1 4h2z?
m = PR a2 ) + S (4.1)

where

X = 227 4 2(z? + %) + 2y/2% + 222(h? + 22) + (a2 — h2)? .
Differentiating with respect to ~:

02,
ay

1 4h?zl-3 7X 2 4h’2?

G ST, ()

1r , X
=[Py R+

where X has the same meaning as in equation A.1. Also differentiate with respect
to z,.

= —[y*— h —_—T —— — .
0z, 2 [’y 4 (o + A + v X ] [ 4 4'72X2] 0z, (4.3)
where
ax 1

Fyate 4 [zo + [z: + 222 (he + 2?) + (z* — hz)z]‘ [sz + z,(h® + xz)]]

and X is the same as in equation A.1.

APPENDIX B

Write the normal equations that solve for Ay and Az,, the change in the pa-
rameters of the best fitting RMO curve as

; A? Z_‘; A;B; Ar 2_: AiDzp,

r:; ‘—na ) [ AZO ] = ’;al ’ (Bl)
> AB: ) _B; > BiAzp,
i=1 =1 =1

where A; = 8z,,,/0v and B; = 32,,,/9z,.
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The solution to the normal equations is

Ay )
Az, )
ns ns ns
Z: .B‘2 - Z A,'B,' Z A;Azm,.
1 i=1 =1 =1 (B 2)
nsa ns ns ns ns ns * .
D AIY_BI - (3 AB) | -)_AB:i ) B > BiAzn,
i=1 =1 =1 =1 1=1 =1
Writing these expressions in terms of the operators in the text,
1 ns ns ns ns
I"V = e ns ns [Z Bgz Z AiAzm.- - E Ac'Bc' Z BiAzm,-] ) (B-3)
EA? ZB? - (Z A.-B,-)z i=1 i=1 i=1 i=1
i=1  i=1 i=1
rzo = s ns L ns [Z Agz Z B:'Azm; - E Ac'Bg‘ Z A.’AZm'.] . (B.4)
ZA? ZBf _ (Z A;B;)? =1 i=1 i=1 i=1
=1 =1 =1
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