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Change detection

Niki Serakiotou

ABSTRACT

Detection theory first became famous because of its radar application success, but
electrical engineers have since used it in a variety of other problems ranging from
detection of failure in a machine or device, to detection of blood vessels in stereographic
images of the brain, to detection of targets in automatic driving. In geophysical research
it has already been used for parameter estimation. For all its impressive applications
detection theory is established on a few simple ideas from hypothesis testing.

INTRODUCTION

In the middle of the ocean it is the wind and distant passing ships that generate the
noise known as background noise which is Gaussian and almost stationary. In the seas
where the traffic becomes heavier, the so called merchant ship noise is still Gaussian but
less stationary ( its variance changes from time to time). An even worse acoustic nuisance
comes from a species known as snapping shrimp. The sound that a single shrimp makes
(with a part of its body) can be heard several miles away, making the noise created by a
whole group difficult to ignore — it is also highly non-stationary. These noises bother the
submarines that are trying to detect acoustic signals coming from other submarines. To
make matters worse, cracking ice in the Arctic sea causes high intensity impulsive bursts
that are added to the Gaussian background.

At the same time, on land, a geophysicist using the Maximum-Likelihood Deconvolution
method deals with a reflectivity sequence that consists of a low-variance, white, Gaussian
backscatter noise and a train of occasional spikes (whose amplitude follows a Gaussian
distribution while their location is assumed to follow a Bernoulli distribution).

In all of the above examples we have to deal with non-stationary data records — that is
some of our data samples can be represented with one model and some with another. We
may or may not exactly know what models to use for each part of our data record but we
usually need to be able to detect when a change in our data model occurs.

In this paper I review some well known problems and detection techniques (all of whom
can be considered as Electrical Engineering topics). My purpose is to
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1. Show how change detection can be considered as a more general problem (instead of
assessing each model-change case as a different entity).

2. Revisit hypothesis testing and detection theory since it is a possible alternative to
estimation that is widely used in Geophysics (the Maximum Likelihood Deconvolution
method that I mentioned above is an example of this possibility, and perhaps it is no
coincidence that it was developed by electrical engineers (Mendel, 1986)).

The problem

The problem of change detection can be viewed as a hypotheses testing problem.
Indeed we are dealing with a record of data (zi,..., z,) and we have to decide which of the
two hypotheses is true

Hp : z;,1 =1,...,n follow the model M,

or

Hy :z;,1 =1,...,r follow the model M,
while z;,4 = r + 1,..., n follow the model M;

and also estimate the moment r at which the change happened (if it did).

At this point, I present a short review on hypothesis testing. The reader may skip this
paragraph (if he or she is already familiar with the material) without loss of context.

A reminder on Hypothesis Testing

Suppose that we can find ourselves in either of two situations, but only one can be
happening at a time. We then gather some observations or data and using them as clues
we try to decide which of the two is actually taking place. Of course, we will have to use a
criterion to make our decision. This criterion will then lead us to a procedure or algorithm
into which we will be feeding our observations and take the decision as the output.

For example, suppose that our observations are n samples of an acoustic signal. For
these samples z3,...,z, we know that they are statistically independent from each other
and we want to decide which of the following hypotheses is true about them

Hp : The samples contain only zero mean, Gaussian noise.
or

Hy: The samples contain also a dc part s

This is actually the simple problem of detecting a known, constant signal in
Gaussian noise. It can be equivalently expressed as

Hp:z;,i =1,...,n follow N(0,00)
Hy:z,i=1,...,n follow N(s,aq)

Now if our data record is actually a part of a signal where the dc component is turned
on and off at arbitrary moments, then we might want to formulate the two hypotheses
somewhat differently — the way we did in the introduction. That is
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Hp:z;,¢=1,...,n follow N(0,a0)
Hy:zi,i=1,...,r follow N(0,00) while z;,é =r+1,...,n follow N(s,00)

in which case we will have to estimate the change time r.

There is a number of criteria for the testing available in the literature. Bayes criterion
tries to minimize the cost of making wrong decisions. Neyman - Pearson criterion tries to
maximize the probability of detection while keeping small the probability of a false alarm.
Both criteria yield the same procedure for the decision making:

¢ Compute the Likelihood Ratio , which is a function of the observations defined as

_ Ple,...,z0/Hi]
= Ples,..., 20/ Ho| (1)

Azy,...,zp)

e Compare this to a threshold T and decide as follows
Azy,...,2p) > T — Hy (2)
Azy,...,2,) < T — Hy (3)

The threshold in both criteria is defined by considerations about the cost of wrong
decisions. Figure 1 below shows the procedure for the decision making.

<T

@-—0 A(x1,...,xn)

>T

H,

FIG.1 Bayes and Neyman-Pearson criteria lead to this procedure for deciding whether a
change has occured inside the data record z,...,z, that we examine.
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Continuing on the Change Detection Problem ...

... we note that when we talk about a single change there are two models involved. That
is, we have the “before” model My and the “after” model M;.

Of course, sometimes more than one type of change is possible; then we have more than
two possible models involved and we consider the various possibilities of switching from one
model to another.

For the moment consider a single change. As a rule, one of the two models, say the My,
describes the regular situation, the normal status, and thus it can be assumed completely
known.(Otherwise it can be identified with an adaptive algorithm.)

For the second model M one of the following can be true.

1. M, is also completely known. In most cases a rather unrealistic assumption.

2. M, is known to belong to a known set of possible models. (This is exactly the case
when more than one type of change can occur in our data.)

3. A few prior information is available about M;.

4. Nothing is known about M;j.

The following sections contain specific examples of change detection procedures.
EXAMPLES OF CHANGE DETECTION

1. ALL MODELS ARE KNOWN.

EXAMPLE 1.1: Detection of impulses contaminating Gaussian noise.

The statististical characteristics of the impulses are known. Three algorithms
are proposed. The two first are based on the Neyman-Pearson detector; the
third one uses the Page-Hinkley detection scheme.

In this example we are examining a sequence { z; } of data. They consist of zero mean
Gaussian noise with (low) variance o¢ disturbed by sudden and brief intervals of zero mean
Gaussian noise with (high) variance oy. We want to detect when an impulsive interval
occurs and when it ends.

1.1.1 The Neyman-Pearson detector.
We formulate our hypotheses as follows.
Hp : z; follows N(0,00)
(4)
Hy : z; follows N(0,07)
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Using the Neyman-Pearson criterion, we derive the likelihood ratio

8

z

»

T

_ probability that z; follows N(0,01)  fi(z:) e

~ probability that z; follows N(0,00) ~ fo(z:) ~ = (5)
6200

1

A(z;)

Then the decision rule is

Alz;) < T— Hy (6)
A(a:,-) > T — H; (7)

We can equivalently use the logarithm of the ratio A(z;) =1 ogA(z;). Then the rule becomes
AMz;) = 2% (constant) < logT — Hy

Mz;) = 22 (constant) > logT — H,
and finally

|z;|<t-—)Ho (8)
|:E,'l>t—*H1 (9)

In order to avoid “false alarms”, that is deciding that an impulse has occurred though
it actually has not, we usually apply some algorithm to provide for “smoother” switchings.
So instead of deciding on a single sample basis according to equations (8),(9), we take into
account the results in a set of samples that we call a “voting window”. The final decision for
the z; sample is then the voting result among preliminary decisions taken for each sample
of the window that surrounds z; (or starts with it). Since smoothing is generally interesting
I present two such smoothing algorithms below.

1.1.2 Czarnecki’s algorithm.

This algorithm is presented and analyzed by Czarnecki (1983). A window of width m+1
samples, is shifted along the data samples. To decide for the i-th sample, we apply the rule
given by equations (8),(9) to each of the previous m and each of the following m samples
as well as to the ¢-th sample. If the majority of these samples “vote” for, say, H; then we
decide that the i-th sample is part of an impulsive interval and so on.

1.1.3 My algorithm.

Here I introduce another “smoothing” algorithm whose theoretical analysis I omit since
it is complicated and of little practical value.

We apply the simple decision rule of equations (8), (9) to the i-th sample. If the rule
decides for Hp we simply accept the decision and restart the procedure for the next sample.
Otherwise we suspect that this i-th sample might be the beginning of an impulse, so we
take a vote in a window starting with z; and including the following 2m samples. If the
result of this vote goes for Hy then we accept that this hypothesis holds for z; and restart
the procedure for the next sample. If the result of the vote in this “-th” window goes
for H,, then we are pretty sure there is an impulse starting at, or very close to, the ¢-th
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FIG.2 Czarnecki’s smoothing algorithm: The decision between Hy and H; for the i-

th sample is based on the voting result among preliminary decisions inside the “window”
consisting of samples z;_3p, ..., Tisom.

b(i [ IXII
‘I“r"m""l'a"l'rl‘; n T“‘rf'q":1‘1‘11;::1". """" .
lvaning |
|Xi| . window
Tl‘r{‘;'?";‘;L;‘:T‘:'r;"r:"“ ..

l ; I 2m+1 voling windows

e

FIG.3 My algorithm: There are three possible ways to decide between Hy and H, for
each sample z;. In (a) we decide immediately for Hy. In (b) we decide for Hy if the

voting result in the window (z1,... »Tiyam) is for Hy, or else we decide for z; as well as for
Tit+1,- -+, Ti+2m using the 2m + 1 voting windows of (c).

SEP-51



Serakiotou 257 Change detection

sample. Some of the following samples must then also belong to the impulse but we have
to be careful as to where the impulse ends. For this purpose the decisions for the next 2m
samples are taken in this way: For the i-th sample the decision is H,, the voting result
in the window starting at the ¢-th sample. For the i + j-th sample, 7 = 1,...,2m, the
decision takes into consideration the voting results in the windows that start at the -th,
t+1-th,... i + j-th samples, that is, for the { + j-th sample we accept as true the hypothe51s
that gets the most votes in these 7 + 1 number of windows.

1.1.4 Comparison of the two smoothing algorithms.

A classical criterion of the performance of a detection procedure is the probability of error
that the procedure yields. Probability of error is by definition the sum of two probabilities:

1. probability of a miss, that is the probability that we do not detect an impulse though
it has actually occured

2. probability of a false alarm, that is the probability with which our procedure decides
that an impulse has occured though it actually has not.

Obviously the names come from the radar literature. For our example I computed the error
probability or to be more accurate the percentage of wrong decisions that each of the two
algorithms made when I applied them on synthetic data.

It turned out that the second algorithm had a better performance than the first for all
window widths and for all the thresholds I used. I will not present my results here so as
not to distract the reader with technical details.

1.1.5 The Page-Hinkley or cumulative-sum detection scheme.

Instead of formulating our problem as in equation (4) we can equivalently use the fol-
lowing hypotheses

Hp:z;,i1 =1,...,n follows N(0,00)
Hy:zi,i=1,...,r — 1 follows N(0,00)
while z;,¢ = r,...,n follows N(0,0;)

Then the likelihood ratio becomes
P[(.’l:]_,. . .,:r,,)/Hl] _
P[(z1,...,2zn)/Ho)
21 fol=) TI%, fa(=:) _
ITiy fo(z:)

_ fl(“"t)
= H [ 70~

n
_ 1%,
= Ha

A =

(10)

-,
-

and its logarithm

oo 1,1 1
An,r) = E i 2(2 - E)I‘? (11)
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Since r is unknown its mazimum likelihood estimate under the hypothesis Hy must be
used inside the A(n,r) formula to be able to apply the decision rule.

# = arg max H fo(z.)Hfl(z.) (12)

1<r<n
i=r

The denominator of A is independent of r, so we can equivalently write

f =arg Jmax. A(n,r) (13)
Then our decision rule becomes
A(n,#) < T — Hy (14)
A(n,#) > T— H (15)
or equivalently
Jax A(n,r) < T — Hy (16)
[max. Aln,r) > T — H; (17)

We can either process records of n samples finding the maximum of the n sums and
comparing it to the threshold — or — we can process each coming data sample using an
“alarm” method to detect the impulse, as follows.

First of all, note that we can manipulate the likelihood ratio writing it as

Aln,r) = (n—r+1)log—+ 2)233 =
" S i

= kifn—r+1) + kyy 2t =

t=r

n r—1
= kin + kzzx? - ki(r-1) - ngz?:

= F(n)-F(r-1) (18)
where

n
F(n)=kin + ks Zx?
=1
Then we have

Jgax A(n,r) = F(n) — 1rsnriélnF(r -1) (19)

If we think a little about the decision rule of equations (16),(17) and what equation (19)
says we can easily produce the following sample-by-sample (on-line) decision procedure.

1. Assign initial value 5 = O to the counting parameter j.

2. Each time a data sample comes in, do
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e Jj=3+1
e compute F(j)

* Friun - minlS"Sj F(T - 1)

3. ¥ F(5) — F.,, <T go to step 2 and continue

4. If F(y) - mm >T “set the alarm” indicating that a change happened at the moment

k for which F(k) = FJ_. and then go to step 1, continue.(Note that we detected the
change with delay (5 — k).)

Figure 4 describes the Page-Hinkley detection procedure for this example, while Figure 5
shows the behaviour of this procedure indicating the detection times and the delays for a
typical sequence of data samples.

EXAMPLE 1.2: Detection of a jump in the mean of Gaussian noise.

We are going to use the Page-Hinkley detector and for simplicity assume that our noise
is zero mean. We formulate our problem as

Ho : 2,1 =1,...,n follow N(0,00)
Hy:zi,i=1,...,r — 1 follow N(0,00)
while z;,¢ = r,...,n follow N(s,a9)

In exactly the same fashion as in equation (10), the likelihood ratio is

. fl(xi .
A= H fO(zc) (20)

Doe
= H 22 (21)
=r 57
(4 1

and its logarithm

A(n,r) = const - > _ z; — % (22)

and with the same reasoning as before, we use the maximum likelihood estimate of the
unknown time of change r. So our decision rule will be

max A(n,r) < T — Hp (23)
> T — Hy (24)

We may write the likelihood ratio as

Aln,r) = i:lx,-—% - 22:;—% (25)
= S(n) - S(r-1) (26)

Then it is obvious how we can use an on-line decision procedure following an algorithm like
the one we saw in the end of section 1.1.4.
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j=0
input x -
MODE=0 \ MODE=1
b A
j=j*1 =i+
compute F(j) compute F(j) <
Fj_ =min F(r-1) Fl = max F(r-1)
min  pr=2 __j max  r=2,....j

. PN
/ ™.
F(i) —FJ\ <T / \ <T
\ min

i ~
- F! - F(j)
max
\‘\
>T >T
set alarm: cancel the alarm: '
an impulse occured the impulse ended
at k for which at k for which
F(k)=Fi F(k)=FJ
min max
A A
MODE=] MODE=0

FIG. 4: The Page-Hinkley detection procedure for EXAMPLE 1.1.
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Behaviour
t of the Page-Hinkley
detection scheme.

detection time n,

set slerm,

an impulse started
/ st r
1
/ detection time n,
cancel alarm, -

the impuise ended

st r
a2

*n

F(n)

} §
y

. > - >
mode O i mode 1 : mode O

FIG. 5: The horizontal axis is (discrete) time and the evolution of the sum of the squares
of the samples as well as of the function F(n) = kyn+ks >, z? are indicated by continuous
lines for simplicity.
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2. THE MODELS THAT THE SYSTEM FOLLOWS ARE ELEMENTS OF A
KNOWN SET.

EXAMPLE 2.1: Detection of a known signal in impulsively contaminated
Gaussian noise.

A more than two hypothesis problem has to be formed here. Indeed there are two
possible changes that can happen to a low variance Gaussian noise signal; either a dc part
can suddenly be added to it or a high variance Gaussian impulse. (We conveniently assume
that it is highly unlikely for both of them to occur at the same moment!)

Obviously this problem is simply a combination of examples 1.1 and 1.2, but we must
not forget that now we have to form a three hypothesis problem, namely

Hp :zi,i=1,...,n follow N(0,00)
Hy:zi,i=1,...,r — 1{ollow N(0,00) while z;,i = ry,...,n follow N(s,00)
Hy:zi,i=1,...,r; — 1follow N(0,00) while z;,i = ra,...,n follow N(0,01)

So now, we have two likelihood ratios to deal with
_ P[xl,...,zn/Hl]
P[a:l, [P ,zn/Hol

— P[xl,...,xn/Hg]
P[zl,...,zn/Ho]

A

with log A1 = /\1 (27)

A,

with logAy = Ay (28)

Bayes criterion leads to the following decision rule

Al < t; — Hgor Hy (29)

> t; — Hyor Hy (30)

A2 < t3 — Hpor Hy (31)

> t9 — Hyor Hy (32)

A2— A1 < tz3— Hyor Hy (33)
> tz3 — Hyor Hp (34)

This problem becomes even more interesting if we want to use the on-line Page-Hinkley
detection schemes that we saw in sections 1.1.5 and 1.2. Then we need to “update” the
order of the three hypotheses after each detection event according to the results of our
detection. Our decision procedure now obtains an adaptive element. The algorithm we use

is shown in Figure 7. In this figure we use 1, 5, k to symbolize the three possible situations,
that is

1. zero-mean Gaussian noise with low variance og

2. a dc part s is present, the variance is og
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3. zero-mean Gaussian noise with high variance oy

The expression H; : i — j, at ry for example, means: Let H; be the hypothesis that a
change from situation i to situation j happened at time ry. I hope that Figure 6 will be
easy to understand after that. It sketches the detection procedure for this three-hypothesis
problem. This procedure is actually an adaptive procedure where the three hypotheses are
updated after each iteration depending on the detection result of this iteration.

Comments on Examples 1.1, 1.2 and 2.1

Of course the problems presented and solved in these examples are extremely simplified
to the point that they are unrealistic. We assume that we know too many things about
the statistics of the noises (variances etc.) and in 1.2 our task is to detect the very simple
dc signal. Nevertheless one should think of these examples as being the stepping stones
to more complicated and realistic problems concerning communication channels, real life
detection tasks (as in submarines or radar) or even a reflectivity sequence ...

initialize

l

process next <
data sample 4

HO:‘

H|:i —>j at ,-'
Hyii =k atr,
at theses:
Hy “set alarm” :Pdfje hypotheses
®| achange to j |—— H? : ] sk .
happened at " Hp'j i
H “set alarm® update hypotheses :
2 0
o achangetok |[—gi Hy:k ' .
happened at r., HY (k— i
Ho k= j

FIG. 6: The (on-line) decision procedure for Example 2.1.
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EXAMPLE 2.2: Detection of abrupt changes in linear stochast.ic systems.
A deterministic (discrete time) linear system is described by the following model
z(k+1) = A(k)z(k) + B(k)u(k)
y(k) = C(k)z(k)
z(0) =20,k >0
A stochastic linear system is described by
z(k+1) = A(k)z(k) + B(k)u(k) + w(k) (35)
y(k) = CR)=(k) + v(k) (36)

where w(k),v(k) are zero-mean Gaussian white noise processes independent of each other.
Our problem here is to detect a sudden change in the model that a linear stochastic system
follows. Before presenting a likelihood ratio method to attack this problem we need some
basic knowledge of the famous Kalman filter. Kalman filtering is a rather complicated story,
but I will present the main idea as briefly as possible.

About Kalman filter:We have the system of equations (35),(36). Let &(k + 1/k+1)
be the one-step predicted estimate of x(k+1) based on u(0),...,u(k),y(0),...,y(k+ 1). The
Kalman filter gives Z(k + 1/k + 1) by

z(k+1/k) = A(k)z(k/k) + B(k)u(k) (37)
E(k+1/k+1) = &(k+1/k) + K(k+ 1)y(k+1) (38)
Y(k+1) = y(k+1) — C(k)z(k+ 1/k) (39)

where (k) is the innovation process. Under the assumptions we made for the system,
this process is zero-mean Gaussian, white and with covariance matrix V (k) which is also
computed by the Kalman filter.

We may now address our problem.

2.2.1 The Generalized Likelihood Ratio method.

We examine a linear stochastic system and form the following multiple hypothesis
problem. Under Ho the system remains unchanged and is described by the model Mp:

z(k+1) = A(k)z(k) + B(k)u(k) + w(k) (40)
y(k) = C(k)z(k) + v(k) (41)

UnderH;, ¢+ = 1,...,N at the moment # an abrupt change takes place. After that the
system is described by one of the following N models M;,i =1,...,N

z(k+1) = A(k)z(k) + B(k)u(k) + w(k) + fi(k,0) (42)
y(k) = C(k)z(k) + v(k) + gi(k,0) (43)

We want to detect the change, decide which of the possible N changes actually occured and
finally we want to estimate the time # of its occurrence. For this purpose we shall use a
likelihood ratio approach slightly different from the one we used in the previous examples.
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A Kalman filter is placed after our system. As long as the system follows My,
that is under Hy the filter gives

v(k+1) = y(k+1) — C(k)z(k+1/k) = vo(k+1) (44)

by equation (39). This is a zero-mean Gaussian white process with covariance Vo(k) as we
already saw above. Since both our system models and the filter are linear as soon as the
model changes to M;, that is under H; the filter gives

vk+1) = ylk+1) — Ck)&(k+ 1/k) : + pi(k + 1,6) (45)

= 7(k+1) + pi(k+1,9) (46)

where p; can be recursively computed from f;, g; . Note that under H; the innovation process
~(k) is white, Gaussian with mean p; and covariance matrix V(k).

So we see that a change in the model resulted in a change in the mean of the innovations
process. Thus to detect this change we could use the innovations process 4 as our observa-
tions instead of using the output process y(k) of our system. This will result to a likelihood
ratio that we call Generalized Likelihood Ratio. This is computed in the same way as in our
previous examples.

A = PO(),...,y(k)/H] _
' Ply(1),...,~(k)/Ho]
T172} const - 737 OV ' )%l) [15_, const - e~ 3(10()=A(5.6) TV =1 (3)(r0(1)- i(4:8))

H;?:l const - e~ 37 )V 71(5)10(4)

k
= [ e $0e-pGONTY () -pio)+ A4 (V" (i)10(6) (47)
i=0

Again, taking its logarithm we get

k

Ai = Z_%—%('m(j)—pe(j,a))TV‘l(J')(vo(J')—m(j,ﬂ)) + %7§(J')V‘1(j)'7o (48)

k
= L FROVIAGO + 2ol GOV ) - SoT GOV )mG,0)
j=6

Both V' and V=1 are symmetric matrices and the first two terms inside the sum are equal.
So

k k
Ai(k,0) =3 v (V5w 0) — 3 ol (5,0)V 1 (5)pi(4,6) (49)
j=0 j=6
As in previous examples we have to use the maximum likelihood @ of the unknown time of

change #. This will finally give us the following decision rule

Joax, Ai(k,0) < Ty — Hy (50)

> T, — H; (51)
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Of course this is the decision rule for the “first” change that happens to the system. If in
real life our system is a mechanical system and we try to detect when one of N possible
types of failure occurs, this decision rule is all we need — after that we stop, repair our
system and then start all over again.

If on the other hand we have to continuously watch our system switching between
different models then we can use a procedure like the on-line adaptive algorithm described
in section 2.1.1.

In any case the important feature of the Generalized Likelihood Ratio method is that
it uses a single Kalman filter at the output of the system. This is noted here in contrast to
the next method presented in section 2.2.2, which uses N Kalman filters to solve the same
problem, that is detect when and which of the N possible changes happened to the system.

Decision mechanism

u(.) system y(.) lf(ialltrzfn ¥(.) [ 11(k,0) |
[ (k,0) |

FIG. 7: The Generalized Likelihood Ratio Method.

2.2.2 The Multiple Model method.

The Generalized Likelihood Ratio method of the previous section was designed to detect
additive changes in our stochastic system. The Multiple Model method detects changes
between a known set of possible models but the changes need not be additive.

The basic idea of this method is to use as many Kalman filters as the possible models,
say N. Each of the filters is based on one of the N possible models. (To make this
clear: By “model” we mean of course a set of matrices A,B,C and noise processes w,v.
Then N Kalman filters are N sets of equations like equations (37),(38),(39).) Each of the
N innovation processes that are produced will be white, zero-mean Gaussian (with the
respective covariance matrix given by the filter) if and only if the system actually follows
the respective model. The rest N — 1 innovation processes will deviate from this behaviour,

thus providing us with a way to know what is happening to our system by simply watching
these processes.

For example a quantitative way to do this is to keep computing and comparing the
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probabilities
pi(k) = P[Hi/u(0),...,u(k - 1),y(1),...,y(k)] (52)

which can be computed recursively from the innovation processes coming as the outputs of
the N Kalman filters.

! Decision mechanism |

() p,(k)

Kalman |5 M

u() y() . . :
system . .

— g L) G

Kalman L A

FIG. 8: The Multiple Model method.

3. ONE MODEL IS KNOWN AND THE OTHER IS COMPLETELY
UNKNOWN.

EXAMPLE 3: Detection of impulses contaminating Gaussian noise.

When the My model is known but the statistical characteristics of M; are completely
unknown, the obvious thing to do is to use an estimate for whatever is unknown. We note
that in a likelihood ratio approach the unknown parameters are then in the numerator of
the ratio only. Then maximum likelihood estimation proves very convenient since maxi-

mization under H; is equivalent to maximization of the ratio itself, as we already saw in
equations (11),(12).

For example in the detection of impulses of unknown variance in Gaussian noise the
decision rule can be easily derived by equations (5),(6),(7) to be

rr}’a.xA(x;,al) < T — Hy (53)
1

> T — H; (54)
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In the same way, if we wanted to use the Page-Hinkley detection scheme using equa-
tions (16),(17) and maximum likelihood estimation of the impulse variance would give the
following decision rule

max max < T — Hy (55)
1<r<n 01
> T — H; (56)
CONCLUSION

Old fashioned though it may be called, the theory of detection and estimation still has
a lot to offer to a variety of problems and a variety of disciplines. The problem of change
detection is only one such example. In geophysics the issue could also be detection vs.
estimation. Indeed when dealing with a huge amount of data some of which are different
from the others it could be a lot easier to detect “which are which” than using estimation

to do it. I believe it is exactly this fact that could make detection theory appealing to a
geophysicist.

REFERENCES

Basseville,M. and Benveniste,A., 1984, Lecture notes in control and information sciences,
Vol. 77: Detection of abrupt changes in signals and dynamical systems, Springer-Verlag.

Bouvet, M. and Schwartz, S., Underwater noises: Statistical modeling, detection and nor-
malization, Dept. of Electrical Engineering, Princeton University, Princeton NJ 08544,

Bouvet,M. and Schwartz, S.C., Comparison of adaptive receivers for signal detection in am-

bient underwater noise, Dept. of Electrical Engineering, Princeton University, Princeton
NJ 08544.

Czarnecki, S.V., 1983, Nearly optimal detection of signals in non-Gaussian noise, Ph.D.
dissertation, Dept. of Electrical Engineering, Princeton University.

Hines, W.G.S., A simple monitor of a system with sudden parameter changes, IEEE Trans-
actions on Information Theory, Vol. IT-22, No. 2, March 1976.

Hines, W.G.S., Improving a simple monitor of a system with sudden parameter changes,
IEEE Transactions on Information Theory, July 1976.

Mendel, J., Some modeling problems in reflection seismology, IEEE ASSP Magazine, April
1986.

Miller, J. and Thomas, J.B., Detectors for discreet-time signals in non-Gaussian noise, IEEE
Transactions on Information Theory, Vol. IT-18, No. 2, March 1972.

Miller, J. and Thomas, J.B., The detection of signals in impulsive noise modeled as a
mixture process, IEEE Transactions on Communications, May 1976.

Shiryaev, A.N., (translated by R. A. Silverman), On optimum methods in quickest detection
problems, Theory of probability and its applications, 1963.

Veitch, J. and Wilks, A., A characterization of Arctic undersea noise, J. Acoust. Soc. Am,,
77(3), March 1985.

SEP-51



