APPENDIX C
ESTIMATING AMPLITUDE DISTRIBUTIONS

In Appendices A and B I assumed specific prior signal and noise pdf’s for the
MAP objective function (A.3). If the noise is Gaussian, the standard deviation can be
chosen pessimistically as equal to that of the data. The standard deviation of Gaussian
signal is important to the stability of the linearized MAP estimate defined by equation
(3.10). Let us first choose some physically unrestrictive upper bound for the variance,

and if the perturbation is unstable, let us reduce the value.

Much more critical are the choices for the pdf’s of transformed parameters, those
pdf’s used in equations (3.14) and (3.15) for the Bayesian estimate and reliability. By
observing statistics of the residual data before and after linear transformation, we can

estimate these pdf’s directly from the data.

C.1. Stationarity

Let us first assume that the signal has a stationary dimension, so that enough
redundancy exists for histograms to approximate pdf’s. Prior pdf’s should reflect
regional possibilities. An inversion that was told where a physical structure was likely
to appear could create a model that only reinforced the interpreter’s prejudices. If a
structure appears often in one location then one should assume that it can also appear
nearby. Thus, one not only expects but desires that estimated pdf’s change slowly over
spatial dimensions and time. Because of this stationarity, a histogram prepared from a

great many samples with identical pdf’s will describe the possibilities open to them all.

Likewise we can usually find some dimension over which we expect noise parame-
ters to have similar statistics. When I later drop subscripts from signal and noise

pdf’s, I am assuming stationarity over some dimension.

C.2. Pessimistic estimates of distributions

We shall need the following relations between random variables (z’s and y’s) and

their corresponding pdf’s. a is a constant, and 2 a dummy variable.

z =y +a implies p,(z)=p,(z —a) ; (C.1)
s —ay implies p,(r)=Lp, (2 /a) ;

z ==y, + y, implies Pz(x)zpyl(z) * pr(:c)

The star indicates convolution. Because we assumed that the samples of n are
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statistically independent, equation (B.3) requires that

puy () =TI * [p, 5] - (c:2)

) ij
The J] » indicates multiple convolutions. Many convolutions eventually produce 3
Gaussian distribution, according to the central limit theorem. In many applications,
including that of the vertical seismic profile, the transform F will change slowly
enough that local stationarity is preserved. We shall then be able to suppress sub-
scripts on all pdf’s.
Define a pessimistic estimate of Py, (z) as the distribution that would result if all

residual data were noise. Ignore the coherence of any signal.

T — ¢ 1 z -

Fp )= ) IL p ) (03)
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This pdf must overestimate the transformed noise and all positive moments. If the
data contain no signal, then the estimate is perfect (the signal pdf becomes a delta

function).

To find the pessimistic estimate (C.3), first generate a random array whose sta-
tistically independent samples have the same pdf’s as do the data. Use the same
transform and take histograms over stationary dimensions. Because the signal and
noise samples remain statistically independent and additive after a linear transforma-

tion is performed, choices of their pdf’s determine pdf’s for the data.
par(z) = pyr(z) * pyr(2) (C.4)

Using the assumption of local stationarity, estimate py: (-) from local histograms of the
transformed data. To estimate the signal pdf p,/(-) we must now “deconvolve” the

data pdf with the noise pdf.

C.3. Estimating distributions with cross entropy

Let {p; } be a histogram; let {p; } be the discrete pdf approximating it. Subscript
¢ indexes a narrow range of amplitudes (a bin). p; is the frequency of the bin in the
data, and p; its assumed probability. If the parameters sampled by a histogram are
statistically independent, then the probability of the ensemble is equal to the product
of the probabilities of the individual samples. A histogram of N samples will have the

probability shown within brackets below.

max[[] C; (p; )ﬁ’N] ;G = (7 NV )t

LR AR C.5
{3 7 N (p; N - 1) (©:5)
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(Exclamation points indicate factorials.) The optimum p; will maximize this probabil-
ity. Let us take the natural logarithm, reverse the sign, add and subtract constants;

we may equivalently minimize

f{nif}l Y by log(p; /pi) - (C.6)

' 1)

We discover, in the continuous limit, Kullback’s directed divergence (1959), or cross-

entropy.

min J5 (s )log[p (2)/p (2))dz (C7)

z is now the index of amplitude.
Assuming that the pessimistic noise pdf is correct, I define the MAP estimate as

the signal pdf that maximizes the probability of the data histogram. To find p,: (z),

given py/ (2 ) and p,/(z ), minimize the following (suppressing primes).
)] = [pa(e)nlps(z)/ [, (2 -y )P, (v )dy dz

[fps :I:—l +—'fp3 |p8(x)|]2dz (CS)

Add two Lagrange multipliers for the constraints of unit area and of positivity.

Many non-linear methods will minimize this distribution. I use a steepest descent
algorithm and select optimum Lagrangian multipliers during the necessary line search.
The histograms contain fewer than a hundred samples, so the iterations are fast and

take a negligible percentage of the inversion’s total run time.

To calculate the gradient of J, with respect to each point of the function p, (z),
perturb the previous estimate with a delta function, p, (z) + e§(z — 2°), differentiate,
and set € to zero.

%J‘dps (2) + €z - 2% | =0

—f P4 (x )
fps (y )pn (.’II -y )dy

+ NSy (z)dz = 1] + Nolp, (2% - | p, (2°) | ] (C.9)

Pn (.’I: - .'I:O)dx

Iteratively perturb p,(z ) with the negative of this gradient; an inexpensive line search
finds the correct magnitude. The constraints easily determine the values of X\; and X,
for any magnitude of perturbation. The second term raises or lowers all points of

ps (z ) equally until the constraint of unit area is satisfied. The third term moves each
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point a large enough positive distance to remove any negative excursions. The first
term divides the estimate p, (z) by the convolved value and cross correlates with a
shifted noise distribution (contributed to the data distribution by the perturbation of
ps [z°]). The cross correlation identifies the points at which the divergence is not uni-

form and compensates with appropriate perturbations.



APPENDIX D
DERIVATION OF A FOCUSING MEASURE

A number of authors have proposed measures of “simplicity,” “sparseness,”’ and
“parsimony” that indirectly estimate the non-Gaussianity of data. Wiggins (1978) pro-
posed a Varimax norm ratio that compared the probability that data resulted from a
Gaussian rather than a generalized Gaussian distribution: p(z) = Cexp(- |z |%).
Gray (1979) adapted a result by Hogg (1972) to define a “variable norm” ratio that
compared the likelihood of two different generalized Gaussian distributions (see equa-
tion {3.1]). Mehta (1977) first proposed a more direct measure of non-Gaussianity using
histograms of the data. He used quantiles to estimate the Gaussian distribution that
fit the data best and then calculated the divergence of the histogram from this Gaus-
sian distribution using the cross entropy function. I shall here derive a similar result

that simplifies the calculation of the best fitting Gaussian.

Cross entropy (defined first by Kullback as directed divergence) measures the

unpredictability of a given p () with respect to some reference pg(z ).

Ipyz):poz)] = [piz)loglpi(z)/poz)] dz (D.1)

If po is uniform, then cross entropy becomes the negative of Shannon’s statistical
entropy. [ approaches the minimum value of 0 when p; is most like p,. Define a
measure of non-Gaussianity, F', as the minimum cross entropy of the data pdf’s with
respect to Gaussian distributions of all variances o2, F increases with non-Gaussianity
and thereby with the focusing of the data. (Assume zero-mean processes for simplicity

in notation. A mean is easily estimated and subtracted.) For a single pdf, define
Flp(z)l=min I [p(z): Gaussian(o,z )] (D.2)

22

—min [p(z) loglp (z)/(—— ¢ **)| da
(-4 \/Zr-a

= min {fp(z)logp(z)dx +#fx2p(x) dz +loga+log\/ﬁ}
4 g

Not surprisingly, F' attains this minimum value when the Gaussian distribution

possesses the same standard deviation as p (2 ):

E%— I[p(2): Gaussian (o,z)] = —%f tip(x) dr + ?17— =0 (D.3)

—+02=fx2p(x)dx :
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Substitute this result into (D.2).
fp ) log p(2) dx +%logfz2p(x)dz+0 (D.4)

where ¢ = logV2r + %

(D.4) provides a simpler, working definition of F'. Notice that (D.4) is scale invariant:

multiplying the random variable z by a constant a does not affect F'.

Flop(£) = Flp(a) (D.5)

a

Finally, we may prove a posteriori that a Gaussian distribution minimizes (D.4). First
replace p(z) in (D.4) by a perturbed (1-€)p (z) + €6(x —24). &(z) is the Dirac delta

function, with unit area. Then, setting the ¢ derivative equal to zero yields

2
z
~[p(z)log p( )dx+logp(z0)dx+__9?_l:0
20 2
To
—~ plag=——c ¥* and Flp(z)]=0. (D.6)

V2o

(D.6) gives the equation of a Gaussian. (D.3) again defines the variance. The con-

straint of unit area requires that the measure attain a minimum value of 0.

In practice, evaluate (D.4) from discrete histograms functioning as pdf’s.
Represent the sampled versions as {p; }, defining each sample (indexed with i) as an
average of p(z) over a short interval of z. Assume that the {p; } are sampled N

times per standard deviation.

pi — fﬂ[x—_—g—‘l/ﬂ] p(z) dz

(o/N) a/N

1 05<2z < 405
where I1(z ) = 0 else (D.7)

The sampling reduces F [p (2 )] by some ¢ made arbitrarily small by large N .

Flp(= ]—fp Jlogp(z)dr +logo+ C (D.8a)

zz%pi log p; +logo + C + ¢
i

=Z)(—7\7pi )1og(—7vpi)+logN+C + €
3

Let {¢; = o p; /N } be the probabilities of the amplitude bins. If a histogram selects a
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fixed N bins per standard deviation, then the focusing measure equals Shannon’s sta-

tistical entropy plus constants.

Fl{g;}] =Y ¢; logg; +log N + C (D.8b)

The focusing measure requires two inexpensive passes through the data: one, to
find the standard deviation from a sum of squares; second, to calculate a coarse histo-

gram scaled accordingly.



