SUMMARY AND CONCLUSION

We reviewed the fundamentals of extrapolation of wavefields which
are acquired via seismic experiment with many shots and receivers.
Mathematically, the wavefield extrapolation is described by the double
square root equation. We determined that conventional processing is
equivalent to a separable approximation to the double square root opera-
tor. \Underlying this separation are two assumptions~ zero-dip NMO and
Zzero-offset migration. Through the separable approximation, downward
extrapolation 1is achieved in two independent steps: seismic data is
moveout corrected and stacked in offset space, and then migrated in mid-

point space.

To the conventional processing scheme, we added partial migration
before stack. The theory for this process is also based on the double
square root equation. The a]gor1thm emerges from the deviation operator,
which 1is formally defined as the difference between the double square
root operator and its separable form. Pre-stack partial migration is
applied on common offset sections, individually. It removes the effect
of wide offsets and corrects for dipping events, thus producing a more

coherent stack.

In the case of lateral velocity variation, a new term emerged from
our analysis of the separable approximation. This term involves pure
lateral shift due to non-zero offset and the lateral velocity gradient.
A rough estimate (500 ft/sec difference over a distance of 1000 ft) on a
field dataset indicates that a lateral velocity estimation scheme may be
formulated based on the theory developed in Chapter 3. In particular,
the offset angle and lateral velocity gradient are both significant near
surface. Therefore, the theory has important implications for the stat-
ics problem. Offset-dependent statics estimation is perhaps a proper

title for future work in this area.

Finally, the theory for the double square root equation and related

operators was extended to 3-D recording geometry. This is another area
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of great potential for future research in exploration seismoclogy. The

continual increase 1in 3-D seismic exploration requires the research

geophysicist to develop accurate and adequate processing pEocedures for
3-D data. Moreover, it is essential to develop a 3-D data acquisition
technique that would not only be practical but would also make the

related theory as uncluttered as possible.
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APPENDIX A

SECOND ORDER SQUARE ROOT EXPANSIONS

A-1

Consider the simplest case

(1-a)2 .1 (A-1)

| >
[ 1
ml)

where 1 >> A .

A-2

To second order in A, i.e. 1 > a > A,

[1-(A+A)2]1/2=[1_(32+2M+A2)]1/2

"a" could be close to 1; therefore, factoring (1 - a2) from the square

root prior to expansion we get

172

2

2
[1 C(ae ]1/2 S (1 - a2 V2 l [ . 28A+ A ]
1-a

Applying (A-1) to the square root on the right,

[ 1-(a+a) ]1/2 = (1-a%) . C

2 172 [ L. _2aA+ AL ( 2ah + A% )P ]
2( 1 -a ) 8(1-a
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Expanding the right-hand side and ignoring terms of higher than second

order in A, the final expression is

2
[ Lo (asn)? ]1/2 S(1-a2)2 | _aA - A —
1 - a 2( 1 - a” )
(A-2)
A-3
To second order in A, i.e. b > a >> A ,
[ b2 - (a+ A )2 ]1/2 = [ { b2 - a2 ) - ( 2aA + A2 ) ]1/2
Similarly to the development of (A-2),
2 1/2
(b2 - a2 yl/2 [ 1 - 2;A + 2 ]
b™ - a
2 2 .\1/2 2aA + A2 ( 2aA + Az )2
= (b -an) 1- 2 2. 2 .2 .2
2( b" - a~ ) 8( b -a")
Finally,
2 |1/2 2 2 172 aA bzA2
[ b™ - ( a+ A) ] ( b~ - a" ) 1 - 3 5 - 5 52
b® - a 2( b - a" )

(A-3)
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Setting b = 1 , (A-3) reduces to (A-2), as should be the case.

A-4

Scaling (A-2) with « yields

Finally,

172 2 2
{ i - [ a+ A ]2 ] J L ( “2 - a2 )1/2 [ 1 - aA a A ]
a « -2 2 el a2y

(A-4)

Setting @ = 1 , (A-4) reduces to (A-2) as we would expect.
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A-5
L 1
To second order in A and B, i.e. 1 > (a2 + bz)2 > (A2 + 52)1 .

[ 1-(a+a)-(b+s)? ]1/2 - [ 1 - ( a%+ 2an + A% + b2 + 208 + B2 )]1/2

2 2 2 2,2
(1 - a2 . 2,172 [ [ . 28A+ A"+ 2bB + B® ( 2aA + A" + 2bB + B° ) ]

2(1 - a2 - b%) 8( 1 - a2 - b2 )2

Expanding and ignoring terms of higher than second order in A, B and AB,

we have the final form

1 -(a+a)-(b+8)? ]1/2 = (1-a%2-0b2)Y2  (aum
i - aA + bB _ Az + B2 - ( aA + bB )Z
| 1 -a? - % (1 -a%-bfy 21 -a% -2

Setting b =B = 0, (A-5) reduces to (A-2).



APPENDIX B

STATIONARY PHASE APPROXIMATIONS

B-1

Consider the double square root operator

1/2 172
DSR(Y,H) = [ 1 - [ Y + H ]2 ] + [ 1l - ( Y - H ]2 J (B-1)

where

We want to operate on the transformed wavefield P(ky.k ,0,w) with (B-1).

h

Subsequent d{nverse Fourier transformation will yield the wavefield

P(y,h,z,t):

_ idz _
P(y.h,z,t) = JVU‘P(ky.kh,o,u) e dky dk, de (B-2)

where the total phase, normalized with respect to z, is

(B-3)

&= - LDSR(Y,H) - k L
v Z

N+

h
y -kh;+w

The main contribution to integration 1in (B-2) occurs when the phase
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stays nearly constant. We therefore set the variation of the phase with

respect to variables kh , ky and w to zero . Using (B-3) we have,

0%  w ODSR(Y,H) ©H h _ 0
akh v 9H akh 2
8% _ _ w3DSR(Y.H) @& _y _
ok~ v aY ok z
Y h 4
% 1 _w [ ODSR(Y,H) BH _ BDSR(Y,H) &Y t
dw v DSR(Y,H) v [ oH 8w * ay 2w | Tz
Substituting (B-1) and carrying out the differentiation we obtain
[ L g2 ]1/2 [ L. §2 ]1/2
% G . % 3 - L (B-4b)
[1_62]1/2 [1_52]1/2
1 . 1 vt (B-4¢)

where

Eliminating G and S among (B-4a,b,c),



- 111 -

[(¥+h)2+22]1/2+[(y-h)2+zz]1/2=vt (B-5)

which is an ellipse 1n (y,z)-space at constant t.

Specializing to the zero-offset case (h=0), (B-5) takes the form

[yz g ]1/2 _ y__é_‘_t_ (B-6)

which is a circle in (y,z)-space at constant t and a hyperbola in (y,t)-

space at constant z.

8-2

Consider the stacking operator

St(H) = 2 [1 - 2 ]1/2 -2 (B-7)

The total phase is

¢=-%'-St(H)-k + @

N
Njer

h (B-8)

Differentiating (B-B) with respect to k. and @ and setting the result to

h

zero, we obtain

H
[1 i H2]1/2

{B-9a)

N|T
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and

+ 1 {B=-9b)

[h2 - ]1/2 vt ., (B-10a)

2

For non-retarded St{H), (B-10a) takes the form

[ he + 22 ]1/2 - !?P' (B-10b)

which 1s the normal moveout equation. Let us define the =zero-offset

two-way time as

~N
N

tl

n
<|

Substituting into (B-10a)

172
he [ v t' ]2 Lyt vt
2 2 2

Rearranging, we get the classical NMO shift
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1/2
s g [ 1+ [ ;EEQ-]Z ] -1 (B-11)

which is the equation for moveout correction. In the main text, the NMO

shift 1is defined as At (Equation 1-33), which is the same as t in (B-

11).

8-3

Consider the non-retarded separable operator

sep(Y.H) = 2 [ 1 - v ]1/2 .2 [ 1 - H JI/Z (B-12)

The total phase is

¢=-§suwm)-ky§-k §+a§ (B-13)

Differentiating with respect to k, , ky , and o ,

h

H = 2 (B-14a)
[ - K2 ]1/2

Y -1 (B-14b)

[ . ]1/2



2 + 2 - L (B-14c)
[1_Y2]1/2 [1-H2]1/2
Eliminating Y and H, we have the final expression
[hz . 52 ]1/2 . [yz . 52 ]1/2 vt (8-15)
B-4
Consider the approximate form of the deviation cperator
A A 2
Dev(Y,H) = C{(H) Y {B-186)
3
where C(H) is
C(H) = [ 1 - [1 - 2 ]'3/2 ] (B-17a)
or
A A
c(H) = - 3 K (B-17b)
and
A
H = z2h (B~18a)

<
[ad
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which, for constant velocity medium, can be rewritten as

H o= h /2 (B-18b)

(120 22 )17

The total phase is

A
®=-Zpev(v,H) -k L+ ok (B-13)
v y 2 2z
Differentiating with respect to ky and o ,
n b4
C(H) ¥ = - 7 {B-20a)
A
3 c(H) ¥2 = 1;1 (B-20b)
Eliminating Y between (B-20a) and (B-20b) we obtain
2 _ vtz _
Y T 3CH) (8-21)

Since C(ﬁ) is a function of z and h by way of (B-18b), (B-21) describes

a parabola 1in (y,t)-space.



