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I. Introduction

Many interesting phenomena can be described as the
occurance of a wave confined to the surface of a sphere.
Rayleigh waves produced by earthquakes are probably the
most obvious example of this principle. Radio science
people have encountered radio waves trapped in various
atmospheric layers and noticed them being transmitted
around the globe and back. Atmospheric pressure waves
produced by explosions have been seen to propagate around
the Earth several times, being trapped in the air-land
interface. From a wave analysis point of view, even the
so-called free-Earth oscillations could be thought of as
many surface waves combining and interfering to form the
longer observed periods.

The scientist's bidding in life is to devise models
of observed natural phenomena which closely approximate
the real event. So closely that, in fact, the real event's
behavior can be completely formulated beforehand. With this
ultimate goal in mind, the scientist must grope for a deeper
and deeper understanding of the event in order to mimic
it -- and thus knowledge expands. With this cosmic di-
rective in mind, I have attempted to make some initial
contributions toward modeling the phenomena desribed
above. The following paper represents the sum of my efforts
thus far.. The objectives in starting this study were to
come up with a method by which one could reallistically
propagate a disturbance on a sphere numerically, do it
cheaply enough computer~wise to make it feasible, and to
design it with enough flexibility so as to model some
real phenomena (i.e. have it include options for making
the wave velocity space-variable). Not all of these ob-
jectives have been fully réallized, but at least no dead-
ends have been encountered yet. The computational methods
used here bear a striking similarity to those used by
Jon Claerbout (1970)1 » mainly due to his generous supply
of guidance and inspiration in formulating the solution

to this problem.
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IT. Mathematical Derivations

The logical place to start in attempting to model
wave phenomena is to look at the basic wave equation =--
the classical scaler wave equation :

(1) v = 1/c? 3p/3t2

P is the wave function and Cc is the wave velocity, which
can be space~variable. Since we are dealing with a sphere,
the next logical step would be to use spherical coordinates
for our description. The expression for the Laplacian in

spherical coordinates is :
(2) v 2p = [1/r2][)(r22P/)r)/3rJ + fl/rz sin 0]
B(sin 03P/30) /301 + [1/r? sin2e][¥p/2¢2]

The typical definition of sperical coordinates is used, as
is illustrated in Plate 1. We will define the center of

the system to be at the center of the sphere, so that the
"North Pole" is at @ = 0° and the "South Pole" at g = 180°.
As we progress around the "Equator", @ will go from 0° to
3600. When talking about confining something to the surface

of a sphere, we are essentially taking a surface described
by sweeping out a constant radius. In that light, let us
assume that r is constant and that this constant is equal
to 1. This simplifies our expression in (2) to give :
(3)  v* = [1/sin 012 (sin 0 P/26)/56] + [1/sin’%g]
[2%p/3¢%]
Putting this into (1) gives:
(4) [1/sin 8][3(sin @ p/ze)/aej + [1/sin%0]
[2%p/38%] - 1/c2 32p/3¢2 =0

Now comes the problem of how to solve this equation

in a meaningful and also simple way. If we consider a
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small strip around the equator, we can seethat in a small
angle approximation, this strip would be essentially flat.

This gives us a hint to try and model this wave equation

as a disturbance propagating in one direction, parallel
to the "Equator". The way to do this is to assume an
exponential dependence of both ¢ and t, to get a perturbation

type colution to (4) of the form :
(5) P = F(6,0) exp [i(m@-wt)]

Let us now take all necessary derivatives of (5) in order
to get a perturbation solution to (4), whilst making the

definitions S = sin © and C = cos @ :
(6) dP/36 = Fgy exp [i(m@-wt) ]
(7) (s /38) /36 = [CFy + SFy] exp [i(m@-wt)]
(8) /3§ = [Fy + inF) exp [i(mg-wt)]
(9)  ¥%e/rg? = [ryy + 2imFy = m’F] exp [i(mf-we)]
(10)  *P/2t? = —w?F exp [i(mP-wt)]

If we now take (7), (9), and (10) and plug them into (4),
whilst multiplying everything by s? exp [=i(m@-wt)], we
arrive at:

(11) s%Fg g + CSFy + Pgg + 2imFy + (w?s2/c?-m®)F = 0
This equation looks somewhat less formidable than (4), but
we have to decide what to do about ¢, which we want to be
space=-variable. Let us first assume that ¢ is a constant,
say ¢ . Since we would want the F term to vanish at the
"Equator" (6 = 90°%), this would imply taking m? = wz/cgz.
If our ¢ term varies only a small bit from our Cy» we.;an

put this approximation into our F term to get:
(12) w?[s?/c(e,8)? - 1/c 1 F

If c(8,8) = ¢, equation (12) reduces to -C%m?

F, which indeed

vanishes at the "Equator". Let us now define :
(13) v* = -[Szcsz/0(9,¢)2 - 1]

so that we transform (11) to :

(14) SZFGQ + CSF9 + F¢¢ + 2imF¢ - mZVZF = 0
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This is still a formidable equation to work with
(due mainly to the prescence of both an Fgg term and an
F¢¢ term), so we need to look at Problem #2 on page 279

of Waveform Analyuis Class Notesz,for a very useful trick.

Let us define a new operator such that :

(15) T%F = s?Fy + CsF, or T = 5)[S)F/201/26

Putting this expression into (14) gives :
(16) Fgg + 2imFy + (1% - m*>v2]1 F =0
If we now let F go outside we get :
(17)  [dgg + 2imdy + (17 - m*v%?) 1 F =0

if we now let x = d¢ and xz = d¢¢, we get something that

looks like a quadratic equation :
(18) [ x% + 2imx + (T2 -m®v®)I1 F =0

The standard quadratic folmula looks like :

(19) a + bx + cx? =0

If x is small, a linear approximation to this equation would
be to have x = —a/b, If we use this approximation for our

quadratic, we would have the form :

(20) a + bx + cx (-a/b) =0
Or, in combining terms: :
(21) ab + (b% = ac) x =0

If we now identify terms between (18) and (19), we see that
a = 72 - vzmz, b = 2im, ¢ = 1. Putting these into the form
of (21) gives us a good approximation to equation (17) :

(22)  [(T% - v*m2)(2im) + (=4m® - T% + vzmz)d¢] F=0

Combining terms gives :
(23)  (T2-v2m?) (2im)F + [m2(v2-4)-1%] aF/ag = 0

Let us now simplify by defining :
t

(24) A, =in A, = —im3v? A, = m2(v2-4) /ag A=—1/d8

This gives us @

2

2 =
(25) 2(A1T + Az) F + (A4T + A3) dF =0
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ave
We now); form that can almost be solved using a finite-~
difference formulation, such as the Crank-Nicolson method.3

Let us define an F? , such that the n superscript denotes
the @ grid spacing and the j subscript denotes the 8 grid
spaces. We can formulate that F = & (Fn+1 + F ™) and

dF = (Fn+1 - F ") while still keceping a convergent %yut?m,
since thlw calculatlon scheme would be ¢entered at F?+2 .
If we now substitute this difference formulation into (25)
and collect the terms, we get :

(26) [(A+A ) + (A +A )T 27 FJ +1

[(A ~A,) + (A -A )T2] F?

Since simplificaion is the name of the game, let us define :

(27) A5 = A, + A3 Ag = AL+ A4
A7 = A3 - A, Ag = A4 - A

to give us :

2 n+1 2 n
+ . = + '
(28) [A5 AT ] FJ [A7 AgT ] FJ
All is well and good, but what do we do with T2 ? Let
us go back to the definition of T2 :

(29) T2 = sa[saF/3e]/%e

We wish to get a finite difference formulation for T2,

which is centered at F?+§. To do this, we define :
0) /¥ = (FT,, - FO de
(30) / ( 3+3 J_%) /
So we get :
(31) 1% = 5308 (Fl, s - F® 1)/de]/»e
J J=z

In finite difference formulation this goes to 3

2 _ 2 n ny, _ _
(32) 17 = [5;/(d8)“Ils 1 (Fy, ~F) = S, 1 (Fi-Fy

)]
Upon collecting terms, we get :
2 2 n 291
T = .S, de | - [S.(S.,1+S. de F.
(33) [5;5;41/(a®) "] Fy = [8;(8,,1+5,_1)/(de) “IFy
2 n
+ .S, de F.,
[s;5;_1/(a0) ] F}_|

Further simplification makes us define :

(34) T, 838441 /(de)y? T, = S (s. j+LtS4. 1)/(d9)

2
2
T, =558 j= 1/(d9)

I
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We finally get a nice ex?ression for T® :
2 _ n n n
(35) T TyFipq ¥ TPy + ToF

e now have what we were looking for -- an expression for
T2 that we can put into (28). Doing so and collecting terms
gives us :

n+1
j+1

nt+l1
J

+ (AT PN =

(36) (AgT )F -1

+ (A5+A6T2)F

n n n
(A8T1)Fj+1 + (A7+A8T2)Fj + (A8T3)Fj_1

Simplification demand:s that we define :

(37) Ay = AT, By = Ag

Dk = A8T1 Ek = A7+A8Tz Fk = A8T

+A6T2 Ck = A6T3

3

Finally, we get, in a nice, neat package :

n+1 n+1 ntl _
(38) Aij+1 + Bij + Cij_1
N o} . o -n
DkPj+1 + t'ij + Fkrj-l

What we now have i a numerical means by which we can

propagate a disturbance Fn+1

if we are given an initial
disturbance Fn. Lefinitions for all terms used to arrive
at equation (38) can be found in equations (13), (24), (27),

(24), and (37).
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I1I. Programming Notes

The programming of the resultant equation (38) is
fairly straightforward, but getting the information in and
out in a useable form proved to be the major hangup.
Equation (38) specifies a matrix equation of the form
LAJLT] = [B][D] , where the coefficients in [A] and [B]
are dependent on both & and @, and the vector [D] is spec-
ified initially. The equétion is then solved for [T],
which represents the next spatial step in the wave pro-
pagation. This is then put into (38) as the new [D] vec=-
tor, the equation solved again, the wave propagated, etc.,
etc.,. Since the equation we are trying to solve involves
only 2nd order partial derivatives, the Crank~Nicolson
formulation yields a system which has [A] and [B] as tri-
diagonal matrices. Hence solving (38) amounts to nothing
more than calculating the various coefficients and solving
a simple tri~diagonal matrix system, Algorithms exist
for very quick solutions. to such systems, but have one
inherent problem with their use¢ -- boundary conditions.
A pictorial diagram of the system specified by (38) might

look like :

B1 Al T1 El D1 DJ
C2 B2 A T2 F hz D D2
C. B
3 B3 A3 s Fy Eg Dy Dy
n-=1 n=1
C B T F E D
i n“n | ['n . n“n | [’n

To specify (38) completely, one should have A_ acting on

a Tn+1

vectors being of finite size, this is not possible,

in the last step, but due to the limits of our

One
way to handle the adverse effects of this problem is to

In this
any energy coming out to the boundaries is matched
This

effect of having energy bounce back into the array is a

specify the so-called zero-slope end conditions.
method,

t
up with the boundary and sent back into the matrix.

real one (as evidenced by some of the plots in the Results
section), but one can effectively try to keep energy from

getting to the boundaries by being clever. In the case of
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this problem, the effect is even less of a worry since
energy going out to the boundaries is sent back to the
"Equétor", due to the curvature of the sphere. The main
work-horse of the program is resident in the tridiagonal
matrix subroutine CMVTR. All of the operations must be
done in complex arithmetic, due to the presence of imag-
inary constants popping up in equation (24). Provisions
have been made to make the wave velocity spatially variable,
so that in essence all of the matrix coefficients must
be calculated for each step. Since the solution to (38)
is just for monochromatic waves, programming provisions
were made to simulate multiple frequency propagations
through means of superimposing individual run. The input
waveform can either be calculated or read in. Capabilities
for approximating a plane wave source, a tilted plane wave
source, an offset plane wave source, or any combinations
of these are controlled by the input parameter card. The
main effort in the programming was to get output in a
useable form =-- that which lends itself to quick and easy
transmittal of phase and amplitude information associated
with the waveforms. This problem is non-trivial and hence
four separate plotting programs were developed for this
purpose :
(1) A simple line-printer produced plot which printed
positive amplitudes with the symbols from "i"
to "9" and with negative amplitudes as blanks.
(2) A double~-print line-printer plot which was striving
for the effect of a variable~density type of plot.
(3) A variable-density plot made on a Versatec plotter
which plotted only the positive amplitudes and

did a linear interpolation between adjacent steps.

(4) A variable~density Versatec pldt, with a bias
level of 8 bits, so that both positive and neg-
ative amplitudes could be inferred. A linear
interpolation function was used he;e as well,
with only every other trace being displayed

Examples of each of these types of plotting routines are

included in the Results section.



347

The main advantage in using plots (1) or (2) is that
they would enable one to run under WATFIV, thus cutting
down on the computer time needed, which is quite useful
in the debugging stage of development. Plots (3) and (4)
were by far superior, but were more expensive to produce,
since execution would have to proceed under Fortran Level
G. A typical printer-plot run for a monochromatic wave
with a constant velocity took on the order of 10 seconds
of CPU time. Similar runs with a Versatec plot took on
the order of 20 seconds of CPU time. A listing of the
final program, a typical set of input parameters (those
used to produce Example #7), and listings of the various
plot routines arevincluded here for reference, All cal-
culations were made on the Stanford Computation Center's
IBM 360/67 Computer.
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Summary Flowchart of Program Logic

IStart[

[Zero all Arraygl

Set-up or Read

Velocity Information
Read Program
Control Parameters

Yes

Plot out

Results

Print out
Stop Headings

"
Calculate or Read

in Input Waveform

Compute Matrix

Coefficients

Propagate the
Wave 1 Step

Scale and

Save Results
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ChoveesTHIS IS A PRGORAM UESIGNED TO PRIPAGATE A wAVE ON THC SURFACE OF A
CeoeasSPHERE USIRG A LRANK=NICULSUn FiNITE JIFFERENCE FURMULAT TUN UF THE
CeeeoeoSUALER WAVE EwUATIUN I SPAERICAL CLURUINATES. INCLUDED ARE VAR~
CueeawslUus UPTIONS Tu USE A SPRACE-VARITASLE vELUCLTY, OLFFERENT INPUT -
Cevese MAVLFORMAS,y ANU FUUR DIFFERENT UIlSPLAY PLUIS OF THE UATA,

L- .o e 09

Coeees PROGKAMMED bBY DN FUNKHUUSER, LAST ReVISION = JUNE 1, 1972

Ceosoe

CUMMON Ti7u)y CLTUI P FLTOY yECTUlyant TU) 9y B8 (T0) s LKL 1J),,DK(T70)

CUMMIN EK.(?U)yi‘?\(YO),ZAP(-]\):&‘)U)OCN,ANyLAi)MXyDP,Na[PLT'NTM'NO

CUIPLEX TelsFstEsaK n)KgC.KqL)I(yE}\’FK'(;M:)LX,CEXP)CL,CLD’DL

CUMPLEX Al ’/\Z 1AJ yr\@y[\ﬁ s AU A '?,AO'/\")

PDIMENSLIUON CIRAP{TO0,250)

INTCGER®2 1MAP -

DO 115 [=1,70

DO 110 J=l,250
[MAP (T 4d)=0
LAP{T4J)=0.

116 CONT INUE
115 CONT INUE -
CaoseseSET UP THE VELUOCITY INFORMATICN

DL 385 I=35,7U

DO 33U J=1,450

[MAP (T 4 J) =1

305 CONT INUE
CeesseREAU IN ThHL PKOuKAV CONTRUL PARAMETEKS, DEFINED AS FUOLLOWS:
Caeeoeln=nNUMBER UF PUINTS IN THE THETA OIRECTION NIT=LIMIT TO THE
CoeosoNUMBER UF PRI ITERATIUNS AN=ANwLE SPREAD FROM THE CENTER TP=
CoeeesTUTAL PHI TU CALLULATE FOR  D5=InCLINATIUN ANGLE FOR THE INPUT
D eeoeeWAVEFORM VELUF=VELJCITY DIFFERENTIAL PTPWw=POINTS> PER WAVELENGTH

Coeoeee NNETHETA UFFSET FUR THE INPUT WAVEFORM TFLG=INPUT LPTION, IF =1

CeeeaePUINTS CAN BE ENTERED MANUALLY LPLT=PLUT OPTION AS DESCRIBEL IN
CeeeeolddE SUBRUUTINESe IF N=Uy THE PROGKAM TEKAINATES AND THE RESULTS
CeeeeosARE PLUITED.

73 ReaD (5,1} ‘\1]\[T,AN,TP’[)51VLDF’PTPW9NN'IFL(;,IPLT
IF {N.EWeU) GU TU 191
1 FURMAT {215,9F1l0.5,315])

RDCVT=0.017453"

DT =2%AN/ {N-1)

PP=1.00u%DT

CM=TP/(PTPW*UP)

WRITE (693) NyNIT,DT,TP,CMy AN

3 FORMAT {'L','4 UF PUINTIS = #,15,3X,'# UF LITeRATIONS = ', 15,3X,'0DEL
*TA THETA = '1F3.’+15>\,']OTAL PHI = ',FS.‘#,E&X,'N/C = ',FS-Z::"X"ANGo
¥ LiMe =4 ,Fb.2) )

DIR=DI®*ROCVT
DPR=UP*RUCVT
THI=(90.=AN}*ROCVT-DTR
VELKT=1.0+VLDF
v SRITE (699) 0P, PIPiyDS oNNy VELKT

9 FCRMAT (1Xy'UiLVA PHIE = $,Fo.493X, 3Xy
EIPOINTS PER wavelENGIAd = ' 4F9.L1 33X INPUT ANGLE = ?3F5.1+3X,

FVUFFSET = *, 193Ky 'VEL. RATIU = "4F1.3)
NITL=TP/OP+1
DTRS=DIR*UTR
DIRZ=DTIR/Z .
wWRITE (6423
2 FURMAT (*'1°')
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Nl=N-1
IF (IFLGWEwel) LU TU LG
CoseesCllitPUTE VALULS FOR THE 1TNPULUT WAVEFOKM
DU .15 1=1,N
SINT=Siin{delvlo9x{l#+hin-1)/{-1))
TCL)=20 e S TINTHSINTNUEXPLUMPLAL{ D9 (DS*%6.28%1)/NJ})

bli)=0.
1Y CONTINUE
CaeoaeREAD IN INPUT WAVEFURM, IF DObSIKEUL
oL TO 17
19 READ (5,14 (T{I)s1=14N)
14 FURMAT (ZUF4.1)
17 LAPMX=0.
NJ=N

VELTM=1a0-Leu/{ VELKTHVLELRT)
Ab=—14/0PR
Al=Ci4% {04yl
AG=LM¥CMECME{Uey—Le)
AG=AL+AS
AB=A4—-A1l
CLD  =CeXP(CHMPLX{ 049 CMEULPR))
Ci=~CLD
Uu 20 J=L1¢NIT
IF {J6T.NITL) G0 TO 199
THT=THI '
Ci=0L%CLD
Ceeenese e LIMPUTE Tht MATRIA COEFFICIENTS
DO 10 I=1,N }
 THT=THT+DTR
SINT=SIN{THhT)
COST=SINT*SINT®{10-IMAP(L,u)*VELTMI-1.0
AZ=CM¥RCMa{ CUSTHCUST 4.} /DPR
AL=A5%CUSTRCOST
AS=A2+A3
Al=A3-AZ :
SINTP=SIN{THT+DTR2)
SINTHN=5IN(THT-DTRZ2)
T1=SINTHSINTP/UTIRS
T2==SINT*(SINTP+5INTN)/DTRS
T3=SINT®SINTN/DTRS .
AK(1)=A5%T1 .
BRII)=AD+AOLRT2
CK{l)=A6%T3
DK{I)=A6*T1
eR(II=ATH+AB* T2
FK{L)=A8%T3 -
10 CUNTINUE
Ceeeee SCALE THE RESULTS ANU SAVLE FOR THE NEXT PASS
OU 3u I=1yN
ZI=T(1)*CL
IF (10T o ZAPMKX) LAPMX=LI
t LAP(1,J1=41+LAP(1,J4)
30 CONTINUE
ConeosaeeCOMPUTE NEw VECTOR
DO 25 1=coind
DLLI=FK(Ll) FTUI=L) +ER(L)TLL)FDK (T )*T (I +1)
LCeeessoeedOLVE THE TRIDIAGUNAL SYSTEM
25 CONTINUE
CALL CHMVRTRE:D)
20 CONT INUE
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L9G WRITE (642)

NTM=J

GJ TO 73
191 CUNTINUE

WRITE (6,59)
39 FOURMAT (LA 2P SUCCESSFUL END OF PRUORAM?Y)
CoeeaweldT GUT Thi RESULTS

CALL PLOTIiIT(L1)

STop

END

SUBROUTINE CMVRTR{IDUM) '
CoeesoHIS IS A SULKUUTINE TU SULVE A CUMPLEXy VARIASBLE COEFFICIENT TRI-
Ceaees DIAGUNAL MATRIX.

COMMON V70 9DUT0) s F(TO) »elTI) 9 AK{TUN yBK(TV),CK{TU)UK{T70)
COMMON EKCTUY o FRITU) 9 LAPCTO0250) UM yANYZAPMX yOPy Ny IPLT 3 NTM,NO
CUMPLEA T,DsFE,aAK FON Yy CRyORPERyFRYUMPLAZLEAPLZ(70)4DL,DEN
NI=N-1 ‘

E(L)=(Lley0e)
FUL)={04y04)
DO 10 I=2,Ni
DEN=8K{1J+CK{I)*E(I~1)
E(I)==AK{I)/DEN :
FLI)=(D{i) =CLK(L)*F(1=1J))/DEN
10 CONT INUE
TIN)=F({NL)/(L.0-E(NL)).
DO 20 J=1 N1
I=N-J :
TOD)=E(1)*T(I+1)+F(1)
20 CONTINUE ‘ ‘
RETURN
END .
SUBROUTINE PLGTIT(IDUM)
CoeesseTHIS IS A SUBKUUTIWNE TU PLJIT KeSULTS ON THe VERSATEC PLOTTER.
Coeseo PLOTTING GF EVERY OTHER TRACE IS5 DONE WITH A BIAS OF 8 8ITS,
CaoeseSUG THAT vUTH POSITIVE AND NEGATIVE AMPLITUDES CAN BE OBSERVED.
LoeseseSCALING IS DUNE AUTLMATICALLY ON THE LARGEST DATA SAMPLE
COMMON TUTUY 2y DUT I 9 FLTU) yELTUYyAKLTU) 2+ BKITO) 2»CKETV) ,0KI{T70)
COMMIN CK{T7U) sFRET0) sZAP(T09250) 3Ly AN, ZAPMX 0Py N, IPLT4NTM,NO
CUOMPLEX TeDeFs By AK g K 9 UK yDKyEXyFK
LGGICAL*L LINE{TU) »MASKI(2,16) JDARKI{TO) s LIGHT{TO), 1V
DIMENSION RI(TU)$/VLI(TU) RV Z(TV)
DATA MASK/ZUU,2ZUL 2009403920049 2073200920F2Z00yZ1FZ0U923F+230,27F,
22009 LFF iUl g LFF 9203 yLFF y2UT s 2FF g LOF g LFFy L1 F g LFF o237y ZFF 3 ZTF 2y IFF
“/FFyLFF/ _
DATA DAKK yLIGHT/TOXZFF,70%200/
H=NG
00 10 I=1,1060
CALL WRITER (LIGHT,70)
10 CONTINUE
00 20 1=1,10
CALL wRITER(DARK,70)
20 CUNTINUE ‘
be 21 1=1,70 ;
LINE(L)=MASKI{L,1)
RV1I{1)=0.
21 CONT INUE
SCAL2=ZAPMX/10.
DG 300 K=1,NTHM
VDU 39 1=1,y,Ny2
RV2{L1)=2AP{1 3K} /SCALZ
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RICD)=(rvelld-kvidll})/8.

3y CuUNT INUE
LU 3o J=1+,8
03 3o I=19N,2
Il=xVI(L)+d%RKLI(L)+GW5
[I=11+8
IF ([leolalo) 1i=10
1F (il1.LT7.1) 1Li=1
LINE(I)=MASK(L,I1)
LINE(L+L)=MASK{Z,y11)
33 CUNTINUE
CALL wRITERILINETO)
35 COUNTINUE )
00 39y 1=19Ny2
Rvl(I)=Rvzl(l)
39 CONTINUE
390 CUNTINUE
WRITE (64989)
39 FURMAT {1 Xy ! SUCCESSFUL b OF PLUOTY)
47 L3 50 1=1,300
CALL WRITER{LIGHT,T0)
53 CONTINUE
RETURN
END
/%
/ /63 «SYSIN DD = _
59 250 80. 360, 0. 0.333 2.
69 250 £8C. 360, O 0.333 8.
o9 250 BU e i 360, O. JUe333 4
69 250 60. 360. : Je 0.333 He
250 60. . 300, Je 0.333 Ge

- /*

SUBROUTINE PLUTIT(IDUM)

CeeeeeTHIS IS A SUBRUUTINE TO PLUT RESULTS .ON THE VERSATEC PLOTTER.
CeeessAll TRACES ARLE PLJTTED wITH UNLY Tht PISITIVE AMPLITUCES.

21
227

DATA DARK L IGHT/TUXLFF 70%L00/
DATA MASK/ZCO,LULl 2 ZU3y L0T 2 LCF LRy 23F LT LFF/
CUMMUN TATO) »O{TO) o F(TU) 2 E(TU) »AK(TO) 4 BK(TO)yCKITU)DKI(70)
COMMON RVLI(T70)4RV2ITO)»eK{T0) sFRKETU) 4CiaN,IVLITO)
COMPLEX TyDsF o sakyUKy LK DKy EKyFK )
DIMENSIUN R1{7Q) .
LUGICAL®L LINE(TU) o ASK{9) 9 DARK{TU) 4L IGHT(T70)
IF (toUM.EQdei) GU TU 23
IF (10UM.EG.2) GU TO 47
DG 10 1=1,100
CALL wRITEK (LIOGRT,70)
CUNTINUE
DO 29 [=1,10
CALL WRITER{DARK,70)
CONT INUE

"RETURN

CONT INUE 5

RETURN

DG 21 I=1,70
LINE(I)=MASK(L)

CONT INUE

FURMAT (1XsF2.0)

DU 39 L=LyN
RICII=(RV2L1I-KVL(L))/8.

Pt e
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30 CUNTINUE
223 FURMAT {1X,F2.0)
DO 35 J=1,8
OU 38 I=1,NK
[I=RVLI(LI)+JERTI{L)+aD
IF {I1e.LTau} 11=0
11=11+1
IF (1l.uTe9) 11=9
LINE(L) =MaSK{T1)
38 CONTINUE
CALL wrRITER{LINE,T7G)
229 FORMAT {1A,FZ.01}
35 CUNTINUE
DU 39 I=14N
KVI(L)=btve(l)

39 CONT INUE
300 CUNT ILNUE
47 DO 50 1=1,300
CALL wRITERK(LIGHT,70)
50 CONTINUE
RETURN
END

SUBRUUTING PLUTIT(IOUM)
Coeeess THIS IS A PRUGKRAM TO PLUGT RESULTS UGN ThE LINE PRINTER.
CeeoeeThi GPTIUNS £XIST: (1) IF 1PLT=uy A LUUBLE-PRINT PLUT IS MADE
CveseewHICH TRIES (ALTHUUGH PUORLY) TO MAKE A VARIABLE DENSITY PLOT
Cooesel2) IF IPLT=1, A SINGLE-PRINT PLOT IS MADE USING THE CHARACTERS
Cownes?l?! THROUGH '9v, wi1Th NEGATIVE AMPLITUDES BEING PLUTTED AS BLANK.
COMMIN TCTG) 20LT0) 9 FLTU) yELTU) yAR{TUI 98K (70} ,CK{T0),DKI{T0)
CuMMON ER(TU) yFRETO)yZAP{T70,250) 9CMyANyLAPMA4DP Ny IPLToNTM,NO
LCGICAL®L CH{101,0H{16)ERLLL)yCVITU) 1V 70}
CUMPLEX TyUskEsAK s BK g UKy OR ERy FKyCMPLXCEXP,CZ(70),D1
DATA CH/ZLO%® 1,0m? 038 gt HY , tH, 'X,0 0/
DATA DH/lvl,l.l,l_!’l+|’l*l’l/i,l?!,iAl’lol'l$O'OSI,lg!,lll'lat'
% QR o
DATA EH/? |,lll,02!,l3l,l4l,l5!,06l'07I’|al’l9l’l*l/
10 AQ=90. '
- AR=AQ—AN
AS=AQ+AN
N=NO T
ARITE (6913) AR, AWQ»AS i
13 FORMAT (9X9F3.0932X9F3.0932X,F4.0)
20 IF {(IPLT.eQel) GO TU 25
SCALZ2=LAPMA/20 .
DO 201 J=1,NTM
DO 202 I=1,NU
Z1=2AP(1,J)/SCAL2
IF (Z1.LT.0.3) GO TO 31
11=L[+10
IF (11.G7.16) 1I=16
Ivii)=CH(I1)
+ CviD)=DHI{1T) -

GO TO 202
31 c Ivii)=Cnll)
CviL)=Cr(l)
*02 CONTINUE

RPHI=(J-1)*DP
WRITE {648) RPHILUIVII),1=1,1)

8 FURMAT (° 'y?bo&r)Av'(',UVAly')"
WRITE {o,18) (CV{ L)y I=LyN)
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IV. Results and Interpretations

At first, results were non-existent. Scaling prob-
lems and various program bugs produced some really terrible
first efforts. Fortunately though, after numerous program
manipulations, reasonably good results were obtained.

The following descriptions are about eight examples in-
cluded in this report which are felt to be worthy of comment.
Ail of the Versatec-produced plots have a true exaggation
constant -- that is to say 1° in the horizontal direction
takes as much space as 1° in the vertical direction. The

8 direction runs across the page, <o that the poles would
lie off to the sides, with the Equator centered in the
middle of the page. The ¥ direction steps down the page,
the top being denoted by a solid horizontal bar., All

plots cover from ¢ = 0° to ¢ = 360° and from 6 = 10° to

e = 1700, unless otherwise specifiedi® To get full use of
the information presented in each plot, it has been found
that a "Chinese filter" method adds a new dimension to

the plot. Either get at least 4 feet from the plot or look
at the plot from the side in the plane of the paper with
eyes squinted. After a while, one will see hills and
valleys forming, giving the impression of a 3-D represen-

tation of a standing wave in a ripple tank.

Example #1 :

This is a plot of the first case tried on the program.
A plane wawve was put in at the top (perpendicular to the
Equator) and propagated around the globe, with a constant
wave velocity assumed. Frequency was specified such that
there were 6 grid points per wavelength.. This case was
tried first, for formulation of a point source was hard to
come up with. The reasoning for using a plane source is
as follows : Suppose that one had an explosion at the
.North Pole. Energy would then radiate in all directions
and eventually focus at the South Pole, since there would
be no other place for the energy to go. If one looked at
a small zection (say 900) of this wavefront between the
pole:s, he would see what appear:; to be a plane wave at the

*¥*Note : All plots are Mercator projection -- all
traces represent blocks of equal angle content.
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Equator. The energy pattern would appear to spread out
until it reached the Lquator, and then start to curve inwards
on the other side of the Equator, thus giving a zero-cur-
vature wave on the Equator. So, it was decided to start

a plane wave at this midpoint and see if it would come to

a focusz. This iz indeed what happened. The energy foc-
used 900 later and approximated another point source,

which expanded into another plane wave in 900, and then

to another focus in 180°. The wave at 180° from the start
i not exactly a plane wave, due to the small angle approx-
imations used in the derivations and also due to the re-
flecting of energy off of the boundaries, as described in
the Programming Notes section. This was a fairly good
result, for it behaved just as one would expect. The plot
even exhibits a phase shift when going through a focus, as
one would expect. In real life, this example represents

an earthquake with a focus on the Equator.

Example #2

This plot was another plane source input, but it was
tilted to try and model an earthquake happening somewhere
in the Nothern Hemisphere, and having the Rayleigh waves
focus in the Southern Hemisphere. Velocity was again as-
sumed to be constant and frequency was such that six grid
points pef wavelength were calculated. This plot also
behaves as one would want it to. The energy starts moving
out and comes to a focus on the right side of the Equator.
Thisz focus then generates energy which propagates to focus
on the left side of the Equator.

Example #3 :

This plot was another plane source input, but it was
offset from the center by about 20°. Constant velocity
and 6 points per wavelength were again assumed. In this
case, an earthquake occurring on the Equator which prop-
agates a Rayleigh wave at an angle to the Equator was at-
tempted to be modeled. One would expect energy to propa-

gate up into the hemisphere it was aimed at, but to be
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bent back down to the Equator by the time it is ready to
focus, due to the sphere's curvature. As the energy gets
farther away from the Equator, the curvature of the sphere
makes the wave travel faster, due to decreasing the actual
distance involved in traversing a one-degree block. As
the wave travels faster out farther, it is brought back
quicker and eventually ends up at the Equator, right on
schedule. Various boundary reflections and angle approx-—
imations produced the inconsistencies in the lower half of

the plot.

ELxample /#4 :

In this example, a point source was attempted to be
modeled. A constant velocity and 6 points per wavelength
were again assumed. For this model, a sinc function
designed to fit inside 11 data points was constructed.

The waves expanded and converged to a focus 180° from the
start as one would expect. It was found that if one used
a narrower width for the point source model that the energy
would expand out to the boundaries much quicker, thus get-—

ting into many complicated boundary reflection problems.

Example F5 3

In this example, two monochromatic waves were super-
imposed in attempts to highlight the phase shift occurring
through the focus. Constant velocity was assumed and three
waves were passed around the globe.-- one with 6.3 points,
8.43 .points, and one with 5 points per wavelength. In
this plot 8 goes form 8 = 10° to 6 = 170°. The interference
pattern between the waves is gquite evident, as expressed
in the occurrence of the large amplitude peak followed
by a weak doublet. The phase shift through the focus is
somewhat better displayed in this picture than it is in

t ixample #1. Notice the fact that the first big wavefront
consists of three distinct large amplitude packets. As
the wave proceeds through the focus, the bigger wavefront

now consists of only two large amplitude packets.-- evi-

dence of a 90o phase shift.
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Example #6:

This picture represents the only example in which velocity
changes were incorporated. The right side of the grid space
(i.e. the Nothern Hemisphere) has been set up with a higher vel-
ocity than the 1ef£ side. The velocity differential represents
a 4:3 ratio and the superposition of three waves were used for
this calculations. Alth ough this represents one of the simplest
model containing velocity information, there are many complicated
situations developing. As the plane wave starts propagating, the
right side starts moving out quicker, as evidenced by more cur-
vature in the first wavefront noted. As both sides approach the
theoretical focus, the waves exhibit a phase shift across the
Equator, due to the difference in velocities. Then the real com-
plications start to happen. What appears to be a reflected wave
comes off of the high~low interface at a small angle, propagates
out to assume a plane wave shape, and then focusses back down
to the Equator, all of the time staying in the high-velocity
hemisphere. The other hemisphere exhibits much more complicated
structure. Once past the focus, two different wavefronts can
be identified, mainly due to some apparent phase shift between
them. The outer wavefront is most probably>the bigger part of
the high-velocity hemisphere's wave, which was transmitted through
the interface at the time of focussing, with an angle difference
due to a Snell's Law phenomena. This wave then expands into a
plane wave form and proceeds to converge on a very complicated
focus. The inner wave is perhaps a reflected wave generated by

the low-velocity wavefront impinging on the interface at focussing

at such an angle that it could not enter the other side. A low
angle of reflection keeps the energy close to the Equator, but

it still eipands out to plane wave form, and then into a poorly-
defined focus. The improving of the resolution by adding more
compute steps and thus more wavelengths would help delineate the
structure of this model much better, but computation costs forbid
such an effort presently. General events are occurring as the
theory would predict (such as the energy staying out of the high-
velocity zone as much as possible), but more information is needed

to thoroughly investigate this problem.
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Example #7 :

This is just an example of the other type of Versatec plot
that was used. This case represents a sim ple plane wave pro-
pagating as in Example #1 Vertical exageration exists of 1.07
to 1 (shorter than it should be).

Example #8

This is just a compilation of various printer plots of

similar cases as the above, for purposes of illustrating this
type of output.
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V. Conclusion -

Results for the calculations thus far are quite satisfying,
but much more time can be easily spent investigating the subtle-
ties of this type of formu}ation. Improving the resolution of
the results through the usé of more calculation steps and through
the use of a better plotting system would be the next step in
developing a variable-velocity model that can be understood more
fully. Once this method is making sense on simple models, invest-
igation of global structures would present a fine opportunity
for some very interesting work. The simulation of real Rayleigh
waves and free-Larth oscillations is very much in the future, but
it iz not outuside the realms of possibilities,

Today the.éphere,,tomorrow, ———
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Appendix p

Description of Plot Tapes

Many problems can arise in attempting to read a tape on one computer
which was written on another. 1In order to avoid as many of these as
possible in sending plot tapes to our sponsors, we should agree to some
sort of standard tape and data format. The format should be simple for
us to generate and likewise, simple and conventional enough for the

machine at the other end.

The following is a list of specifications for a tape format which

should be widely compatible.

9 Track, 800 BPI

16 Bit, Two's Complement Integers
No Labels

No Headers

Standard Inter-record Gaps (IBM)

Standard End of File Marks (IBM)

Data Scaled Assuming a Plotter Clip Level at + 1500

! Trace L Trace I l Trace L E{
1 [R] 2 Ry [R]O
I G G| | GF,

Since we have neither headers nor labels, the plotting parameters
should be sent, physically attached to the tape, with a concise descrip-
tion of what the plot is supposed to look like. No doubt this will help

the person at the other end decide whether to do it over or mail it on.
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Some possible plotter parameters are listed below which a person,

familiar with seismic plotting, would be able to interpret.

TRSP = Trace Spacing (Traces/Inch)

TSC = Timing Scale (Inches/Second)

SAMPRT = Sampling Rate (milliseconds) B
NFRAME = No. of frames to plot. Often this parameter

refers to the no. of seismic profiles to be plotted.
NOTR = No. of traces per frame (or profile)

NSAMP = No. of 16 bit samples per trace

In addition, most plotters have a variety of display modes such as

wiggly trace, wiggly trace-variable area, variable area, variable density,
etc.

In writing a tape with FORTRAN we use the type INTEGER * 2 for
the output array in order to output 16 bit two's complement. In connection
with this we also make use of the A2 format (the null format). The
END FILE n statement is used to mark the end of your data set.

The following example is meant to illustrate writing a one frame
plot to a tape. It also illustrates the correct job control language of

IBM 360-370 series computers.
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//S1 EXEC FORTHCG
//FORT,SYSIH DD «

NOTE 1 {MTEGER*2 1HW(70)
COMPLEX CYL,CEXP
CYL(X,T)=CEXP((O.,-1.)*N*SQRT(X*X+T*T))/SQRT(X*X+T*T)
W=2,*3,14159/8.
MOTE 2 NOTR=70
HSAMP=T70
DO 200 1=1,NOTR
X=1=NOT&/2
DO 100 J=1,HSAMP
T=J
HOTE 3 1G30 IHW(J)=1500.*CYL(X,T)
MOTE 4 200 URITE(S,800) € ITHW(J),J=1,HSAMP )
HOTE 5 8990 FORMAT (L (255A2))
END FILE 3
REWIND 8
STOP
END
[ *
HNOTE 6 //00,FTO8FN01 DD DISP=(MEYW,PASS), UNIT=TAPES, VOL=SER=U1576,
// LABEL=(1,BLP,,OUT),DCB=(RECFH=U,BLKSIZE=20&0)
//* THE FOLLOWING STEP READS THE PLOT TAPE AND
//* GENERATES A VERSATEK PLOT
/752 EXEC PGM=VVPLOT
//STEPLIB DD DSN=S091.VVPLOT,UNIT=2314,V0L=SER=5YS23,D15P=0LD
J/FTO6FN01 DD SYSOUT=A
J/FT66F001 DR SYSOUT=A
//DISPLAY DD UNIT=004
//FTO8F001 DD DISP=(OLD,KEEP),UNIT=TAPES,VOL=SER=ULRKTHG,
/7 LABEL=(1,BLP,,lH),DCB=(RECFM=U,BLKS!ZE=20bO)
//ETOSFQQ1 DD =
&YVPLT VAP=50,AHPL=10.,HOTR=70,HSAMP=70,NFRAHE=1,SAMPRT=&,
VXCALC=1,,VXO0UT=1,,4END
[ *
NOTES
(1) SAMPLES WRITTEN ON PLOT TAPE ARE INTEGER*2 ,16-BIT,
THO'S COMPLEMENT INTEGERS,
(2) IN THIS EXAMPLE EACH TRACE 1S 70 SAMPLES 111 LENGTH (}HSAMP)

AND EACH FRAME 1S 70 TRACES (NOTR)
(3) DATA WRITTEN TO PLOT TAPE ASSUME A PLOTTER CLIP LEVEL OF
1500 AND ARE SCALED ACCORDIMNGLY.
(%) FOR FORTRAM WRITES TO TAPE (FT: UNMIT 8 =FTO03FJ01)
USE FORMAT CNNTROL SUCH THAT NMNE PHYSICAL RECORD =
OHE LOGICAL RECORD (TRACE), N0 EXTRANEOUS COHTROL wORDS
ARE YWRITTEN 171! THIS MANNER AND AVOIDS PROBLEMS 1Y
GOING FROM OME SYSTEM TO ANOTHER,
(5) THE 'A2' FORMAT TRANSMITS OME INTERHNAL HALFWORD WITH HO
COMVERSION DURING 1/0 , 1,E, BITS I MACHINE =
BITS ON TAPE. DUPLICATION OF FORMAT FIELD MUST BE
AT LEAST AS LARGE AS THE LENGTH OF THE TRACE WRITTEN,
FORTRAN LIMITS DUP, FIELD TO A NAXIMUM OF 255, THEREFDORE
WE MUST DUP, THE DUP, TO WRITE LOMG TRACES. IM THIS EXAMPLE
WE WOULD BE ABLE TO WRITE 4%255=1020 HALFWORDS (SAMPLES).
(6) 'DDNAME' (FTO8F001) MUST CORRESPO!D TO FORTRAN LOGICAL
UNIT 8. 1id LAREL FIELD THE FIRST PARAMETER IS FILE ON TAPE
TO BE MRITTEN. IN DCB FIELD THF BLOCK SIZE (BLXSIZL) MUST 3E
CEQUAL TO OR EXECEED THE NUMBFR OF BYTES PER RECORD WRITTEN.



