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Recommendations Concerning Maximum Entropy Spectral Estimation
John Burg - October 8, 1973

These notes are written in terms of a complex stationary series. Since
most people are concerned with real stationary series, such as time series,
some conversion is necessary. The notation used here arises from wavenumber
spectral estimation in which a propagating plane wave noise field as seen by
a linear array of semsors 1is analyzed at a selected frequency. The analysis
gives the distribution of power in the stationary noise field as a function

of apparent wavenumber in the direction of the linear array.

To change to time series analysis, replace

k (wavenumber) by f (frequency)
Ax by At (time sampling distance) ﬁ&;ﬁ
k = 1/(2Ax) by W= 1/2At (Nyquist foldover) {

®(0) by P (0) (real autocorrelation function)

The real time series spectra are symmetric about f = 0, so they
can be multiplied by two and only the part from £f=0 to f=w

plotted. The reflection coefficients, Cn’ will be real for real time

series.

With regard to using maximum entropy spectral estimates, it should
be emphasized that these are spectral density estimates and that the
amount of power in a small bandwidth is not the peak value of the estimate
but is the integral of the spectral density function over the bandwidth
of interest. Following these thoughts, it should be stated that the
peak value and bandwidth of a spectral line have considerable variance
in the maximum entropy estimates from real data, but that their product,
which is proportional to the total power, is estimated quite accurately.

. Partly because of this, I recommend that one also plot the integrated

power spectra, i.e.
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|3

fP (k) dk .

-K

This function, which should be plotted on a linear vertical scale

(not in db), goes from zero to ®(0). Of course, if one has not sampled

the spectrum densely enough, the numerical integration may not be very close
to ®(0). This is a powerful clue that the spectrum as plotted is not a
good representation of the true estimated spectrum and that a denser
set of points is needeq)espeqially at.the peaks in the spectrum.

How densely should the spectral estimate be sampled? We can estimate
this from (5) in the section on uppef and lower bounds of the spectrum
if we assume the following.

1) Let the phases of the Cn be such that the upper bound is
achieved. I.e. if all Cn are real and negative, the upper bound is

achieved at k = 0.

-

2) Almost all the power of the spectrum is in this peak. Then,

the bandwidth of the peak is about
B.W. 5 &(0) / peak value

or from (5) and (6)

B.W. . g L- !Cnl -
2k - \T+lc|/) =«

If we want to have at least two points per this bandwidth, then we need

at least 2Q points from =K to +K.
If one has a sharp peak in the spectrum and the sampling in wavenumber

was not dense enough to accurately plot the peak, then a curve fitting

technique can be applied to the peak. If there are three points on the
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spectral peak, which are well above the background level, then the curve of

the functional form
A
2
(k ko)

1+
(8.W/2)2

can be fitted to the three points.

A = peak value
ko = center wavenumber
B.W. = bandwidth (+3 db down points)

An estimate of the total power in the peak is reached by noting

that
+ +© 3
A 5 dk = A (B.W./g) > dk
(k—ko) (B.W./2)" + k
Lo 1 + —_—— Y
2
(B.W./2)
- T
= 3 A (B.W.) .

There are some observations to be made concerning numerical

accuracy in calculating maximum entropyvspectra. It should be noticed
that when there is a sharp, high peak in the spectrum, this means that
the fourier transform of the prediction error filter is very small in
magnitude at the peak frequency. Thus in the fourier transform calculation,
we are summing together a set of N numbers which almost cancel themselves
out. This is of course bad from a numerical accuracy point of view. One
way of deciding if the number of decimal places in the arithmetic is
sufficient is to note that the spectrum can have a dynamic range of

N O [1+ [cn])z

n§1 1- Icnl ’

wvhich is the ratio of the upper bound to the lower bound of the spectrum.
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Obtaining the Maximum Entropy Spectrum From
Measurements of the Cross-Powers Between Sensors

in an Equally Spaced Linear Array

We wish to maximize the integral of the logarithm of the wave number
power density spectrum, i.e.,

20x% K

S log P (k) dk = Y log P (k) dk,
1

- 53 | -K

240x

under the constraints that

+K
SP(k)zn dk = ¢ () , ~N€n<N @
-K

where z = elzﬂkAX, & is the spacing between sensors in an equally spaced

linear array and &(n) is the cross-power between sensors nAx apart.

Using Lagrange multipliers, ‘A', we want the variation to be zero,

n
i.e.,
+K +N
§ S’ log P(k) - Z"An(P(k) z" - @(n)/ijj dk
X n=-N
+K [ 1 4N n:}
= —, - I Az §P(k) dk = 0
‘g P(k) n=-§ B
-K
This gives
1
- - (2)
P (k) +N n
L Az
n=-N n

where the Lagrange multipliers need to be determined by
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satiefying the constraint equations (1). These constraint equations are

equivalent to saying that P(k) has the z transform form of

P(k) = [}.. OO 2N b+ 0(0) ..+ 3(l) N 4 L /2K (3)

. -N N
where the coefficients of 2z through 2z are the known cross-power

values.

Looking at (2), since P(k) must be real and non-negative, it must

be possible to rewrite (2) as

PN/ZK ,

P(k) = > (4)
2 N * =1 4 -2 % —N
(l+alz+azz +...+aNz ) (l+alz +azz +...+aNz )

where l+alz+azzz+...+a,qzN is minimum phase. Setting (3) equal to (4)
I\

and multiplying through by the minimum phase factor, we get

Cooet Q) 2740 ot D(O) .. B(-N)2 .. .) (l+alz+a222+...+aNzN)

P
= ) §2 NS e +b-22—2 + b__lz-l + PN. (5)
l+a;z +a§z +...+a§z

The last equality shows that all the coefficients of positive powers of =z

are zero and that the coefficient of z0 is PV' Performing the convolution
: A

indicated by the first expression in (5) and equating the coefficients of
zo through zN, we have

¢ (0) (1) ... ) 1 Py
o(-1)  9(0) ... P(N-1) a; 0
= . (6)
' .
P(-N)  G(-N+1)... ¢(0) ay 0
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Thus the coefficients of the minimum phase filter and the value of PN

are determined by solving (6).

If the equally spaced linear array is thought of as a sampling of a
stationary complex space series, then the minimum phase filter is the
corresponding Nth prediction error filter and PN is the mean square error
in doing the prediction.

The extremal value for the integral of the logarithm of P(k) 1is

given by

+K +K +K

5- log P(k) dk = g lOg(PN/ZK)dk—S log (1+a
X X e

lz+...+aNzN) dk

+K
- S. log (l+a;z-l+... +a;z-N) dk = 2K log(PN/ZK)
-K

1 § N, -1
iyl log (l+alz+...+aNz ) z dz

% =1 * =N -1
T7ihw g log (l+alz +...+aNz ) z dz

= =1 )
= 2K log(PN/ZK) = log (PN/ZK)

Here we have used the fact that the two contour integrals around the
unit circle are both zero as shown in the appendix. This result can be
rewritten in a slightly different form as

1 +K
K g log P(k) dk = log(PN/ZK)
=X

which says that the average value of the logarithm of the spectrum is the

logarithm of the mean square error divided by 2K.
3
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Upper and Lower Bounds on the Maximum Entropy Spectrum

In performing the Levinson recursion in solving for the prediction
error filters, we have the following equation relating the Nth prediction

error filter to the N-1 th prediction error filter.

1 1\ 0
*
4 by by-1
= '+ C ' . (1)
] *
; b1 b
aN 0 1

Here CN is the Nth reflection coefficient (or partial correlation
coefficient if you prefer). In z-transform terms, where z = elzkax,

we can write

" N _ N-1 N * -1 *
1+ alz+...+aNz =1+ blz+...+bN_lz + CN z (l+blz +...+bN_

-N+1
12 ). (2)

If HN(k) is the fourier transform of the Nth prediction error filter,

we discover that
B0 = By (o + ¢y e TN )

Taking absolute values, we have

B 1 atlegh 2 Jrg @] = g ] a - o). (4)

One might notice that there is at least one value of k at which the
upper bound is reached and likewise for the lower bound. This is proved by
1 3
the fact that the net phase shifts in going from -K to +K of HN_l(k)

and eIZTrNkAx Hs l(k) differ by 2.
N-
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Starting with Ho(k) = 1, we derive that
N

N
T @a+lc|) 3> |B@| 2 n(1-]c|).
n=1 n HN n=1 n

For N > 1, one can note that the bounds may not be achieved. Since

N 2
P_= 0(0) I (1—!cnl ),

N n=1
we can write
N 2 N 2
®0) I (l—]CnI ) o(0) I (1"an] )
n=l £ P (k) < n=l , or
N - .
N 2 N 2
2k I (1+]Cn]) 2k T (1-|C [)
n=1 n=1 n
N N V
i (}:__!E_nl>= PN(k) = I l+[Cn]>
n=1 \+|C ©(0) /2K n=1 \ 1-{Cp] )
N
. 1+|c ]
If = n
Q nfl (1?‘]‘6;[), we have (6)

log [0(0)/2K] ~1og Q 5 log P(k) < log [9(0)/2K] + log Q.
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Appendix

Proof that §log 1+ a,z + a222 S A | z-':L dz = 0,

2 . .. . . .
where 1 + alz + a,z + ... 1is minimum phase, i.e., is analytic and has no
zeros on or inside the unit circle and where the contour of integration is the
unit circle.

From Cauchy's integral formula, we have that
(0) = L £(z)
£(0) = 27i & z dz

if £(z) is analytic on and inside the contour of integration, where the
contour encloses the origin. Because of the minimum phase condition, we see

that log (1 + a z2 + ...) is an analytic function on and imside the

1

unit circle and thus

z + a
4 2

2
%: log (l+alz+a2z +o.d)

- dz = 2mi log (1) = 0. Q.E.D.

Using this result it easily follows that it will also be true that

é:log a + alz'-l + a,z + 44es) z T dz=0.

This is done by letting y = z y, dy = ~z " dz = vyz dz, so that the above

integral is changed to

2 -1
§log (l+aly+a2y + ...) ¥ (;2-) dy

clockwise

= § log (1 + ay + a2y2 + ..l) y_l dy = 0.

counter
v clockwise



