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GENERAL PRINCIPLES FOR ESTIMATION OF COVARIANCE MATRICES

by John Parker Burg

Suppose we have N samples of a pair of random variables, (Xn'yn)’

1 to N, and that we wish to estimate their covariance matrix, i.e.,

n=
= L
X Xy
xy ¥
The normal straightforward method is to estimate this matrix by
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n=1 n=1
b -t

This paper agrees that this estimate of the covariance matrix of
(x,y) is the '"best' estimate in the absence of any other knowledge about
the random variables. However, if the variance of x 1is known to be the
same as the variance of 1y, then the above estimate is not acceptable
since A will not be equal to B except by chance.

The general principle of covariance estimation introduced by this
paper will show how to estimate the covariance matrix when there are
constraints on the form of the covariance matrix. For example, if there
is a'priori knowledge that the variances are equal, then the main diagonal
elements of the estimated covariance matrix must be equal. It will be
seen that the general principle is the same as the normal straightforward
method when there is no a' priori knowledge about the'form of the covariance

matrix.
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The new principle is based on the following observations. If we
have a pair of random variables, (w,z), and we know that their variances

are the same, then their covariance matrix is of the form

w. { w z} ”a d

= | (1)

Suppose we choose a number, -c; (not necessarily the optimum number),
by which to multiply z for the purpose of estimating w. The mean square

error in this prediction is given by

¢! c} a d| (1

d a c

= a(l + cz)-b 2cd

The value of ¢ which minimizes the mean square error is found from the

prediction error filter equation

[

o
[
g~

[» 9
s3]
n
o

where c¢=-d/a and P a(l - cz) =g - d2/a = minimum mean square

error.

If we choose a number,-q, to apply to w to predict 2z, the mean .

square error is given by
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(e A,

d a 1

= a(l +q%) + 2qd.

The optimum value of q is given by

o
o

e
o

2 2 -
or g= ~-d/a and Q a(l-q7) = a-d/a = mninimum mean square error.
We thus see that the optimum value for ¢ 1is the same as the optimum
value for q and that the minimum mean square error in predicting z is

the same as the minimum mean square error in predicting w. Of more subtle

importance, however, is the fact that

G¢+cz)2 = (z+cw)2 = a(l+cz) + 2cd

independent of the value of c¢. Thus if one is interested in estimating
the error in predicting w from =z, using an arbitrary value for ¢,

one could use the sample average of (w+ cz)2 or one could use the sample
average of (z + cw)2! From the complete symmetry of the situation, using
the equally weighted average of these two quéntities is clearly better than
either one individually. Thus, if we have N samples (wn, zn), n=1toN,
the best estimate of the mean square error in predicting w from z or =z
from w, using the number -c¢, is

1 N

o 3 L, ez )’ + (z_+ )P . (2)

1

We now use this estimate of the mean square error for an arbitrary value

of ¢ to estimate the optimum value for c. This is done by simply choosing
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the value of ¢ which minimizes (2), which is

N
-2 2 Wz
n=1

c = (3)

2, 2
nél(wn+zn)
Turning now to the problem of estimating the covariance matrix (1),
the estimate for the variance of w and z is
N
. L 2, 2
a = 5% nEl(wn + zn) . (4)

Using the estimated value of ¢, Eq. 3, and the relation ¢ = d/a, the

estimate for d is simply

N
I wz . : (5)

ﬂ
Ly Lg,
w w z N n N nzn A D
1 N n n n n=1 n=1
= 3 = =
N n=1 %n 1 N 1 N 2
N z wnzn N Loz D B
n=1 n=1 n
. -
then the final estimated covariance matrix is
A;B D
. (6)
A+B
D 2

In light of the above observations, we can now staté the first general

principle for estimating the covariance matrix of two random variables.
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4
Estimate the variances of the two random variables using arny a priori

information. Then, if necessary, make the two variances the same and estimate -

the correlation coefficient, c¢. Using ¢, find the corresponding value of

the covariance between the two original random variables.

The result of doing this when the variances are known to be equal is
given by (6). As a further example, let us apply this principle when there

, ’ . . .
. 1s no a priori knowledge. Let the sample covariance matrix be

. ~ ‘4 -
xn 1 xn yn} A D

(7
n=1 yn D B

[ 1 ne I~

1
N

Here, A and B are the estimates of the variances of x and Y.
1/2 1/2 . .
Thus x/(A) -and y/(B) should have the same variance, namely unity.

The correlation coefficient is estimated as

N x v
2‘% IS N
c nﬂ;“ (B) = (% z Xnyn)/(AB)l/?' = p/am)/?
n=1

Since normalizing x and y to unity produces the sample covariance

matrix of

1 b/ (aB) /2

D/(AB)l/2 1

we see that D 1is the estimated covariance when the general principle is
‘ -
used. Thus, in the absence of a' priori knowledge, the general principle

picks the raw sample covariance matrix, (7), as its estimate.
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These two examples virtually conclude the study of a pair of random
variables, so let us look at the case of three random variables (x,y,z).
Let us first take on the problem where it is known that the three variances

are equal. Let the sample covariance matrix be

. xn {xn yn zn} A D F
1
T L oy _|D B E{ ., (8)
n -
n=1
z F E C
n

The estimated variance, 02’ should thus be (A + B + C)/3 and the

estimated covariance matrix should be

1 s t
( A+§+C ) s 1 T , (9)
t r 1

where s, r and t are the correlation coefficients between x, y and z. If
one blindly uses the results of the two variable theory, a reasonable final

estimate might be"

1 2D 2F
A+B A+C
( A+B+C ) 2D 1 2E (10)
3 A+B B+C :
2F 2E 1
A+C B+C

However, one should be nervous about (10). It should be all right
to use the two variable results to estimate the correlation coefficient
3

between x and y and between y and z, but the coefficient between x

and z will then depend on those two estimates since (10) must be a non-
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negative definite matrix. From another point of view, the estimate of the
correlation between x and 2z should be affected by the correlation that x
and z have with y. The solution of this problem is to remove the infiuence
of y by analyzing the residuals in the prediction of x and 2z from vy

instead of analyzing x and 2z directly. I.e., let us define u and v as

= XSy @ = 27Xy
u = and v = .
o(1-s2)1/2 o(1-r2)1/2

Then u and v have unit variance and are linearly independent of y.
Thus we have complete freedom in the value of the correlation coefficient, q,
between u and v so long as its magnitude is not greater than unity.

We estimate q as

(xn-syn)(zn-ryn)

2 2y
. - ﬁ-Zunvn N N 02((1—52)(l—r2))1/2 )
1 2.2 2 2
N Zun+vn 1 T (xn—syn) + (zn—ryn)
N

02(1—52) oz(l-rz)

X z =8y Z =YX +sr 2
n yn n nyn yn

2.; n
N 1/2
((1-s%) (-r?)) Y/ )
2 2 2 2 2 25
1 . xﬁ—Zanyn+s Y, . zn-2rznyn+r Y,
N (1-s%) (1-r%)
2 F-sE-rD+srB
2 2..1/2
((1-s%) a-r2)
A—ZSD+s2B + C-2rE+r2B

(1—s2) 1—r2
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This simplifies by noting that 2D = s(A+B) and 2E = r(B+C), so that

A - 2sD + szB A - sz(A+B) + s2B = A(l—sz), C=-2rE + r2B = C =

r2(B+C) + r2B

C(l-rz) and 2F - 2sE -~ 2rD + 2srB = 2F - sr(B+C) -

sr(A+B) + 2srB 2F - sr(A+C). Thus we have

2F
2F-sr (A+C) A+C T ST
q : = (11)
(A+C) ((1-5%) (1-r%))1/2 ((1-s%) (1-r%)) /2

We would now like to see what covariance between x and =z 1is
implied by this value of q. It is simpler to see what value of q is

implied by (9) by calculating

{l/(l—sz)l/i - s/(l—sz)l/i Q} { 1 s tT 0
q = s 1 r -r/(l—rz)l/2
[ Y 1/(1-r2 /2
- g(l-sz)l/z 0 (t—sr)/(l-sz)l/ig 0
—r/(l—rz)l/2 =
1/(1-r2)1/2
t-st

((1_82)(1_r2)1/2 :

Comparing with (11), we note that t = 2F/(A+C) and we still get
(10) for our covariance estimate. This happy result has the following
conclusions for estimate (10).

(1) The order in which we analyze the pairs of vériables does not
change the estimate.

(2) Since our estimates of 8, r and ¢q have magnitudes bounded

by unity, (10) is at least non-negative definite. Thus (10) is a possible
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covariance matrix. This proves the matrix theorem that if (8) is non-
negative definite, then so is (10).

(3) 0f course, as N+ o | (10) goes to the true covariance matrix.

(4) Another property is that if (10) happens to be the raw covariance
matrix, then application of the general principle leads to (10)
again. Thus, if the raw covariance matrix agrees with the constraints,
then there is no change in the answer.

(5) Itwill pe proven shortly that thedeterminant of (10) is equal to
or greater than the determinant of the raw covariance matrix, with equality

occurring only if the sample variances are equal to start with.

We have juéE seen that our estimate of the covarianceV;atrix (10)
has internal consistency in that the analysis of (8) in terms of the
residuals in predicting x and z from y gives the same covariance
between x and 2z in (10) as does a direct analysis ignoring y. We
will now show that this is true for any number of variables where their
variances are known to be equal.

We will use the 4 variable case, (xl, Xys Xg» X4)’ to illustrate

the general proof. Let the raw sample covariance matrix be

E B F I 12)
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which leads to the covariance estimate of

[, 2E 21 27
A+B  AHC  AHD
2E , 2F 21 L'psw
A+B B+C  B+D | 1 .
A+BHCHD _ AtB+ctD, | P 4
4 28 2F 2 G s ¢ 1 r
A+C BtC C+D
w t r 1|
2J 21 26 1 (13)
| A+D B+D  CHD _

From our 3 variable work, we have proven that the 3 by 3 submatrices
of (13) are non-negative definite if (12) is non-negative definite. We
will now first show that the estimate (13) is consistent with our
general principles of covariance estimation. We do this by considering
the prediction error filter for predicting Xy from x and x and the

2 3

prediction error filter for predicting X, from X, and X3 s i.e.

1 1 i 1 t B 0

p s (’ P q ,
P 1 g =400 Lo Bip=40¢- (14)
s q 1 az 0 t r 1 1 Q

We shall apply these filters to our sample covariance matrix, but
for mathematical simplicity, we shall multiply (12) by two first. Then
using the definitions of p, q, r, s, t and w given in (13), we have

for our doubled sample covariance matrix
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2 A
p (A+B)

s (A+C)

_y(A+D)

PA
sA

wA

Post multiplying by

pB

qB

tB

p (A+B)
2B
q(B+C)

t (B+D)

sC

qC

rC

s (A+C)
q(B+C)
2 C

r (C+D)

wD
tD

rD

and using (14), we get

PA
sA

wA

Premultiplying by

pB

qB

tB

sC

qC

rC

wD

tD

D

w (A+D)]|
t (B+D)
r (C+D)
2D

A pPA

pB B
sC qC
wD tD

0]

By

B1

1]

1 0
oy S
0y B
0 1

- (15)
sA wA
qB tB .
C rC
rD D
AP A [wtsB 1+p6;|
0 0
0 0
D [w+ta, +roc2] Q|
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AP

0

A [w+s B +P 62] 0

A[w+s31+p5 2] +D [w+tocl+roc2_}

which is the sample covariance matrix of the residuals in predicting x

and x

2 AP

o

from x

4

2

and x._.

L.

Dfirteo +ra,] + afwtsB +p8,]

Gy

0

0
B, . AP A[w+s61+p82]
By D[w+toa1+roc 2] DQ
l -
(16)

2 DQ

applied to the estimated covariance matrix (13), we get

which shows that w+tal+rx

1

3 If the prediction error filters are
P s r s

1 P s w 0

p 1 q t 8 P wtsB. +pB

2] _ 1 2 (17)
+
s q 1 r Bl w+toc1 raz Q
4 t T 1 1

Thus (16) simplifies to

(A+D) (wtto

Using P

2 AP

and Q

+ra2)

5 = w+sBl+p82 since the matrix must be symmetric.

(A+D) (wtta,+ro..)

2 DQ

172 (18).

to make the variances of the residuals equal and

using the general principle to estimate the correlation coefficients for

(17) and (18), we see that the common answer is

2(A+D) (wtto

1

+ra2)

w + ta, + ro

(2A+2D)VPQ

1

2

VFQ
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This shows that using 2J/(A+D) in (13) for the estimated correlation
between x1 and x4 gives the same correlation between the Xy and
X, residuals as obtained from the raw sample covariance matrix.

We now prove that the determinant of (13) is equal to or greater

than the determinant of (12). Let us use the prediction error filter

decomposition, where the =x values are not needed explicitly.

1 s s W] [T o o o P o« & &
P 1 q t Yl 1 0 0 _ 0 Q * *
s q 1 T Y2 €1 1 0 0 0 R %
A t r %_ Y3 ey 1y %‘ —9 0 0 %J
Then
1 v, v, v {1 p s wl [ o o ol
1 2 3
0 1 el €2 P 1 q t Yl 1 0 0
0 0 1 ul s q 1 T YZ 81 1 0
—Q 0 0 1 a | v t T {_ Y3 82 ul %_
ﬂP 0 0 O»
0 Q 0 0
i 0 0 R 0
_P 0 0 S
- A+B+C+D 4
Thus the determinant of (13) is (————) PQRS.

4
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Making the same transformation on (12), we get a non-negative definite

matrix of the form

where the x's here are not normally zero. The determinant of this
matrix is equal to or less than the product of the main diagonal,
the equality coming only if all the % terms are zero, which will
occur only if A=B=C=D so that (12) = (13).

Thus we have

4

A+B+C+D PQRS

determinant of (12) < ABCD PQRS = ¢( A )

by the geometric inequality, with equality again occurring only if
A=B=C=D.

We should note that (13) is uniformly less singular than (12)
in the sense that every submatrix of (13) is more stable than the

corresponding submatrix of (12).



