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Slant Frames

by Jon F. Claerbout

A need exists to have downward continuation techniques not only
for waves which are near to vertically up- or down-going waves, but
also for waves which are near to some slanted propagation path. Figure
1 illustrates application to downward continuing head waves and Figure
2 illustrates study of salt dome flanks by "forward-looking" or

"backward-looking' techniques.
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Figure 1. Use of slant frames to downward continue refraction early
arrivals. Reflection coefficients may be estimated by coherence of
up~ and down-going waves. The arrow alongside U dindicates the
direction of extrapolation (which is opposite to the direction of
propagation). Clearly the downward continuation cannot go on very
far before the up and down going frames no longer overlap. Also,
it is only near the first breaks where elastic wave propagation is
well approximated with the scalar wave equation. Later on shear

waves must develop.
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Figure 2. Use of slant frames to downward continue reflection data
into salt dome flanks without utilizing waves which have propagated

through the confused dome top.

Before proceding to the proposed technique it is instructive to
look at an obvious approach and the reasons why we will discard it.

The obvious idea is to do a perturbation about a slanted wave, i.e.

P( x,z ) = Q( x,z ) eim( z cosd + x sinb ) n

This substitution into the Helmholz equation PXX + PZz = m2 P along

with the parabolic approximation sz = (0 gives

(2)

I
o

Qxx + 2im( Qz cosO + QX sin6 )



281

For waves near rays in the 0 direction our choice of (1) implies

that QXX should be small in (2) . For such waves (2) reduces to

Q = Qx tan 6 (3)

Z

But (3) is merely a convection or an interpolation equation, that is
if

Q( x,z, ) = £(x) then Q¢ X2 + Az ) = £f( x + Az tan 0 )

0

To solve (3) or anything like it would be wasting effort because in
extrapolating Q in the =z-direction one merely is translating an
x—dependent function along the x—-axis. This should be done by the
coordinate transformation, not the differential equation. Not only
is it inefficient use of the computer but also the non-vanishing QZ
in (3) will press against the approximation sz =~ 0.

Wave extrapolation equations which handle only diffraction and do
not monkey around with predictable translation may be derived from the

coordinate transformations

x' = x - ct sind (42)
z' = 2z (4b)
t'" = t * z/c cos® - x/c sinb (4c)

As usual we define

P( x,z,t ) = Q(x',z",t"') (5)

and form the partial derivatives by the chain rule
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-1
- v ' v _ .
PX va XX + sz ZX + Qt' tX QX' ¢ “sin® Qt' (6a)
-1
= 1] 1 1 - +
Pz QXV XZ + sz zz + Qtl tz sz * ¢ “cosf Qt' (6b)
= 1 ' v - .
Pt Qx' X, + Qz' zt + Qt' tt ¢ sinB Qx' + Qt' (6c)

Forming second derivatives of (6) and inserting into the wave equation

A . . .
PXX + Pzz =c Ptt we get an equation for Q . To simplify the
sequel we omit primes on the coordinates of Q . We have
-1 -2 2
-2 i + in~0 +
Qxx ¢~ sind QXt ¢ 7 sin Qtt

-1 -2 2
+Q + 2c¢ cosb ta + ¢ cos B Qtt (7)

ZZ

2 _1 ...2
= i - 1 -+
sin™ 6 QXx 2 c sinf th c Qtt

which with the parabolic approximation sz = 0 collapses all the way

down to

_ -1
ta = * .5c¢c " cosf Qxx (8)

Equation (8) is a familiar equation indeed, and there are no convection
terms. To use (8) in the problems of figures (1) and (2) the downgoing
waves D are extrapolated with the minus sign in (4c) (the plus in (8)).
The up-coming waves are extrapolated with the other signs. The angle
8 dis taken positive in all cases except for the up-coming wave in

figure 2.



