263 19 Dec. 1973

Impedance Estimation

by Jon Claerbout and Ted Madden

Certain statistical problems arise in the estimation of impedance
functions. These problems are as yet unfamiliar in reflection seismology,
but as we attempt to extract more information from reflection seismograms
these problems will become more apparent. As a guide to the future in
seismics we will take a look at the present in electromagnetic interpreta-

tion.
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We first consider magnetotellurics. Ordinarily one measures three

magnetic components ( hx’ hy’ hz ) and two electric components

( e ey ) of the earth's natural fields. Physically these should be

related by a matrix operator like

-
©x 11 f12 i3 hy
or E = RH oy
Cy 21 Y22 Ta3 by
h
|z

The matrix times vector operation in (1) is a complex multiplication
for each fourier frequency component. Likewise there is an inverse

relation

By (S5 s | [
hy & S51 822 Ley or H = S E (2)
By | | %31 S32
Substituting (2) into (1) we get
E ~ R H ® RS E
or (3)

R S

&
|l

~

Now since R and S are ordinarily estimated as R and S by different

statistical procedures we may wonder about the quality of the approximation

(3).
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To simplify the discussion let us talk about vectors x and y

where components of x and y should satisfy the relations

x = ay (4a)

y = bx (4b)

where a = 1/b but they do not because x has an independent random

number added to each component and so does y . Hence instead of (4)

we have
X = ay (5a)
v X b x (5b)

Suppose further that the corrupting noises are unstationary and
unknown. The simple minded least squares estimates of a and b

from (5) are

(x-y)/ (y-y) (6a)

>
Il

o>
]

(y  x)/ (x -+ x) (6b)

Multiplying (6a) and (6b) together we get the well known inequality

g___(x-y)(y-x) < 1 (7)

& Gy - v (x - %

which is to be compared to the desired product (3). The inequality arises
because additive noise biases both a and b to have denominators which
are too big. The more noise the worse the bias. Even with an infinite
amount of data we are unable to average away the bias.

Next we noticed that estimates of a and b formed by medians

are better behaved. Specifically, if

>
Il

median }/Xi / yi% (8a)

i ‘“
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b = meciiian Zyi / xis (8b)

then it is easy to see that

S

o>
It

=

(9)

This led us to believe that we were in search of some sort of matrix median
for the magnetotelluric problem. However, there is a pitfall here. For

a while we assumed that if (9) was satisfied that a and b would not

be biased and that averaging an infinite amount of data would always lead

to the correct limits ( ; +a ) and ( g + b ). To see that this is not
so imagine that a dis positive, X, contains no random additive component,
but that vy contains a massive amount of random noise. To compute (8a)

we arrange the values of Xi/yi in a table of descending numerical value
as in table 1. Then select the median as the middle element in the table.

Clearly the answer is nearly zero regardless of the true value a .

value of Xi/yi because Y4 happens to be size of group
near + « near zero tiny
near a nearly noise free tiny
near 1/+ noisy with xi/yi positive nearly 50%
near 1/(-) noisy with Xi/yi negative nearly 50%
near - « near zero tiny

Table 1. Given Xi/yi has i polluted by a massive amount of
additive noise this table tabulates xi/yi in numerical order.
The middle value of Xi/yi on this table obviously takes a

numerical value near zero.
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Now we are faced with the realization that we do not have an
averaging technique which, given an infinite amount of data, ensures
convergence to the correct answer ( g + a ). We concluded this discussion
with the idea that by iterative techniques we could always hope to satisfy

non-linear constraints like

ab =1 (10a)
or
RS =1 (10b)

whether we use Ll or L2 norms. Although such constraints seem like

a good idea they do not ensure the convergence ( a~>a ) or ( b b ).
Despite the fact that the median won't eliminate bias even with the

constraints (10) and because of the necessity of robust processing field

data we decided to go ahead anyway in an effort to get a generalized median.

We decided to define a scalar E (like a mechanical potential energy

function) to be minimized which is such that each data point contributes

a unit vector to the error gradient (like a unit of physical force). In

the regression
2 X ax + by (11)

the potential energy E where

z - a Xt -b yt
E = & t (12)
. ( 2 + 2) 1/2
Xt yt
has the desired gradient

Ba + Xt

E = L - (x2 + yz)_l/2 sgn (z_. - ax_ -by) (13)
3 t t t

t +y
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in which each time point contributes a unit vector. This puts all data
points on an equal basis. To actually determine numerical parameters

for a and b it is anticipated that iterative adjustment in the direction
of the negative gradient would provide a useful technique in many applica-
tions. Unfortunately without having had any real practical experience

with these estimation procedures we are unable to identify the important

pitfalls which seem certain to arise.
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January, 1974

Dear Jon,

I received your typed discussion on estimation today, and after
going in a few circles I think I found a mistake which changes the
conclusions, although I haven't worked out the new conclusion. The

mistake is the statement

_ 1

4 = median {xi/yi} = %— A
median {;T}

i
which became obvious when considering your example of x noise free
for in this case g should be correct (at least in the trivial case
where all X; = X ). The problem comes in the ordering, since small
positive Xi/yi are lumped in with small negative xi/yi and the
median is very biased, while large pos. and neg. yi/xi are separated
and they don't bias the result. If we use the same ordering but
constrain a g = 1 our result is still biased (but less so), but I
wonder if our log xi/yi on a cylinder will help. ‘I guess not. We
need an averagiﬁg that dissipates the influeﬂce of ratio terms with
equal magnitudes but opposite signs irrespective of the size of the
ratio. How about sgn( %«) n 3— ( I think the use of f&n guarantees
a B = 1 without using this as a constraint). When x and y are
complex I am not sure of the strategy. We need a way of distinguishing
between sgn( %-) and sgn( 2n-§ ) and still be scale invariant.
How about a spherical surface? No as +0 or zw are lumped
together. The cylinder is better but the averaging law must allow

cancellation for elements with equal (-% ) but a balanced distribu-

tion of angles.



all Kyi > Xy

cases.

«
£
[ N

NP W N

270

If we use sgn(-§ ) &n¢( %; ) where K is chosen such that almost

Taking 3s an example x, =1

= e b N WP IO N 00000 OO0 O

we avoid a sign ambiguity except for a small number of

i », a =1 which is a sort of gaussian
looking distribution with |N|> y , and taking K>1

and throwing out v + Ni = 0 (or putting half in

+ 0, half in - 0 ) the median sgn( %-) n( é%—) falls
just inside the set associated with a =1 and thus

is unbiased.

I guess this same trick will work for complex

i6 X X
ti 2 — , 0 = ha =~
ratios e n( Ky ) phase( v )

It certainly was a good stay for us all. Thanks for all your help.
I hope you all have a good holiday season and best wishes for the
New Year.

Ted Madden *

v * Hand written letter re-typed at Stanford(se)



271

Diagram to illustrate that for signed numbers z; s median

(zi) # 1/median (l/zi)

~ A B

z, 1/z
./ B A
D C

Madden's approach is to put ei = arctan (xi/yi) on a cylinder.
Seems like a good idea, but we don't know anything about uniqueness or

computation of such medians.
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L1 Norm Program and Test Case - Jon F. Claerbout 272
CLAERBOUT BIN=DO3 ;)/73

DEAR GANG,
EARLY ON IN THIS RESEARCH I WAS HOPING TO COME UP WITH AN
ALGORITHM WHICH WOULD BE NEARLY OPTIMAL IN MOST APPLICATIONS
AND AT LEAST COULD ALWAYS BE EXPECTED TO WORK IN ANY
APPLICATION., I DIDN'T ACHIEVE EITHER GOAL, THE PRESENT
ALGORITHM IS FPAR FROM OPTIMAL FOR THE LARGE M WHICH oCCUR
IN APPLICATIONS WHERE UNDERDETERMINED SOLUTIONS ARE TO BE
SMOOTHED. I AM CONFIDENT OF THE EXISTANCE
OF MUCH BETTER ALGORITHMS PFOR SUCH SPARSE MATRIX CASES.
FURTHERMORE I DISCOVERED SOME PATHOLOGICAL CASES IN WHICH
MY PRESENT ALGORITHM DOESN'T WORK. 1IN LINEAR PROGRAMMING THESE
CASES ARE CALLED DEGENERATE. THESE CASES ARISE ONLY WHEN MORE
THAN PRECISELY M OF THE N EQUATIONS TURN OUT TO BE EXACTLY
SATISFIED. OFTEN THIS DOESN?'T HURT BUT SOMETIMES AN EXIT THEN
OCCURS BEFORE YOU HIT THE TRUE MINIMUM., THIS HAPPENED SEVERAL
TIMES IN TEST CASES WHER:&Z THE DATA VECTOR CONTAINED INTEGERS.
USUALLY YOU ONLY HAVE TO LOOK IN M DIRECTIONS TO SEE IF
DESCENT IS POSSIBLE. THESE ARE THE DIRECTIONS YOU GET FROA
CASTING OUT ONE EQUATION AT A TIME FROM A BASIS OF M EQUATIONS.
IN THE DEGENERATE CASE (MORE THAN M EXACTLY SATISFIED) THERE
ARE MORE DIRECTIONS (SETS OF M-1 EQUATIONS). THE NUMBER OF
DIRECTIONS IS SOME PREPOSTEROUS FACTORIAL FUNCTION OF THE
AMOUNT OF DEGENERACY.
PRESENTLY THE ONLY TWO WAYS I KNOW TO GET AROUND THIS ARE .
EITHER TO ADD A LITTLE NOISE TO THE DATA, OR TO DO WHAT THEY
DO IN LINEAR PROGRAMMING, WHICH IS SOMEWHAT HAIRY AND AMOUNTS
TO PRETENDING YOU HAVE ADDED A LITTLE NOISE. IT DIDN'T SEEM
WORTH THE TROUBLE. , : .
BEST REGARDS,
JON F, CLAERBOUT
THIS TEST CASE FPITS SINUSOIDS TO A STEP.
BELIEVE IT OR NOT THIS IS A VERY ODD PATHOLOGICAL TEST CASE.
IT RUNS IN ABOUT .5 SEC ON PRINCETON'S IBM 36097 IN WATFIV,
DIMENSION A{(41,14) ,X(14)
DIMENSION D(41) ,E{(41),GU({41),GD(41)
DIMENSION NOW (14)
DATA D/20*‘1.,20*’1.,0./
NOWN=POINTERS TO PRESENT BASIS EQUATIONS, INITIALLY NULL.
DATA NOW/14%0/
SMALL=ABOUT (10%%*-5)% TYPICAL D
SMALL=1.E-5
N=40
ND=41
HERE WE SET UP WEIGHTS FOR L1 NORM FIT.
DATA GU,GD/841*1,.,41*%~1,./
M=4
FILL IN COEFPICIENT MATRIX.
Do 10 I=1,N
ARG={I~-N/2-.5)*3.14159265/N
po 10 J=1,M,2
A(I,J)=COS({ARG* (J-1))
A(I,J+1)=SIN(ARG*J)
CALL ELSKEW(ND,N,M%,4,D,GU,GD,SMALL,NONW,X)
DO 20 I=1,N
E{(I)=0.
DO 20 J=1,4
E(I)=E(I)+A(I1,J)*X(J)
CALL SPLOT (N, E, D)
STOoP

=JUST TELL ME
WHAT IT IS IN
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23 END
24 SUBROQUTINE ELSKEW (ND,N,M,A,D,GU,GD,SHALL, NOW,X)
- C FIND X(I) TO MINIMIZE
C N M
C ESUM = SUM SKEWNORM(K, SUM (D(K)=-A(K,I)*X(I)) )
C K=1 I=1
C WHERE ( GU(K)* (ER-SMALL) IF BR.GT.+SMALL GU.GT.0
C SKEWNOBM(K,ER) = ( GD(K)* (ER+SMALL) IF ER.LT.-SMALL GD.LT.0
C ( 0. 1F ABS(ER) .LE.SMALL.GE.O.
25 DIMENSION A (ND,M),X(M),D(ND),GU(ND),GD (ND),NOW (M)
26 DIMENSION W(41),F(41),K(41)
27 DIMENSION B (14, 14) ,COL (14)
28 CALL ENIT (ND,N,N,K,A,D,X,B,NOWN,F,GU,GD,SMALL)
29 LOOP=0
C IF ONLY GU AND GD CHANGED YOU MAY REENTER HERE.
30 ENTRY AGAIN
31 50 LOOP=LOOP+1
32 CALL HUGO (ND,N,M,A,F,GU,G6D,SMALL,B, KICK,COL, NOW)
33 IF (KICK.EQ.0) RETURN
c FIND SCALAR T WHERE X=X0+ (COL OF B)*T
34 Do 60 I=1,N
35 W (I)=0.
36 DO 60 J=1,M
37 60 W (I)=W(I)+A(I,J)*COL(J)
38 CALL SKEWER (ND,N,W,F,GU,GD,SMALL,K,T, ML, MH)
39 WRITE(6,77) (K(L),I=ML,MH)
40 77  PORMAT (40I3)
C PICK OUT A NEW BASIS EQUATION
41 NEW=K (ML)
2 DO 70 L=ML,MH
43 70  IP(ABS (W (NE#)).LT.ABS (¥ (K(L))))NEW#=K(L)
iy NOW (KICK) =NEW
45 CALL REBASE (ND,N,M,A,B,KICK, NEW)
46 T=F (NEW) /W (NEW)
47 IF(T<EQs0e+sAND.LOOP.GT.¥) RETURN
48 DO 75 J=1,H
49 75 X (J)=X (J) +COL (J) *T
50 ESUM=0,
51 DO 80 I=1,N
52 F(I)=F(I)-W(I)*T
53 IF(F(I).GT.SMALL) ESUM=ESUM+GU (I)*F (I)
54 80 IF(F(I)s+LT.-SMALL)ESUM=ESUM+GD (I)*F(I)
55 WRITE(6,71) T, (X(J).,J=1,H),ESUM
56 71 FORMAT (1X, 10E12.5)
57 GO TO 50
58 END
59 SUBROUTINE ENIT (ND,N,%,K,A,D,X,B,NOW,F,GU,GD,SMALL)
c INITIALIZATION ('INIT' HAPPENS TO BE A SYSTEM ENTRY AT PRINCETON)
60 DIMENSION A (ND,M),D(ND),X (M) ,NOW(M),F(ND) ,K (ND)
61 DIMENSION GU (N) ,GD (N)
62 ' DIMENSION B(14,14) ,COL (14)
63 DO 30 J=1,M
—_ C INITIALIZE SOLUTION X TO ZERO.
4 X(J)=0.
65 DO 10 I=1,M
66 10 B(I,J)=0.
67 SC:On

68 DO 20 I=1,N
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- 69 20 SC=SC#+ABS(A{(1,J))

c INITIALIZE BASIS INVERSE MATRIX B TO DIAG.
70 30 B (J,Jd) =N/SC
~~ 71 DO 40 I=1,N
‘ c INITIALIZE RESIDUAL VECTOR F(I) TO D(I)
72 ' F (I)=D(I)
C INITIALIZE EQUATION POINTERS TO 1 THRU N .
73 490 K(I)=1
C GET BASIS EQNS WHICH WERE OUTPUT FROM PREVIOUS CALL, IF ANY.
C THIS IS VERY GOOD IF OVERALL PROBLEM IS A SEQUENCE OF SIMILAR ONES
74 DO 80 KICK=1,M
75 NEW=NOW (KICK)
76 IF(NEW.LE.0.OB.NE¥.GT.N) GO TO 80
77 CALL REBASE (ND,N,M,A,B,KICK, NEW)
78 80 CONTINUE
C FINALLY UPDATE SOLUTION AND RESIDUAL FOR THE SELECTED BASIS.
79 DO 65 I=1,M '
80 DO 60 J=1,M
81 NEW=NOW (J)
82 IP{NEW.LE.0.OB. NEW.GT.N) GO TO 60
83 L{X)=X(I)+B{(I,J)*D(NEN)

84 60 CONTINUE
85 65 CONTINUE

86 DO 50 1I=1,N
87 Do 50 J=1,M
88 50 P(I)=P(I)-A(L,J)*X(J)
C COMPUTE AND PRINT ERROR SUM=ESUMNM,
89 BESUM=0.
90 DO 90 I=1,N
91 IF(F(I).GT.SMALL) ESUN=ESUM®GU (I)*F (I)
12 90  IF(F(I).LT.-SMALL) KSUM=ESUMGD (I)*P (I)
93 WRITE(6,71)SC,(X(J),J3=1,M) ,ESUM
94 71 FORMAT (1X,10E12.5)
95 RETURN
96 END
37 SUBROUTINE HUGO (ND,N,M,A,F,GU,GD,SMALL,B,KICK,COL,NON)
Cc SELECT A DIRECTION BY TAKING SOME COLUMN OUT OF INVERSE BASIS,
98 DIMENSION A{(ND,HM),F(NKD) ,GU(ND) ,GD(ND)
99 DIMENSION NOW (M)
100 DIMENSION B(14,14) ,COL (14)
101 DIMENSION G (14) ,GP (14) ,GM (14)
102 Do 110 1=1,H
103 GP(I)=0.
104 GM(I)=0.
105 110 G (I)=0.
106 DO 135 L=1,N
107 IF(ABS (F(L)).LT.SMALL) GO TO 120
108 IF(F (L) +GT.0.)HIT=GU (L)
109 IP(F{(L) .LT.0.)HIT=GD (L)
110 DO 115 J=1,H4
111 115 G (J)=G(J)~-A (L,J)*HIT
112 , GO TO 135
113 120 DO 130 1=1,H
~114 NT=0.
C IP YOU ARE SURE THAT YOU WON'T HAVE DEGENERACY YOU CAN SAVE
C TIME BY REPLACING NEXT DO LOOP BY Wr=1,
115 DO 125 J=1,M
116 125 WT=WT+A(L,J)*B(J,I)

117 IP(WT.LT.0.)GP (I)=GP(I)~GU(L)*WT
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119
120
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123
124
125
126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142

143

144
145
146
147
o148
149
150
151
152
153
154
155
156
157
158

159

160
161

130
135

140

150

71

170
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IF(HT.GT.0.,)GP {(I)=GP(I)~-GD(L)*uT
IP(HT.GT.0.)GM{I)=GM(I)-GU(L)*WT
IF(WT.LT.0.)GM(I)=GM (I)=~GD(L)*NWT
CONTINUE

KICK=0

OLDK=0.

DO 150 I=1,M

GR-‘-O:

DO 140 J=1,M

GR=GR+G {(J) *B(J,I)

GP(I)=GR+GP (1)

GM(I)=GR+GM(I)

IF(GP (I)*GM(I).LT.0.) GO TO 150
TK=AMIN1 (ABS{(GP (1)) ,ABS(GM(I)))
IFP{TK.GT.OLDK) KICK=I
IF(TK.GT.OLDK) OLDK=TK

CONTINUE

PRINT LEFT AND RIGHT ERROR GRADIENTS.

WRITE(6,71) OLDK, (GP(I),I=1,H)
WRITE(6,71) OLDK, (GM(I),I=1,N)
FORMAT (1X,10812.5)

IF (KICK.EQ.0) RETURN

DO 170 I=1,M

COL (I) =B (I,KICK)

RETURN

END

SUBROUTINE REBASE(ND,N,M,A,B,KICK, NEW)

C SCALE THE COLUM B({I,KICK) TO HAVE UNIT PROJECTION ON ROW A (NEW,I)
C REMOVE FROM OTHER COLUMNS B(I,J) THEIR PROJECTIONS ONTO A (NEW,I)

noacnooaoooaoaoaan

10

20

30
40

DIMENSION A (ND,N)

DIMENSION B(14,14) ,ROW (14) ,COL (14)

DO 10 J=1,M

ROW {J) =0.

DO 10 I=1,M

ROW (J) =ROW (J) +A (NEW,I)*B(I,J)
DO 20 I=1,HM

COL (I) =B (I, KICK) /ROW (KICK)
DO 30 I=1,M

DO 30 J=1,M

B(I,J)=B (I,dJ)-COL(I)*ROW (J)
DO 40 I=1,M

B (I, KICK)=COL (I)

RETURN

END

-

SUBROUTINE SKEWER(ND,N,W,P,GU,GD,SMALL,K, T, ML, MH)
SOLVE RANK 1 OVERDETERMINED EQUATIONS WITH SKEW NORM
INPUTS- N,W,F,GU,GD,SMALL,K. OUTPUTS- K,T,ML,MH.
FIND T TO MINIMIZE

N
v LS = suM SKEWNORM (K, P (K) -W (K) *T)
K=1
WHERE ( GU(K)* (ER-SMALL) IF ER.GT.+SMALL GU.GT.0
SKEWNOBRM(K,ER) = ( GD(K)*(ER+SMALL) IF ER.LT.-SMALL GD.LT.0
0. IF ABS(ER) . LE.SMALL.GE.O,

GU,GD,W,AND F ARE REFERENCED INDIRECTLY AS W (K(I)),I=1,N ETC
MINIMA WILL BE AT EQUATIONS K (ML) ,K(ML+#+1),...K(MH).
DIMENSION W {(ND) ,F(MD) ,K(ND) ,GU(ND) ,GD (ND)

DIMENSION G (1000)
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162 LOW=1
163 LARGE=N

164 ML=N

165 MH=1

166 GN=0,

167 GP=0.

168 DO 50 ITRY=1,N

169 L=K (LOW+MOD ( (LARGE-LOW) /3+ITRY, LARGE-LOW+ 1))
170 IF(ABS (W(L))+EQ.0.) GO TO 50

171 T=F (L) / (¥ (L))

172 F (L) =W (L) *T

173 DO 10 I=LOW,LARGE

174 L=K (1)

175 ER=F (L) - (L) *T

176 G (L) =0.

177 IF (ER.GT.SMALL) G (L)=-W (L) *GU (L)
178 10 IF(ER.LT.-SMALL)G (L)=-# (L) *GD (L)
179 CALL SPLIT(LOW,LARGE,K,G,MLT,NHT)
180 GNT=GN

181 DO 20 I=LOW,MLT

182 20 GNT=GNT+G(K(I))

183 GPT=GP

184 DO 30 I=MHT,LARGE

185 30  GPT=GPT¢G(K(I))

186 GPLX=0.

187 GMIX=0.

188 DO 40 I=MLT,MHT

189 L=K (I)

190 IF (W(L) .LT.0.)GPLX=GPLX~W (L) *GU (L)
191 IP(W(L).GT.0.)GPLX=GPLX~W (L) *GD (L)
192 IF(W(L) .GT.0.)GMIX=GMIX~4 (L) *GU (L)
193 40 IP(¥(L).LT.0.)GMIX=GHMIX-W(L)*GD (L)
194 GRAD=GNT+GPT

195 IP((GRAD+GPLX) * (GRAD+GMIX).LT.0.) GO TO 60
196 IF(GRAD.GE.O.) LOW=MHT+1

197 IF (GRAD.LE.Q.) LARGE=MLT-1

198 IF(LOW.GT.LARGE) GO TO 60

199 IF(GRAD.GE.0.) GN=GNT+GMIX

200 IP(GRAD.LE.0.)GP=GPT+GPLX

201 IF ((GRAD+GPLX) . EQ,.0.) ML=MLT

202 IF((GRAD+GMIX) .EQ.0.) MH=MHT

203 50 CONTINUK
204 60 ML=MINO (ML, MLT)

205 MH=MAXO (MH, MHT)
206 RETURN
207 END
208 SUBROUTINE SPLIT(LOW,LARGE,K,G,ML, MH)
c GIVEN G (K(I)),I=LOW,LARGE
c THEN REARRANGE K(I),I=LOW,LARGE AND FIND ML,MH SO THAT
c (G(K(I)) ,I=LOW, (ML-1)) .LT. O AND
v C (G(K(I)),I=ML,MH)=0, AND
c (G(K(I)) ,I=(MH+1),LARGE) .GT. O.
209 DIMENSION K{(LARGE),G(41)
210 ML=LOW
211 MH=LARGE

212 10  ML=ML-1

213 20 ML=ML+1

214 IF(G(K(ML)))20,30,30
215 30  MH=MH+1

——
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216 80  MH=MH-1
217 IP(G (K (MH)))50,50,40
218 50  KEEP=K (MH)
219 K (MH) =K (ML)
220 K (ML) =KEEP
221 IF(G(K(ML)).NE.G (K (MH)))GO TO 10
222 DO 60 I=NL,MH
223 II=I
224 IF(G(K(L))«NE.0.0) GO TO 70.
225 60 CONTINUE
226 RETURN
227 70  KEEP=K (MH)
228 K (MH) =K (II)
229 K (II)=KEEP
230 GO TO 30
231 END
232 SUBROUTINE SPLOT (N,Y,D)
c THIS IS JUST A PRINTER PLOT SUBROUTINE.
233 DIMENSION LINE(130),Y(N),D (N)
234 DATA IBLANK,IX,IO/! ', IXXXX? , V====1/
235 LA=121
236 LA=75
237 B=0.
238 DO 10 I=1,N
239 IF(ABS(Y(I)).GT.B) B=ABS(Y(I))
240 10 IF(ABS(D(I)).GT.B) B=ABS(D(I))
241 ALF=(LA+2)*,5
« 242 BET= (LA-1) *,5/B
243 DO 40 IT=1,N
244 ID=ALF+BET#*D (IT)
245 IY=ALF+BET*Y (IT)
246 I1=MINO (ID,IY)
247 I2=MAX0(ID,IY)
248 DO 20 I=1,LA
249 20  LINE(I)=IBLANK
250 DO 30 I=I1,I2
251 30 LINE(I)=IX
252 SMALL =1.E-4
253 IF (ABS (Y (IT)-D(IT)).LT.SMALL) LINE(I1)=I0
- 254 WRITE(6,71) IT,(LINE(I),I=1,LA)
255 71 FORMAT (I4,1X,12921)
256 40 CONTINUE
257 RETURN
258 END
$END
$ENTRY
0.25471E 02 0.00000& 00 0.00000E 00 0.00000E 00 0.000008 00 0.40000E 02
0.40000E 02 0,00000E 00-0.40000E 02 0.20577E-04-0.13361E 02
0.40000E 02 0.00000E 00-0,40000E 02 0.20577E-04-0.13361E 02
34 7
0.72984E 00 0.00000E 00 0.11461E 01 0.00000E 00 0.000005 00 0.13314E 02
0.39919E 02 0.26864E 01 0,13136E 01 0.10770E 01-0.39919E 02
0.39919E 02-0,13136E 01-0.26864E 01-0.22026E 01-0.39919E 02
12 7 34

0.19759E 00 0.00000E
0.10517E 02 0.15624E
0.10517E 02 0.76243E

4 37

00 0.11601E
02-0.10517E
01-0.145178

01 0.00000E
02-0.82177E
02-0,12963E

00 0.31029E
01 0.28931E
02-0.11069E

00
01
01

0.83756E 01
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~0.59364E-01 0.00000E 00 0.12261E 01 0.00000E 00 0.26529E 00 0.80000E 01

Ve

1

2
3
4
5
6
7
8

- d d b wd o od ed ek b
VWONGANEWN O W

00000E 00 0.80000E 01 0.28610E-05 0.14653E 01 0.57220E-05
00000E 00-0.47684E-05-0.40000E 01-0.53518E 01-0.40000E 01
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