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Conductivity Porosity Relationships in Rocks
T. R. Madden

The geometry of the interconnecting pores and cracks of a rock
has a strong effect on the electrical properties of water saturated
rocks. Although a good deal of empirical data has been collected,
the theory governing the geometrical effects is poorly developed.
At low ionic concentrations other factors besides the geometry of
the rock interstices become important. These factors will be
considered later, but here we wish to examine the geometric factors
and we shall consider the pore fluids as highly concentrated. In
such cases the rock resistivity becomes proportional to the fluid

resistivity, and the proportionality factor carries the geometric

information.
= 1.
prock LF psolution 1.1)
F = formation factor

e}
"

resistivity index

F 1is controlled by the geometry of the interstices and I 1is
controlled by the geometry of the fluid within the interstices. For
water saturated rocks I is equal to one and can be left out of

equation (1.1).

If we define Por porosity

S fraction of water saturation

it is found that

F =~ a Por © , a~1 (1.2)

I ~ s¢ M 0w +2

se
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This power law dependence of resistivity on porosity is known
as Archie's Law. It is not an exact relationship, but it does seem
to hold approximately over a very wide range of porosities. In its
-m

o Por (1.3)

simplest and original form Archie's Law is o .
solution

rock
Figure 1 shows data covering three decades of porosity which follows

this relationship with m = 2.

Another term used to describe a geometric feature of the
conduction paths is the tortuosity, T . If the conduction paths had
constant cross sectional areas, but their lengths were Tx 1linear

dimensions we would have

Por = AT (1.3)
A = cross sectional area of pores per unit area
T = length of pores per unit length of sample

This same model would also give

%ock - %solution® A/T
‘/Tz (1.4)
B Osolution* Por
Archie's Law o = ¢ P2 would imply that the tortuosity is

sol

inversely proportional to the square root of the porosity. For very
tight rocks the numerical value one would assign to the tortuosity is
too large to have much meaning as an excess length. In such cases it
might be more reasonable to consider the tortuosity as indicative of

excess pore volume as shown in figure 2. 1If in such a model we define

T2 = total pore volume/useful pore volume

we would still retain the same form for equation (1.4).
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Diffusion time is strongly dependent on distance, and one can
indirectly measure tortuosity by timing the diffusion of salt into
or out of rock samples, the state of salinity of the fluid within the
rock being monitored by the rock's electrical resistance. Figure 3
is an example of such a measurement. If we use the first model of
tortuosity representing an excess length factor then the diffusion
time will be proportional to (TL)Z. The same result is arrived at
if we use the second model, since the diffusion flow must fill up a
total volume of Tz* useful volume, and again the diffusion time
will be proportional to T2L2.

None of these concepts seem very useful in predicting Archie's
Law. Figure 4 shows a simple model that does show such a behavior,
however. The porosity of each segment is proportional to A, the
cross sectional area of the conduction paths. When the two sections
are abutted together the common area which will support conduction
across the two sections is proportional to Por2 provided the location
of the pore ends are uncorrelated between the two segments. Adding

a third section will change this result, but the model is too crude

to be taken very seriously.

The wide range of applicability of Archie's Law is intriguing and
one cannot help but wonder what principle is involved.

A few years ago in discussing Archie's Law with Bill Brace and Joe
Walsh, we considered the possibility of modelling rock conduction with‘a
resistance network. Resistors in place would represent pore regions and
missing resistors would represent rock matrix regions. Analogue models
were used in a study by Richard Greenberg, where resistors were systemati-
cally removed from the network and the changes of the network resistivity

were recorded at each step. The choice of resistors to be removed was made

randomly.
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Figure 5 shows one of his results on a cubical network. An
Archie type law is observed, but the network suddenly open circuited
while a fair fraction of the resistors was still present in the model.
At first one might think this open circuiting would be avoided if a
larger network had been used, but it turns out this is not the case,
and Greenberg's results are not very different from what would be
expected with an infinite sized network of the same shape and with
the same geometry of interconnections.

There exists a field of study called percolation theory which
is concerned with flows in random media. One of the principal
results of this theory is the existence of a critical probability for
networks. If network elements are randomly missing, the network will
open circuit when the probability of an element being in place drops
below the critical probability (in the limit of an infinitely sized
network). The value of the critical probability depends on the
network topology. Table I presents results obtained from Monte Carlo

experiments (Vyssotsky et al 1961)

Table I Critical Probabilities

Lattice type PC

Triangular .341 + .011
Square .493 + ,013
Cubic .254 + ,013
Tetrahedral .390 + .011

Face Centered Cubic .125 + .005
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The model we were using, although it appeared to follow Archie's
Law, gould never work to describe low porosity rocks, since they would
open circuit. This never seems to happen to actual rocks. The missing
factor in the model is the lack of any correlation between the
probability of colinear elements being in place. In rocks the cracks
and pores that represent the conduction paths have ?wo or one dimension
very much longer than the other dimension or dimensions, and this
feature is missing from the model. In fact we can go to the extreme
case of saying all the pores and cracks are interconnected and this
will probably be a much better model. From mechanical compliance
measurements one is aware of the fact that cracks are thousands of
times longer than they are thick, and if such cracks have a total
volume of 0.1%7 or better it is very difficult to arrange them
without their intersecting. If porosity is defined or measured by the
volume of liquid that can be put into a rock, then of course all the
pore spaces involved must be interconnected. Also, we must remember,
if there is not good interconnectivity the rocks would open circuit.
For instance in the square networks the probability of an element being
isolated is only .015 at the critical probability when the whole
network open circuits. For a cubic network this probability is .05 .

On this basis we can make a new network model which involves only
the conduction paths of the rock. In this model the network elements
are all in place, but the values of the elements are random and represent
the distribution of values of conduction in small regions due to
variations in crack and pore parameters and statistics. The behavior
of these models will depend on the element value distribution functions
and on the network topology. The element value distribution function

would seem to reflect certain basic statistical properties of the crack
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and pore populations, but the network topology-seems somewhat arbitrary.
It is hoped therefore that the topology does not have a strong influence
on the results.
We have looked at a few examples using these ideas and the
results have been encouraging. TFigure 6 shows some random network
calculations using cubical networks. The distribution functions used
were all very smooth and covered a wide range of values. Very
similar results were obtained with square networks. Each network
element is assumed to represent a small enough segment of a rock
conduction path that it has essentially no tortuosity and its contribu-
tion to the porosity is therefore linearly dependent on its conductivity.
In order to progress further on this problem one needs a more
analytic approach to determining the random network properties. The
transmission matrix which relates the voltages and currents at one
end to the voltages and currents of the other end can be determined

easily from the transmission across a single layer,

n 1
= [a"1 (1.5)
I I
n 1
nl1 T nTm mTQ Tt 3T2 2Tl
T, = Transmission across 1i-j layer

Thus the statistical parameters of nT are simply related to the

1
statistical parameters of the network elements. To solve for the
conduction across the whole network one must invert a submatrix of T

however, and the statistical properties of the inverse matrix are no

longer simply related to the statistical properties of the original matrix.
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Although this approach may be fruitful for one well versed in matrix
theory it appeared too difficult to us and was abandoned.

At this point we tried a different approach which is illustrated
in figure 7. If we choose a large enough rock segment it will appear
to have homogenecus electrical properties and its conductivity can be
represented by a single element of fixed value. The segment could be
broken up into parts which are interconnected, but now the parts might
show small statistical variations. This process could be cascaded
until we had broken the rock down into elemental fragments which showed
the full statistical variations of the crack and pore conduction proper-
ties. In order to compute the electrical properties of the rock one
only has to work the process in reverse, starting with the elemental
fragments with their full statistical variations and cascading up to
the homogeneous average rock property. This sort of averaging procedure
will be given the symbol << >> . 1If the second level is a large
network of elemental segments its electrical properties will be close
to the final answer. This is essentially what the computations whose
results are shown in figure 6 amounted to. The complexity of a large
network, however, makes analytic progress difficult. Therefore we use
instead rather simple networks, but which preserve the features of
series and parallel arrangements. Even very simple networks can have
a fair number of elements, and in order to further simplify the problem,
some elements can be made dependent elements. Figure 8 shows two very
simple examples. The top example cannot be used to describe conduction
from right to left, as the symmetry prevents any averaging being
produced by the network. Because of the restrictions imposed on the

elements we call these systems pseudo-random networks.
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Fig. 7. Cascaded Network Subdivisions
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The advantage of this sort of representafion quickly became
evident as certain quite difficult concepts became readily apparent.
The concept of a critical probability for instance, is easily demonstrated.
Let us cdnsider a bimodal distribution for the conduction elements, their
value being either 1 or 0. If the probability of an element having

a zero conductance is Q one can easily compute the probability of the

0

first level network havirg zero conductance. For network 1 for instance

the conductance is zero whenever

YA s YB . YC = 0 prob = QO3
YA R YB = 0
YA R YC = 0 prob = 3Q02(1—Q0)
YB , YC = 0 5 .
total prob Q1 = 3Q0 - ZQO (1.6)

The probability of the next level having zero conductance is therefore

B 2 .3
Q = 30 -2

and Qg = 3Q22 - 2Q23 (1.7)

Since these functions are monotonically increasing between 0 and 1

if Qn > Qm then Q, 1

if Q <Q them Q>0

Thus a critical probability exists which is defined as

_ 2 3
Q. = 3@ - 2q 0<Q< 1
or
QC(QC—l)(QC—-S) =0 0<Q< 1 (1.8)
or Q = 0.5
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This happens to be probably the correct critical probability for
square networks. Network II gives a different result. It is open

circuited for

_ _ 4
YA" Y. , YC" YD 0 prob = QO
Y, Yy, Y,
YA’YB’YD 5
= 0 prob = 4Q ~(1-Q.)
Y .Y, ¥ 0 0
B?” C’” D
Y, , Y., ¥
_ _ 2., 2
Y, , Y = 0 prob Qy (1-Q4)
2 3 4
Q =Qy + 2Q,” - 2Q, (1.9)
ch.70

More complicated networks lead to higher order rational fractions
for the conductance formula, but they all have in common that they are
homogeneous to the first degree in Y and their minimum and maximum
values are equal to the minimum and maximum values of the Y's. Thus
the higher level network distribution functions are confined to within
the same limits as the original element values, but the probability of
attaining these limiting values becomes vanishingly small. Figure 9 shows
the progression of conductance distribution functions as we go to
higher and higher levels.

The symmetry of the conductance equation for network 1 allows
us to immediately obtain the final result in special cases and leads
us to a useful approximation. If we denote Y(YA,Y ,Y ) as the network

B” C

conductance when the elements A, B, and C have conductances
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YA" YB, and YC then for network I

2

A ﬁ_' » ¢/ T Y (oY, BY, CY) (1.10)
m m m

If the distribution function of the element conductances is symmetric
about Ym on a logarithmic scale so that P(AYm) = P(Ym/A) then the

geometric mean of the conductances is Ym’

where Geometric mean of Y = Il YiPl (1.11)

since in this case (1.11) reduces to Yipl

Because of (1.10) this same symmetry is retained in the network
distribution function, and thus the geometric mean of the network is
also equal to Ym. This continues to hold for all the higher levels,
and as the distribution functions tend towards a delta function at high
levels Ym must be the final network conductance. Even when the
distribution function is not symmetric on a log scale, the geometric
mean is a good approximation as long as the spread of values is not
too great.

Let us condiser a bimodal distribution for the conductances, with
values of 1 and Y and probabilities p and (1-p). The distribu-

tion function for the network (network I) is therefore

P (1) = p3 + p2 1-p) = p2
420) - 7 0o
(41%3(—) = 2p (a-p)? (1.12)
P (V) = -p° +pa-p? = a-p?
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. ' . 1- .
The geometric mean of the element conductance values is Y P while

the geometric mean of the network conductance values is

2T (1.13)

(D) @-p)? (3 + YYP (22 (P)
1 +3¢

These values are identical at p = 0, .5, and 1 but they track

very closely as long as Y does not deviate too far from 1. If we
consider p = .25, which should represent close to the worse case,

we find very little error up to 1:Y values of three. Table II shows

these results
Table II

Comparison of geometric mean of conductances and network I

for element values 1, Y and P(1) = .25
1:Y 1.1 1.3 2 3 5 10
% difference of geometric means 0 0 .4 .9 1.8 5.7

If the same analysis is done for network II it is found that the
network geometric mean and the element geometric means are equal at
p =20, P.» 1. It can probably be shown that this result holds for
all networks. Network II deviates more from the element mean than
network I in the region p>pC and in this region its mean is higher
than the element mean.

Even when the spread of values is too great to be able to use
the geometric mean as a final answer, one can use the concept to
greatly reduce the computations involved in cascading up to higher
levels. The computational load arises from the fact that the number
of different values that the network can have ipcreases geometrically

with the level. This effect can be circumvented by, at each step,
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combining groups of values within some range into a single value with
a combined probability. If the geometric mean of the group is used,
very large ranges can be combined together with very little loss of
accuracy, but a tremendous saving in computational time.

Even though the geometric mean loses its accuracy when the spread
of values becomes large it is still a very useful approximation since
usually in such cases high accuracy is not necessary. Thus if we
consider a distribution function with probability .1111 for Y
values of

1, .32, .1, .032, .01, .0032, .001, .00032, .0001
the geometric mean is .0l and network II cascades to a value of
.018. These differences do not seem too dramatic when plotted on
4 cycle log paper.

Since networks can be used as analogues of difference equations
for many field equations, these same ideas can be applied to finding
the physical properties of heterogeneous media. Figure 10 shows data
on the elastic properties of a We-Co mix. Also shown are the results
of random networks and cascaded pseudo-random networks. The
inaccuracies of the experimental data are too great to provide a

critical test, but it would appear we are on the right track.
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Let us return again to the question of Archie's law and its implica-
tions using the ideas we have been outlining. It is clear that in general
one cannot expect a law like Archie's law to hold unless some restrictions
are placed on the distribution function, except perhaps at the limit of

very high porosities. If we consider network I and take a bimodal distribu-

tion of element values

Y=1 P (1) =p = (1-9)
(1.14)

Y=0 P (0) =1-p =g

then network I has the following distribution of conductances
2
P¥=1 = (1-9
P (Y=1/3) = 2q (l-q)2 (1.15)
2
P (Y=0) = q (3-2q)
2 3

From these we compute < Y > = 1-1.33q - .33q + .67q (1.16)

At the next level we have 9 different values for Y, but keeping only

terms to second order in q we have
2
<Y >second level = 1 - 1l.6q - .63q

In table II we show how these results seem to indicate a trend towards

<< Y >> = (porosity)z.
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Table II

High porosity expansions of Pseudo Random Network Sequence

for Network 1

Prob of open

circuit Porosity (Porosity)2 <Y >2 <Y >l
.01 .99 .98 .984 .987
.03 .97 .941 .951 .960
.1 .90 .81 .834 .864
.3 .70 .49 .463 .571

This trend does not appear to be a function of the network topology if
we avoid extreme topologies. As we mentioned before each topology has a
critical probability Pc’ and this pafameter appears to closely limit the
behavior of the network when random element values are used. In figure 11
‘we show the behavior of two different pseudo random networks with equal
critical probabilities. One network is network II which was shown in figure
8. The other network has not been synthesized. It is more complicated
than network II, although it has the same number of independent element
values and the same critical probability. Both networks follow the porosity
squared law at high porosity, but the more complicated network maintains
this trend to lower probabilities. Both networks merge with the geometric
mean at the critical probability and below that appear to fit a trend which

is a sort of dual of Archie's law

]
~
™
~

%- Yl 2 for low porosity (1.17)

It is very tempting to infer that very large networks would follow the two

trends right up to the critical probability where they would jump from one



O% : }
1l :
‘

“ '

' I N
g . . ] "
. i
; ‘ : ; :
[ B S e al TR S PRV VRN O - T TEL NP ANINEN N U ST PO e v
‘ ;
, :

B

ewm o‘i(yawfm)(ym Ya)
y;,'*' ‘/:,, + YC + YD

Xz <‘ i (ar ysa)( Gero Y+ YaYa )
E—— +wc 3 RN KL

>

¥ oCw

- 003

P(y 1) = /9

‘Fug ii i ( Oﬁ}ﬂ&ruoﬂ 42/ /e%aé £opdom Hefols /AS

0/72 4/")’3/&/ C// 7. u/ //oé-t/)////f es




253

trend to the other one. As yet we have not examined more complicated
pseudo random networks in order to verify this inference.

The differences between the two networks shown in figure 11 are
greatly reduced when smoother distribution functions are used. With a
probability distribution function of Pi = .1111 for Yi = 1.0, .32, .1,
.032, .01, .0032, .001, .00032, .0001 the two networks gave final answers
differing by only 47%.

The (porosity)2 behavior that we have been examing thus appears to be
independent of the network topology, but it is not a universal behavior
since it depends on the form of the distribution function. In the cases
just discussed we were using a bimodal distribution of Y wvalues, which
two values were widely separated. If instead we use a distribution function
which has only a very short spread of Y values we find a porosity to the
first power law. This can be proven easily since in these cases the geometric
mean is an accurate approximation. If we consider uniform distribution
functions on a logarithmic scale and use the geometric mean as an approximate
answer we obtain the results shown in figure 12. At modest porosities the
results, though not a (porosity)2 law, do not deviate too far from
Archie's law, but as the minimum Yi is extended to smaller values a
drastic decrease in the geometric mean occﬁrs relative to the porosity. At
this end of the plot the geometric mean cannot be expected to remain an
accurate approximate, but nevertheless one realizes that Archie's law
behavior at low porosities must involve limitations on the conductivity
parameter distribution function. Actual distribution functions must lie
in between the two extremes of a very narrow distribution function and one
uniformly distributed over a wide range (on a log scale). A distribution
function which involves a linear scale is bound to be too narrow to explain

the observations for low porosity rocks. Distribution functions like the
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the log normal should work provided some relationship between the mean and
the deviation is maintained. We have not worked out such relationships, nor
have we looked at the daté on crack and pore width distributions.

Several extensions of this work are needed in order to more completely
understand these mixing laws. One simple extension is to consider anistropic
distribution functions. A more difficult and subtle extension is one needed
to understand the role of>shape factors. This may not be as important in
the resistivity problem as it is in other mixing problems. Since networks
can represent difference equation approximations of field equations, in
the limit of small enough grid spacings they chould give correct answers.

How then can we reconcile the fact that different network topologies give
different answers. The reason for this is that when we assigned the distri-
bution function to the network elements we assumed each element was independent.
This is roughly equivalent to thinking that each element represented a single
grain of the rock matrix, and thus the network topology used was actually
implying something about the grain geometry. To become independent of the
network topology one must use a gird spacing smaller than the grain size, but
then the individual elements are no longer independent. This greatly
complicates the calculations, but it allows one to deal with such important
factors as the actual distribution of shapes and also eliminates the bias
introduced by a choice of network topology. The use of very simple pseudo
random networks still involves an approximation, but the errors introduced

by this will be reduced much as these errors were reduced when dealing

with very broad distribution functions.
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Curve Fitting in Geophysical Inverse Problems

by Jon F. Claerbout

(Mini-lecture given September 12, 1973 based on research done in Australia)

Let's call the following functions "model norms."

IY - ;I (1 a,b,c,d)

«
S’
i

N, G,y
- -2

N, (v, ¥) = (y - v)

Ny (v, ) = =yt G/y) +y -y

AT S y n (y/y) -y +y

These model norms share the property that they are minimized at y = ;.

Let the continuum of earth properties be mapped into a vector x and
the finite number of data measurements be mapped into a shorter vector d.
Occasionally we have linear problems (more often we linearize non-linear
problems). These are indicated by the conmstraint equations

[+ 101

To relate (2) to (1) we have a function f.

y=f (xl, Xyp eee s xm) ‘ (3)

Often the function f is taken to be simply y; = x To do inverse

i'

problems (curve fit) we genérally find the model x which minimizes

min = ; LA N (yi , yi) (4)
Xi i

In the absense of the conmstraint equations_(2), the minimization of (4)
should lead to y =y which should imply x = x where X is called the
4

"initial model" or the "default model". Note that it is not necessary to
specify the default model x directly, but it is necessary to specify y.
For example if £ says that y is the spatial gradient of x then choice
of ; = o specifies that a homogeneous earth is the default model, but it

does not specify the space independent numerical value of x.
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Obviously there is a great deal of arbitrariness in the choice of the
model norm N , the choice of the function f , the choice of the default
; » and the choice of a weighting function w. Ordinarily this arbitrariness
must be resolved by ''geophysical intuition". However, there are a few general

principles which are helpful.

My purpose today is (1) to show you that the use of N3 is like
maximum entropy spectral estimation; (2) to indicate that N4 will have
advantages’over N3 in some applications; and (3) to advocate certain
restrictions on the choice of N, f, and w which I believe will then
lead to smooih high resolution models. People familiar with maximum entropy
spectral estimatién are aware of its astounding ability to resolve tiny
spectral peaks in the vicinity of massive spectral peaks. There is no
"Gibbs phenomena". The present study is motivated by the desire to bring this

combination of stability and resolving power to other applications.

To begin with, I will skim over a proof that Toeplitz equations (the most

common case of maximum entropy) result from N. with w=1 and y = 1.

3
Given an input power spectrum R we seek a filter with power

response S so that the output spectrum Y = RS should tend to the constant

y = +1 which is independent of frequency. When this is achieved the input

spectrum R 1is deemed to be 1 / S. The minimization (4) with N3 s W=1
and y =1 becomes
min = ~n RS + RS dw (5)

Now S is a function of the parameters in the x vector which we will
subsequently define. Thus, to achieve the minimum in (5) we will require
zero partial derivatives of = (5) with respect to each x,. Thus for each

i
i we have

0 = (_

S
+

R) == dw (6)

Let us define a minimum phase filter

L3

+az+ a zz+"'

A = sy tazta
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its inverse,

2
= 1 = cee
B (z) / A(z) b0 + blz + b2z +
the relation between z~-transforms and fourier transforms gz = eiw, and the
spectrum : - s
s = A (e A (Y

The adjustable parameters a, are sufficient to make any continuous spectrum
S. Therefore, we can take the spectrum to be parameterized by X, = Ei . The .
problem becomes more manageable if we introduce the constraints a,= o for

i
i >N . Now we have for the required partial derivative

38 _ 3 _ zFa (o) )
axk aak

Inserting into (6) we get

7
o = e ST g0t RA )Y dw
( A (e uuk) )
for k = o,n
or
o = z—k ( ¢ EO + Bl/z + e+s¢) + RA)dw

Since this integral selects the coefficient of z° of the argument we obtain

for n=3 o
-ro S B % v Pb;- @
r, T, r_, a; = o
_rz .rl r, ;.82- ° N
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The equations (8) may be deduced in numerous ways. One of John P.
Burg's contributions was to show, similar to the way I just indicated, that
(8) 1is a consequence of the use of N3. Now I wish to plot N, and N,.

3 4
They look like

y y
Their derivatives are
ON y '
_.._3=..__.}.r. + 1 : : (9)
' dy y
BN4 _ .
5;— = 29 yly ‘ (10)
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and their second derivatives are

2

37N, _ -}-,/yz | (11)

0 y2

2

3°N :

4 _ 1ly (12)
2 , ‘

9y

$learly the first derivatives vanish as they should at y = ; and the second
derivatives are positive (as they should be for convexity) for all positive .
Careful inspection reveals that N4 is finite at y = 0 but has infinite
slope there. “

Now we caﬁ”think aboﬁghhow seismic deconvolution is always done with N3 ,
with w=1 and § = 1 and enquire whether some of the other possibilities
might not be preferable. First of all y = 1 independent of frequency is
bad because it whitens the output forcing us to bandpass the data after decon.

Although we might like to use other y functions for the desired output

spectrum it turns out that they destroy (8) and lead to a mess.

It doesn't mean we couldn't do it; it just means it would cost more. Second,

N4 as compared with N, will concern itself more with knocking down peaks

3
and less with drawing up the holes. In the limit of very many filter points
both N3 and’ N4 will give a white spectral output. The differences occur
when the filters are constrained to be short. I think that deconvolution

works because the spectral peaks get knocked down. Drawing up the holes

is actually a disadvantage if they contain only noise.
x
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Another fact'about N4 is that its derivative (10), which
represents the "force" a given model point applies against other model
points and against the constraints is symmetric about y in the following
sense: if y were ten times as big as y then the force is equal and opposite
to what it would be if y were ten times as small as y. 1In the simple
harmonic oscillator, force is linearly proportional to the distance from
equilibrium.  With N4 the forcevis linearly proportional to excursion of

the logarithm from equilibrium.

A central problem in geophysical curve fitting is to determine
whether small bumps and irregularities on the curves really represent the earth
or whether they just result from the arbitrariness in the choice of N, f, and
W. A common way to suppress the bumps and irregularities is to choose £ to
be a spatial gradient or some high pass filtering function of the model.

The trouble with such an approach is that it suppresses not only the bumps
‘which result from a poor choice of N, f, and w but also the bumps which
the earth really has. What we are after is a scheme to suppress the artificial

bumps without suppressing the real ones. The following scheme is proposed:

First you must identify a "density" in the problem at hand. Densities
have the property that their volume integral means something. For example, in
a resistivity problem a density is the power dissipated per unit volume in
the earth. In other problems we have mass density, kinetic energy density,
potential energy density, probability density, and power spectral density.

Then choose f so that y = f(x) 1s the density function you have identified.
fthe resistances are the X, .) Next the model norm func;ion must be chosen
to be a function of homogeneous type. Such functions commonly occur in

thermodynamics and are defined by

1/2 NG, 5) = N (9/2, 5/2) (13)
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(In a more precise definition the 1/2 is replaced by an arbitrary constant).

Notice that this includes N and N4 but excludes NZ' Furthermore,

19 N3’
all the weight factors LA should be equal, say equal +1.

Because the summation (4) approximates a volume integral the
extra points which arise from over-zealous sampling of Yy in one region
of space have compensatingly small volumes associated with them. Our results

should be independent of whether the unknowns x (which represent conductivity,

i

compressibility, mass demnsity, etc.) are stated on a cartesian grid, a cylindrical

_ grid, or as coefficients of an expansion in any complete set of functions.



