179

Some Speculative Ideas on Velocity Estimation

by Jon F, Claerbout Lecture at Princeton University 3/16/73

A famous book by Chernov deals with the problem of solving for the
statistical properties of waves given the statistical properties of

the medium through which they have propagated. Some of Chernov's
results are geophysically useful (Aki, Capon) in that in some realistic
situations the statistical properties of the observed waves may be

used to deduce statistical properties of the seismic velocity distri-
bution in the earth, Chernov typically assumes a spatially stationary
velocity perturbation. In the present work we attempt to bite off a
much bigger piece than Chernov did. Instead of dealing with a statis-
tical medium we will deal with an arbitrary medium, In the March 3 lecture
notes it was shown how we do the forward problem, namely, how to use

a computer to project waves through an arbitrary medium. (Naturally
there are some regularity restrictions.) Now we are trying to do the
inverse problem, specifically let us say: A plane wave source (or a
point source) carries an unknown transient time function into a region
of unknown two or three dimensional velocity inhomogeneity, After the
wave emerges from the region of inhomogeneity we observe that the seismic
waveform is now variable along the wavefront. Given this spatial vari-
ation in the emerging waveform, our objective is to reconstruct the
unknown medium to whatever degree of resolution and uniqueness that we
can. He are not frightened away by the obvious difficulties because in
being able to do the forward problem we have now seen many examples and
have some intuitive ideas about how to begin the inverse problem. At

present it is mainly a question of trying to systematize some of our
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intuitive ideas. This in fact will be the body of the present dis-
cussion,

Counterbalancing in our mind the difficulty we anticipate on
traveling through this new territory is our belief that this problem
is a very important one in geophysics., We believe that layered models
of the earth have been nearly mined out and that the many researchers
who persist in the same vein must suffer the frustration that each new
collection of seismic data will demand a new layered model, In fact,
the new plate tectonics and hypotheses of mantle plumes, the abundance
of reliable deep regional seismic anomalies, the problems of petroleum
prospecting, and the power of modern computers are all directing us into
this new territory for research. Some new approaches, along with some
unfamilar assumptions, must be made,

Our basic approach is the use of partial differential equations to
extrapolate observed data, e will defer the practical question of
whether existing seismic arrays like LASA actually provide a sufficient
density and extent of information. The present use of LASA is princi-
pally signal/noise enhancement by summation. There is little present
motivation for increasing the size of the array because of the very mar-
ginal relative improvement, On the other hand our present effort, if
successful, will convert "signal generated noise" into "signal" by means
of backwards extrapolation through an appropriate medium. We need to
show theoretically that it can be done. The need for petroleum amply
Justifies sufficient measurements for the use of partial differential
equations in reflection seismic work, Justification for more measurements
in earthquake seismology will come easier when we learn how to make fuller

use of the data we already have.
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After studying numerous examples we made the observation that
as a wave propagates along in an inhomogeneous medium it becomes more
and more complex. In fact, in the example of Figure 4 of Claerbout and
Johnson, it is seen that the wave continues to get more complex even
after it has emerged from an inhomogeneous region and is propagating
along in a homogeneous one. To us it seems worthwhile as a starting
assumption to assume that some suitable definition of complexity of
a wavefield must be monotonically increasing with time. How in the
March 3 lecture notes we showed how the wave can be extrapolated either
forwards or backwards in time., It is no surprise to see a wave field
getting more complicated as it is projected forward in time but we
were delighted to see that knowing the velocity model, the end result
of such a projection can be extrapolated backward in time and despite
all the practical approximations made it retraces its steps with astonish-
ing accuracy. (We couldn't see any difference visually in the test cases.)
Now if we do not know the velocity in which to back project the wave,
why not assume that a good velocity is the one which makes the wave field
get simpler? We can take what is called a "dynamic programming" approach.
e first define complexity as some quadratic function Q of the wave field.
If we expect a plane wave propagating along the z-axis we might define Q
as ;%% (%;)2. The objective is that as Q is projected back in steps from
zy to 2z, it should decrease to zero, Since this problem is too hard we
will first try the easier problem of finding a velocity distribution which
decreases Q as much as possible on going from Q(zj) to Q(Zj-l)' If we
can solve this easier problem we can use it successively to go from z)y
to z; although we may not necessarily end out with the best answer. It
is just our hunch based on examples that we have seen that it will be

a good answer,
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Of course if we are lucky and the process of going from Z;
to zj_1 turns out to be not very difficult then we can try to get
a process which finds the best velocity in going from Z; to Zj-Z'
Ultimately of course we might Tike to find the best velocity for
the whole big jump from zy to zy but in practice it might net be
much different than a Tot of small jumps. Anyway, once you start
to get close to the right answer you can always use perturbation

theory to home in exactly.
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In the March 3 notes we developed the equation

_ t
P, = c/2 Peyw + s(x,z) Pg (1)

By choi¢e of suitable units for measuring 2z we can set

c/2 = 1 to keep the algebra uncluttered. Thus

t
PZ = 'PXX + s Pt (2)

We will first establish that certain quadratic functions of
P are constants as P propagates along. Let us show that

2 ~ 2
d/dz E p is zero which shows that :E P is constant in =z.
x,t x,t

.5 d/dz:§:P2 = EEZ_ PP (3)
x,t
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of the derivative
The last term vanishes because it is the integral (or sum»/over

. 2 2 .
time of P and P vanishes at plus and minus infinite

time (by the assumption that our waves are time transient). Thus
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= :EE p pt

XX
x,t

Next let us integrate (or sum) by parts over x and assume

that P wvanishes at x equals plus and minus infinity.

~— t
= -2 P P
xX,t X
t, 2
- —XEta‘—_((PX) )e = 0

Again we note that we have an integral of a derivative which

- 2
vanishes identically proving the result that :E P is
X,t

constant in z. The reasoning used to get here from (3)
will be used again many times with fewer intermediate steps.
This result is like an energy conservation theorem and we are
delighted that it works exactly in spite of the Fresnel approximation.
It turns out that it is also exactly true with the Crank-
Nicolson numerical method.

Let us now consider the more interesting guadratic form

Q where

> > p gt
0 = P Pz = = Pt Pxx + s P, Pt (4)

X
Integrate the first term over t by parts

Q = :E - P PXX + s Pt Pt
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Then integrate the first® term over x Dby parts

2
Q0 = > ()2 + sxz) () (5)

x,t

In a region of space in which s 1is constant this guadratic
form is guite a bit like the complexity measure we discussed

earlier. Let us now see how this quadratic form changes with z.

2
QZ = Et 2(Px Py * S Py Ptz) + s, (Pt)
X,

t 2
__S_t 2(Py (P tSPLytSyPL) + SPL (P +SPi)) + s, (Py)
X,

= 2Pl (s ppy) 52 ()Y )+ s, (k)2

X,t

drops drops

- ':>: t t 2
= 2 (Pxx)t (Pxx) + s, (Pg)

X, t

drops
2
0, = =2 s,z 2_(_(x,t)) (6)
X t

It is rather amazing that so many terms dropped out of Q-
The end result says that Q will remain constant in any
region of space in which s 1is a function of x only, that

3
is, when s(x,z)=s(x). Now let us rearrange this result a bit
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2 2 — N 2
d/dz E ( Px + s Pt ) = > s, > P,
X t :

il

d/dz j:g: sz

x,t

2
- :zj s :Ei d/dz P

t

Redefining Q to be half the quadratic form on the left

0
il

2 - j%j [ :i: Pt (PXX + s Ptt)

t

0, = - stz S P p_ (7)
t

X

This latter result shows that a rapid decline in this new Q
can be achieved by taking s(x) to have a big projection on
j%; Pt PXX . That is easy. What this seems to amount to in
simple terms is merely that if the objective is to minimize
:EZ-PXZ then it can be achieved by time shifting each trace

(a trace is the time function P(x,t) seen at some fixed x and

z) for best alignment (until you get :E.Pt P,.=0). 1In the

XX
exploration business this is called statics corrections.

Now rather than merely requiring Q to have maximum negative
derivative let us try to get Q to decline some maximum amount
at some finite distance away. Say that we are at 2z=0 and we

wish to get Q as small as possible at some larger value of =z.

Let* us take Q to be representable by a power series
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Q = gy +t a1z + q z? _ (8)

We have already calculated q; by (7). Since P(x,t) is given
ARRXRBKXAXXHRREKXRR at 2z=0 then dg is also given and not a
function of the unknown velocity. We have to see how d5 depends
upon the unknown velocity. The values of s(x,z) which brought

us from negative =z up to z=0 will now be forgotten. We seek

a new s(x,z) to be used from z=0 into the positive 2z direction.
To simplify matters we will require this new s to be a function
of x only, i.e. s,=0 in the region we focus upon. This is not

to say that we believe s,=0 for the best s , but to say that

is easier to estimate a constant than a constant plus linear function.
Of course after we go a short distance in the z-direction we can
then forget the new s and find a newer one.) Now to get d5

we differentiate (7) with respect to 2z obtaining

0 = > s(x) > (P P_+P_P_ )
zz tz XX t T xxz
x t
> . (9)
0, = s (x) % (P FSPL VP + P (PonyhSP iy P23 Py s, Py )
X

The only thing you need to note about (9) is that q2=sz/2 is

and s

a gquadratic function of s, Sy xx °

3
attains a minimum is

The statement that (8)

0 = g9y + 29 2 (10)
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From this we define the 2z at which a minimum occursas

Z 0= —ql/Zq2 . Inserting z_;, back into (8) we have
2 2 2
Onin = 99 ~ 9y /24y + 9, 9y 749,
2
= gy - 91/ 449, (11)

To pbbtain the minimum Q we need to adjust s to maximize

min
the ratio of qlz/qz . This would normally be done by seeking the

biggest eigenvalue )\ which extremalizes the guadratic function

R = qlz - A q2

If R were merely a function of s but not Sy and S

we would simply have to solve the eigenvalue problem found by
taking dr/As =0 . Since R 1is a function of S, and

s x we use the FEuler equation method to get the following linear
X

equations for s.

2

OR a AR a Ir
0 = — - _— + —————— (12)
s o7 ¢ asx dgz asxx

L 3
We have not yet followed this through to an algorithm but it

appears to be an eigenvalue problem with tri-diagonal matrices.
Such problems seem to be solveable quite cheaply and there is

every sign that we should proceed.



