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Separate Downward Continuation of Shots and Receivers

by Steve Doherty and Jon Claerbout

The basic idea of wave equation migration is.that wave fields get
simpler as they are projected back into the earth. A wave field resulting
from a smooth reflector at depth may become very complex, due to
diffraction effects and buried foci, by the time it is recorded at the

earth's surface. However, if the wave field is projected back into the

the earth it simplifies until at the depth of the reflector it
essentially mirrors the reflector's shape. Thus, migration can be
thought of as a downward continuation operation on the data.

Since projecting the data down to the reflector is essentially
the same as projecting the receivers down to the reflectors and then
recording the data, migration can also be thought of as downward
continuing the shots and the receivers. If only shots are downward
continued ,diffraction effects occurring on the downgoing path are
removed while diffraction ocgurring after reflection remain. If the
receivers are downward continued,upgoing path diffraction is removed.

If .both are downward continued all diffraction is removed.

In some instances it is desirable to treat diffraction effects
occurring on downgoing paths separately from those occurring on upgoing
paths. This is easily accomplished by continuing the data on two
separate grids, one downward continuing the shots and the other the
receivers.

Migration equations for downward continuing shots or receivers can

be derived in the following coordinate system.
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Thus we have 'z' as the depth of the geophone, 'd' as the two

way vertical travel time from the earth's surface to the reflector,
'f' as the horizontal shot receiver offset. 'y' is like the midpoint
coordinate (it is the midpoint if the shot and receiver are at the
surface). Examination of the definition of 'd' shows that this coordi-
nate transformation performs normal moveout correction. In other words,
for a flat reflector, ideal transformed data Q( y,d ) will be independent
of 'f' . The transformation maps travel time hyperbolas in 't' to
horizontal lines in 'd'

Since we are dealing with waves our migration equation will have to

be consistent with the wave equation. Let's express the wave equation

in this system (0) . First, since the disturbance in the cartesian

coordinates P( g,s,e,t ) -must be the same as that in the new

coordinates Q( y,f,z,d ) we have

P( gsS,e,t ) = Q( y,f,z,d )

The wave equation is
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To transform (1) into the new system we need to evaluate some

partial derivatives. Using the chain rule we have
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Forming seéoqd derivatives, being careful to keep all derivatives

of the coordinate frame, and substituting to (l) we have
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The Q term can be deleted if we restrict ourselves to small

2z

offsets (néar trace sections) and moderate reflector dips. The assumption
that sz is smal} will be called the 'parabolic approximation'.

Note that we gave used two velocities, ¢ , the velocity used
to generate the coordinate system and, ¢ , the velocity in the wave
equation.' These two need not be the same but for simplicity we will

assume they are. If ¢ = ¢, the coefficient of Qdd is later shown to be

identically zero and the coefficient of Qd greatly simplifies and (2)

becomes
+Q —2————-—1 - Q +2q +q.+2d Q. +dQqFqL, = 0
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The Qd term is simply a geometrical spreading ferm so if we include a
geometrical spreading correction before migration we can neglect it.
The underlined terms are at least second order in offset, so we will
delete them using the small offset assumption. The overlined terms are
proportional to the product of offset and dip, both of which were

assumed small. Neglecting both sets of terms we get

= . &c
de 8

ny (3)

Equation (3) can be used to downward continue data in the z-direction.
Since 'z' is the receiver depth (3) really downward continues the receiver,
and thus (3) can be used to remove diffraction effects occurring on the
path from the reflector to the earth's surface. If it is run backwards
(by reversing the direction of time) this equation can also be used to
perform the diffraction necessary to propagate a wave from the reflector
‘to the surface.

The equation governing downward continuation of the shots can be
found from (2) and (3) almost by inspection. We could have defined a
transformation which kept the receivers in place and downward continued
the shots. The resulting equation, (2), would have been the same
except that 'z' would now be the shot depth and dg would be replaced
by dS . Since dS = - dg the same terms cancel and the same terms can
be neglected. Thus (3) is also the migration equation for downward

continuing the shots.
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Appendix
Proof that = 1 d2 + d2 = 0
2 2 7t g
c c
2.1/2
We know d = ((c - (g-s) ) +e) 1l/c
dt = ct(ct"-(g-s )2)1/2
dg = (Eiél ( c2t2 - (g-s )2 31/2 first order in 'f'
thus
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Simplification of Qd

In terms of
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We also know
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Substituting these expressions into the Qd coefficient, K, gives
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