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Computing Diffracted Multiples

by Don C. Riley & Jon Claerbout

Continuation Equations

In this section we will relax the one-dimensional assumption made
earlier and consider a two~dimensional model of the subsurface. And, as
before, we'll choose to neglect shear waves and attenuation of the waves
other than that associated with 2D geometrical spreading and losses at
the reflecting interfaces. Under these conditions the two-dimensional
scalar wave equation completely describes the behavior of the seismic
wavefields. In addition to primary reflections, implicit in the wave
equation are the predicted effects of spherical divergence, moveout, dif~
fractions, and multiple reflections. Usually a processing sequence
attempts to invert each of these effects, one at a time, in order to arrive
at a depth section. 1In reality these effects occur simultaneously.

In this paper the only "processor" we will be using will be approxi-
mations to the wave equation. For the most part we will be concerned with
calculation of the forward problem, i.e. computing a reflection seismogram
given a depth model. Finally we will consider the inversion of the seismo-
grams back to the depth model in view of techniques developed in doing
the forward problem. In both cases our success will depend on how closely
we can simulate the relevant features of the wave equation.

To begin with we will split the wave equation into two parts: one
which describes the propagation of upcoming waves and another for the

downgoing waves. We do this for two quite different reasons. The first
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is that by splitting we may define local coordinate frames which propagate
with the two wavefields. In this way wereduce mxh of the work the partial
differential equation has to do. It makes little sense to use a wave
equation to move energy to a place which can be predicted by a well-chosen
coordinate frame. The pay off of this practice comes in the ability to
propagate a relatively large distance for the same cost és a small
distance.

The second reason for separating the waves is that we then have
complete control over the coupling- of the two. . This coupling, defined
by the reflection coefficients of the model, may be modified in order to
selectively synthesize all or any of the classes of multiple reflectioms.
As we shall see, this will be analagous to the gating technique used in
the one-dimensional algorithm. Of far more importance, however, is that
separation of the wavefields is the fundamental principle behind the
inversion technique. ’

Our choice of coordinate transformations for both the upcoming and
downgoing wavefields is essentially a description of ray paths for each
in some model. We may try to build in a large amount of information we may
have in the hopes of arriving at a simpler transformed wave equation.
Unfortunately, the more constrained the transformation gets to actually
modelling the rays the more complicated the resulting equation. The
simplest constraint is to say the upcoming waves go up and the downgoing
waves go down along vertiéal paths; in which case we get the simplest
form of the continuation equations.

Although these would be adequate for our purposes, we may wish to

examine the effect of offset in our problem.
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Figure 1 illustrates the transformation in terms of the recording
geometry. For the transformed upcoming wave U( y,f,d,z ) the coordinate
d takes on the meaning of two-way vertical travel time to reflection
point O . In the downgoing wave D( y,f,d',z ) frame the d' coordinate

is referenced with respect to the first arrival at the reflection point.
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Figure 1. Geometry for upcoming and downgoing transformationms.
s 1s the location of the shot, g is the geophone location,
y the midpoint, f offset, e the depth of.the wavefields,
't is the ray path travel time. v is a velocity taken to be a

spatial average of the velocity of the medium.

The two dimensional scalar wave equation in our original coordinate
system is

P +Pp -1 p =0 1)
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where V( e,g ) 1is the compressional velocity. The upward and downward

transformations are

- lgts) + < tand

y 2 3 (2a)
f = g-3s (2b)
z = e
upcoming _
(g-s)+(a-e)?=(v1t)? (2d)
downgoing 2 _ 2 - 2
(g-s) 4+ (vd'+e) = (vt) : (2e)

We'll also find it convenient to define a zero-offset two-way

reflector depth term as

ré/(\.rt)z-(g—s)2=vd'+e=vd-e (3)
Thus (2a) may be rewritten as

y = {82 (14e/r) - 28 %)
Now we make the statement that the wavefields are invariant under a

coordinate transformation.
P(g, s, t,e) = U(y, f,d, z2) = D(y, £,d", z) (5)

Although equation (5) may seem paradoxical at first since we are trying

to separate the waves, recall that at this print U and D merely

represent different dependent transform variables. Shortly we will make
»

the approximation which will do the separation. We'll first compute the

necessary derivatives using the chain rule. First the upcoming transforma-

tion
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P = U + 2 Uu +2d U,+24d u_+Uu_.+d4d° U, .+ + d
gg g vy g yf ° “g¥g lay % Usd" Vgt g Uaat Vgg Uyt dggly  (62)
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Pee = Vg Upyt 27 Uyt 29,d, Uy 4 24, U b U, + a2 Uyby U+ d U, (6b)
P =y*u +2 a4, Uy +ddu ra UFy U (6¢c)
tt "t yy < Yed® Vay dd Uat Yee Uy ¢

Computing the necessary transform derivatives we have

2 -2
9y =1/2 + &+ (g-s)e , - (g-s)ev t , (g=s)
2r 3 3 2
a(g,t,e) ) 2r 2r
323’ =3e [ (g-s), (g—s)3 1, - (g-s)e [\_7_2_ _ 354 £2
2 2 3 5 2 3 s 1, 0
a(g,t,e) o T r b
of
3Ge.t,e) 1000
ad - (g-s) :5 _1
a(g,t,e) vr >t ’ ¥
224 9% 1 7 B2
2 3 - 2" ""3 0
a(gst)e) vr vr r r
9z _
ETE:E:ET 0, 0, 1

If we consider the case where the ratio of offset to reflector depth is

small, i.e. (g-s)/r + 0 these derivatives become in the limit

1im a—(é—alé——g)=1/2+e/2r,o,o

lim _—L—" 0:0)0
a(g,t, e)

1lim 0, vt/r , +

—d
a(g’t’e)

<l
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Using these small offset/large depth limits in equations (6) and inserting

into the wave equation (1) we have

v 2 v,1 1
- U . =%5(1/2+ e/2r)U_+ =(=- =,)U
zd 2( ) yy‘Z‘—’?_ \72

1

v v v
ad- 22047 -E(l+e/r)ny+ Ug e+ 70

In going to the small offset limit we have lost the term that does normal

£d term. The residual terms ny

and Uff account for shifting moveout in toward the midpoint. For

moveout correction, namely the dg U

negligible dip and offset we may consider dropping these terms as small.

At this point we make the parabolic approximation which will insure
separation of the upcoming waves in this transformation. Specifically
we drop the Uzz term. This is the usual approximation we make and
amounts to fitting one half of the original circular dispersion relation
with a parabolic dispersion law. The 2% Ud term models two-dimensional
geometrical spreading of the wavefronts. As this correction can easily
be done prior to processing we will also drop this term.

Dropping all these equation (8) collapses down to the familiar
continuation equation with the only differences being a depth variable
coefficient which ranges from v/8 at the surface to v/2 at the

reflecting point and a term dependent on excursions of the medium velocity

from the frame velocity.

- 2 el 1
Uya = = V120172 + e/2x )" U - ¥/2( 2732 ) Uyy 9

Now let's return to consideration of the downgoing transformation. Note
that the only difference here is replacing D for U, d' for d and

computing the additional coordinate derivatives

(8)
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od' = - - (g~s) vt _1
= ’ > =
a(g’t,e) vr r v
P _§s:§_>2___1_, :7__5313.-2’ 0
I(g,t,e) vr vr T r

941
lim —4—— - o, ¥ _1
a(g9t’e) r v
(10)
. 32a" 15 32
lim R R e 0
d(g,t,e) vr ot r
Inserting everything into the wave equation we arrive at an equation
similar to equation (8)
D ,,= 1—’-(1/2+ e/2r)’p_+ 3—’-(—'l -1y, .- 2+ i(1+e/1-)1) + iD + iD
zd' 2 yy 2 ;2 ;2 d'd" 2rq' 2 vyf 27yy 2 zz

As befdre, we assume corrections for normal moveout and geometrical
spreading to be previously applied. In addition we again drop the Dzz

term making the parabolic approximation

.y 2 vel _1_
Dzd' = 2( 1/2 + e/2r ) Dyy + 2( ;2 ;2 ) Dd'd' 12
Define e(y,z) = (op——=-1)
vi(y,2)

in which case equations (9) and (12) may be rewritten as

v 2 [
U = ~=(1/2 + e/2r U +
2 1/ ¥ u

Es'Udd (138)

11
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D, = 1"2-( 1/2 + e/2c )° Doy -5

zd' (13b)
zv

d'd’

Reflected Waves

Now we wish to go back and pick up the reflected waves. 1In arriving
at equations (13) we deliberately suppressed reflections by making the
parabolic approximation in our effort to separate the up and downgoing
waves. Recall that if the waves are coupled, then their superposition
at every point in time and space should equal the waves in our original

wave equation. That is, now making the statement
P( s,g,t,e ) = U( ys£,d,z ) + D( y,f,d',z ) . ’ (14)

is equivalent to coupling U and D . Thus, to regenerate the reflection
we again crank (14) into both the transformations. Consider the upcoming

transformation. Using d' = d - 2z/v we transform
P( s,g,t,e ) = U( Y9f3d:z ) + D( Y,f,d - ZZ/; »2 )

which after carefully keeping track of the independent variables, and
making the small offset and geometrical spreading assumptions, but without

the parabolic approximation results in

{ Uzd(d) + Dzd(d- Zz/;)j = --%(1/2+e/2r)2[ Uyy(d) - Dyy(d-Zz/;)] (15)

£ - v -
+';$[ Udd(d)-Ddd(d—Zz/v)] - 3{ Uzz(d) - Dzz(d-Zz/V)]

where the time variables have been explicitly written for emphasis. Since
we have not yet suppressed the reflections, equation (15) has both up and

downgoing reflected and transmitted waves. If we simply subtract off the
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transmitted downgoing wave (equation (13b)) we will leave the reflected
portion of the downgoing energy. Doing this we have

__Y 2 £y _¥ i} - 22/
Uzd 2(1/2 + e/2r) Uyy + U 2[ Uzz Dzz(d 2z/v)}

Again in order to suppress upward reflections we drop Uzz

U, = —\i(:1/2+e/2r )2 U +&E U, + E-D ( d=2z/v ) (16)
zd 2 Yo% dd 2 Tzz

Similarly, if we insert
P( s,g,t,e ) = U( y,f,d" + 2z/v, z ) + D( y,f,d",z )

into the downgoing wave transformation and subtract off the transmitted

portion of the upcoming wave (13a) we have, dropping Dzz

_v 2 _E_ v
D,qr = 5( 1/2+e/2r ) D Dyrgr + 3

% u_,( d'+22/3 ) 17

Rather than calculate Dzz in (16) or Uzz in (17) directly we wish to
make the connection with reflection coefficients mére explicit. Further-
more, we have both theoretical problems resulting from making the parabolic
approximation in the first place and numerical problems associated with

the mixed differencing; Let us estimate Dzz and Uéz from our original
continuation equations (13). For the moment, let's assume we have a one-

dimensional situation, in which case (13b) becomes

D = -¢/2vyD

zd' d'd’

or
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and once more differentiating in the depth coordinate

Dzz = - 1/2v( Ede, + € Dd'i ) ' . (18a)

and the estimate for Uzz from (132) is

U= 1/2v( e U

2z + € Udz ) (18b)

d

Inserting these into (16) and (17) and using Dd,(d') = Dd(d—Zz/G)

and Ud(d) = Ud.(d'+22/;) we have

U, = - 12’-(1/2+e/2r)2uyy +=-uy, - FIE.D (d -22/3) + € D, (d -22/%)]  (19a)

2% dd

- 2 £ 1 t - ’ ] — ’
D,4r = 5(1/2+e/2r) D= + 70 €040 (d422/v) + €Uy, (d+2z/v)] (19b)

_va
zd 2% d'd

In the case where v is some well chosen spatial average of Vv( y,z )

we simplify things one more step by letting e+ 0

.Y 2 2 5 ¢ -
Uzd 2(1/2 + e/2r) Uyy -7 Dd( d - 2z/v) (20a)

- €
Dgv = 3(1/2 +e/2r )2 D +2u,(d'+ 22/7) (20b)

Thus we have a coupled pair of continuation equations, the coupling
being due to a source term which is the product of the gradient of material

properties and the time derivative of the shifted, opposite travelling wave.

The Noah Approximation - Relation to 1D Algorithm

Recall that in the discussion of the one-dimensional algorithm

interbed reflections were not modelled. This we did not view as a serious

drawback, arguing that such reflected energy was O(eg) where €, was

2

a representative subsurface reflection coefficient. This is equivalent
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to suppressing all reflections generated by the upcoming wave and appearing
on the downgoing wave. If we were to make the Noah Approximation in the
present study we would simply drop the source term in equation (20b).

Our source term is defined in terms of sz .

~

v
(1-3/%Cy,t)) =-2
2v

€

-2 _ 13
A A

EH
which is very good definition of a reflection coefficient for a constant

density material. Therefore we define a reflection coefficient as

Cly,z) & -¢,/4 = 3 /2% | (21)

The only thing we have left in order to specify the forward algorithm is
to account for the reflection at the free surface. Thus, making the Noah
Approximation and denoting.the reflection seismogram as R we have the

following initial-boundary value problem

D.E. Uyg=- g(1- $i~) -2 Uy + €Cy,2 ) Dy( d -22/5 ) (22a)
D_yv = ¥/z( 1/2+e/2r )? D (22b)

B.C. D( y,d",2=0 ) = - U( y,d,z=0 ) | (22¢)
R(y,d) = U(y,d,z=0) B (224)

I.C. D(y,d'=0,2=0) = 1 ' (22¢)
UC y,d=0,2=0 ) = 0 o (22£)

This is the complete mathematical description of the forward procedure,
that is, given a reflection coefficient map C( y,z ) it shows how to
develop a reflection selsmogram R( y,d ) inclusive of a U diffracted

and focused sea floor, pegleg and structure multiple reflectionms.
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It is perhaps important, if not at least interesting, to examine
these equations for the case of a one-dimensional, layered medium. We

merely have to set all y derivatives of the waves to zero and integrate.
Uzd = C(y,z) Dd( a -2z/v )
Dzd' =0~ D(y,d',z) =D(y,d",2=0 ) =- U( y,d,2=0 )= -R( y,d' )

U = C(y,z)D(d-2z/v)=-¢C(y,z) R(y,d-2z/v )

z
vd/2
U( y,d,z=0 ) = g c( y,z" ) R( y,d-2z/v ) dz'
0
vd/2
R(y,d ) = S c( y,z"'" ) R( y,d=-22"/v ) dz
0

If we discretize time j At = d , and depth k Az = z ; and as usual

define Az = v At/2 we have, writing the above eqn. as a discrete summation,

| 3
r, = L ¢ T, = c, r
h| k=0 k "j-k k=0 j-k "k

however, with the constraint that ¢y = 0 and the assumption that ry " 1

it may be rewritten as
j-1

r, = ¢, +1

(23)
] J k=1

]’.'.k Cj -k

which is identical with the one-dimensional Noah Algorithm of equation

(3b) in the section entitled "One Dimensional Noah's Deconvolution."

Doing the Forward Calculation

Equations (22) is what we wish to program on the computer. In many
respects it is simply the migration/diffraction equation described in

detail elsewhere in this report. The difference lies in the source term
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included in the equation (22a) governing upcoming transmitted and

reflected waves. Let us discretize the coordinates as follows:

y = jby, z=kAz, d=nAd, and d' = n'Ad. We denote approxima-
]
tions to U( y,d,z ) as UE i and to D( y,d',z ) as DE o We
3 H

will use the finite difference scheme of Crank and Nicolson. 1In this
method we center all differencing at the location ( n + 1/2 , k+ 1/2 , 5 ).
Let us consider the solution for the upcoming waves since the case of a
source-free downgoing equation has been discussed in other sections.

Writing the Crank-Nicolson formulation of equation (22a), with

b =v/2 ( 1/2+e/2r )2 » we have the lengthy expression

Uﬁﬁ,j - UE+1,j - UE-:-:']]- + UE,J- -
- b_ég_éé-ai[ Uﬁii’j + U;+l’j + UET; U] (24)
+-%{ Ck+l,j( D;Ii:ikAZ/; _ D;:?kAz/V )
ro, DET;-ZRAZ/G _ Dz:?kAz/G N

where 65 is the second space differencing operator defined by

n n n
52 g Yi,jrl T2 U gt s
Yy k,j

>3 ( by )2

In order to simplify the notation and additionally, since we wish to

concentrate on the end effects in the ( z,d ) plane, we will rewrite

(24) in terms of a vector UD having the elements ( g ul e )
k k,1, k,2,
and similar vectors for Dn and C., . Thus Un and DY refer to

k k k k

the up and downgoing waves at a particular time and depth at all
midpoints along the profile coordinate. In this notation we may write

the second space differencing as
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2 n
5y Uk,l
2 .n
8 Uk,2 T U,
. = - 2 (25)
. ( b4y )
2
% Yo
where T is a tridiagonal matrix with ( -1, 2 -1 ) on the diagonal.
Thus, letting a = E_éé_%i we have
4(Ay)
ntl n n+l n _ n+l n n+l n
[0 ~ U ~ 0 F 0] = 2Tl + 0, + U+ 0]
+ Crs1 ( Dn+1—2kAz/\—r _ Dn—ZkAz/; ) 26
2 el e+ (26)
+ EE ( Dn+1—2kAz/\-r _ Dn—ZkAz/; )
2 k k
Let us now define an upward source term which is the downgoing wave
multiplied with the reflection coefficient
n oA n-2kAz/v
St 5 G Dy
Equation (26) in terms of source waves becomes
+1 n n+l n
(s - st 4 sPTl gD
n+l n n n+l k+1 k+1l "k k 7_
[ I-aT ]( Uk+1 + Uk )-[ I+aT ]( Uk+1 + Uk ) 2 =0 (28)

Let us now examine the ( z,d ) plane of the upcoming waves (see fig. 2).
Recall that the y-coordinate has been absorbed in the matrix notation
and thus it is important to keep in mind the third dimension. Each

cell in figure 2 represents an end view of the wave field along the

y-axis. The column of cells at k =0 ( z=0 ) is the upcoming wave



120

field at the surface. The diagonal line of cells represent the first
arrival trajectory in ( z,d ) of a downgoing surface disturbance
initiated at t = 0 . Above this diagonal the upcoming waves must Vanish
since a reflected wave cannot exist prior to the first arrival of a
downgoing wave. Thus we are left to dealing with waves in the inner
triangular region bounded by the reflection seismogfam at the surface

and the first arrival trajectory.

K=o 2z 3

Z

[ —
d| a=e -

nat Upcoming waves vanish prior
to onset of downgoing waves

-

4

] »
Reflection First Arrival of
Seismogram Downgoing Wave

at Surface
Fig. 2. Upcoming wavefields observed in the (.z,d ) plane. Normal
to this plane is the y (profiling) axis. Eqn. (29) propagates

upcoming waves with reflections across the inmer triangular region.

The region of interest for the source wave fields is similarly
restricted to the same triangle. However, at the surface we will require
that the source vanish. Reflections at the free surface will be separately

handled by the boundary condition as stated in equation (22c).



121

Equation (28) may be thought of as a two-dimensional convolution
operator acting on four neighboring cells in the ( z,d ) planes of the
U and S waves. If we denote by ® the two-dimensional matrix

convolution we may represent equation (28) as

—— g
d\L K ket K kil
n ( I-aT ) —( I+aT ) n {-1/2|-1/2
Gu - @s=0 (29)
n+l |-( I+aT ) ( I~aT ) ntl| 1/21 1/2

where the 2 x 2 operators are laid-down on corresponding cells in the

U and S ( z,d ) plane. Apparently, we have four possible directions

n n+l

. . n
(unknowns) to move in. Knowing S and say Uk ”Uk , and Uk+l we
. n+l .

might try to solve for Uk+1 via

nt+l _ n n+l n ntl n, ntl n
[ I-aT ] Uk+l =[ I+aT ]( Uk+1+ Uk )-[ I-aT ]Uk +( Sk Sk+ Sk+l Sk+l )
However, we find that the matrix I-aT cannot be inverted and Uﬁ:i
cannot be computed this way. This is also the case for U2 unknown.

k

This mathematical predicament is a result of violating causality by
attempting to migrate or diffract a wave in an unnatural physical direction.
We may think of the problem of trying to migrateva point source diffrac-
tion without knowledge of the hyperbolic tales. The two allowable directioms,
guaranteed stable numerically and causél physically, are ways we move
in solving for U§+l and UE+1 .

This is not the case when we have a one-dimensional earth. We then

may propagate waves freely in any direction we choose. This fact led to

a very simple 1D inversion algorithm, but due to this physical constraint,
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the 2D inversion is not so easily approached.
In order to best illustrate the steps involved in the forward calcula-
tion, let us consider in detail omecycle in the algorithm. We'll need the

convolution operator for propagating downgoing waves

k k+1
n' -( I4aT ) ( I-aT )

®
o
"
o

(30)
n'+1 ( I-aT ) -( I+aT )

]

Note that the allowable directions are, in this case, solving for DZ
1
and D;+Il . For convenience at this point we'll also define a depth

sampling such that Az = v Ad/2 . Thus, for the presumed frame velocity
v the 45° diagonal cells represent the theoretical first arrival trajec-
tories.

Let us assume that we know Ck for all space, and further that the

first portion of the seismogram R has already been computed. Referring
to figure 3 the boundary conditions (22 c¢,d) give us the values for the

cells at the left-hand side of the downgoing grid. With the operator

(30) we may continue these wave from surface cells ( dg R di , di , dg )

to fill out the grid. The next step is to shift the time axis d' into
the d-coordinate system as per d = d'- 2z/v or for Az = ¥ Ad/2;

n=n' -k . This downgoing wave referenced in the upcoming system is

then cross-multiplied onto the known reflection coefficients generating

n
the upward source terms Sk .

These waves, together with the transmitted upcoming waves are brought

to the surface by operator (29) and the new row ( cell r, ) 1is developed

on the reflection seismogram. The cycle continues by reinserting this
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wave, after an appropriate 180° phase shift, at the surface back into the

downgoing table.
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Figure 3.
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Two Dimensional Gating Techniques

The number of numerical operations in propagating from the first
arrival diagomal up to the surface is obviouslf proportional to the width
or depth of the region spanned. Thus, as we move to later time on the
seismogram we find ourselves faced with a growing computational procedure
that quickly gets out of hand. If we take a lead from the one~dimensional
algorithm, we recognize that some economizing gating may also be done in the

two~-dimensional algorithm.

First consider short-diffraction-path multiples, i.e. those waves
which eventually become trapped in the water layer. These include both
returning deep reflections (peglegs) and simple seafloor multiples confined
to the water path. If we gate - in the seafloor ggflection coefficients,
say bounded by NlS NZS , then we will properiy model multipleé of this
class.

On the other extreme we have the long-diffraction-path multiples.
Theée include those waves which reverberate one or more times in the water
layer prior to entering the subsurface. Thus, if we gate-in the front
portion of the downgoing wave containing these downgoing multiples we
approximately model the long-path class. Thus, the long-path gates
NlL , NZL encompass as much of the downgoing wave energy as might be
considered significant. Figure 4 illustrates the arrangement of these
gates in terms of the ( z,d ) plane diagrams of the D (shifted) and
S wavefields.

We may expect the long and short paths to represent distinct
multiple processes in the presence of appreciable seafloor or structure
topography. A wave transmitted a great distance into the earth, reflected
back and trapped by the water layer would be successively stretched By
the seafloor topography. However, even for moderate sea depths, this may

amount to a small diffraction compared to where the wave gets deformed

prior to the long diffraction path. We may expect time coincident arrivals
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of different paths through the same medium to comsist of both large and

small diffracted components.

zZ S Short~ Long-
Parh Path

Sunface.

<

Upcoming waves
vanish

First arrival trajectory
of downgoing wave

0/1('//: Qeain s

\~
5 W
‘ii__ Long~Path multiples

Short-Path multiples generatedhere
generated here

Fig. 4. Gating arrangement for discriminating long and short path
multiples. Great economy can be achieved in upward continuing wave
fields through source-free regions. For variable seafloor with y

the gating may be designed to accomodate such changes.



