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Calculation of Diffracted Multiple Reflections

by Jon F. Claerbout
and Don C. Riley

Prerequisite reading material is '"Two Techniques for Wave
Equation Migration" also contained in this report.

For downward continuing a downgoing wave we have the equation

c
th' 2 Dxx (1)

which is equations (8) or (15) in the Claerbout & Johmson paper. In
equation (1) the independent variable x is a receiver location.

Equation (1) can be converted to a form for use on zero offset sections

if we define the shot-receiver midpoint y as y = x/2 . This
gives
= £
th, = 3 Dyy (2)
Let T be the tri-diagonal matrix with - ¢ Az At / 32 Ay2 times

the second difference operator 6yy on its main diagonal. Then equation

(2) with the boundary condition that D vanishes before t' = 0 can

be written in the tabular form

2 --—*
t'=-1 0 0 0 0 0
ol 1{ .21 3 .4
do ] 90| % | 0! d9
I | T-1 ol 1} 2! 3! =&
x dy 14441 4 = 0 (3)
-1 | T+1 e (ol ol 2] 2]
l' 21 2| %] 2] %
Lol 1 2 -
dy | d5 | d5

se
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Given that the initial conditions are that the downgoing waveform is
observed at the surface z = 0 for times t' = 0, 1, 2, and 3
(but not t' = 4 and beyond) we can fill in table (3) in the order

indicated below ( g denotes something given as an initial condition)
Z. N
0 0 0 0 0

g 11131 6] 10

(4)

t'y| g 7
I

Down-shifting successive columns in the table (4) we are converting t!

to a t" coordinate.

z=0 z
0 0 0
t"=0 dg 0 0 0 0
0 1
dl dO 0 0 0
0 1 2 (5)
d, dy dO 0 0
0 1 2 3
) d3 d; dl dy 0
t
1 2 3 4
?
\L ? dg dz dj dg

The meaning of the t"

coordinate is that all elements on a given row
of constant t" can contribute to the upcoming received wave at a

surface arrival time t'" . Now equation (11) in the section "Programming

Techniques for Wave Equation Migration" modified by y = x/2 reads
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__c ' P
atz U( y,z,t ) = 5 ayy vl v,z,t ) = c( y,z ) Bt D( y,z,t=2z/c )

The right hand term which is the source term S( y,z,t ) acting in a

region Az for up-coming waves can be expressed in table form as

E——~%”
( 5 (6)
t"=0 0 d0 0 0 0 0
1 0 1
0 s dl d0 0 0 0
1 2 0 1 2
0 s, S, — d2 dl d0 0 0
1 2 3 0 1 2 3
0 83 s, 53 d3 d2 dl d0 0
t" 11 20 31 4 1] .2
| ? 3 4
i 0 s4 53 | s, 34 d3 d2 dl d0
*
= 1 {
cO 0 Cl | Co Cy c4 convolve
i i upward
In (6) we have set the surface reflection coefficient cy = 0 Dbecause
we will handle the surface boundary condition D = -U separately.
This means that "?" drops out of the left side of (6). The negative
of equation (5) is
c - - ¢ 5. D
(G oy *+ 9, ) (-U) = cd 7

which can be written in table form as



| 5 ‘ (8)
T-1§ T+I 0 0 0 0 0 -1} ~11 do 0 0 0 0
Az
*1 0 T2 *Tola
T+I | T-I +d 0 0 0 +1 1 +1 d d 0 0 0
1 1 0
0 0 1 2
d2 0 0 d2 dl d0 0 0
0 0 1 2 3
d3 0 d3 d2 dl dO 0
9 1 2 3 4
= ?
d3 1dy 1 4y dg
*
0 ¢ 1% 1 ¢3 ;c4
Now suppose the -U table was completely specified for all =z and
all those t" which are at and before t'" = 3 . Now we can calculate
" o= dz from the bottom two rows of (8) by calculating the entire
bottom row in the order indicated
T-I | T+I glelglglo]o 1l-1] folstls? s3] oo
! Az 3 2 3
* 2 * T .21 .3] 4 ©
- ?
T+I | T-1 P 14131211 OE +1 | +1 0 s, | 83|85 S, 0

All the steps up to the present have shown how knowledge of all the
reflection coefficients and the surface wave D = -y for times t = 0,

1,2,3 can be used to calculate the surface waves at time t = 4 ,

namely d2 =—u2 . Obviously the process may be used recursively to get
d0=—u0 for all time.
t t

The inverse calculation proceeds in a similar fashion. Suppose
dg is known for all t and we wish to calculate Cl’ c2, etc., in a
recursive fashion. It is sufficient to show how to compute cy -
Suppose we skim off the left two columns of (8). We get
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convolve ; ‘ 0 c
down AEJ
*
0
0 eo g
g el g g
g | e, = g g (10)
g e3 g g
' ‘ g g
* *
T-1| T+I convolve R -1 j
up 2 |
T+I | T-1 1 1 ,

In (10) all the boxes filled by g on the left are given. The boxes with

g on the right are readily computable as before. If c, were known

it would be a straightforward task to compute successively

ey, ey,
e eO . We would be compelled to initialize the computation with an
approximation such as ey = 0O for some large N . 1If the correct

value of 1 had been used then we should find that ey vanishes. Since
we do not know what value of c to use we try ¢y < + 1 obtaining

eg and we try ¢; = - 1 obtaining ea . The correct value of 1 is

the appropriately weighted linear combination

0 = a eg + B ea (11)
where

1 = o + B (12)

¢ = a - B (13)

which inverts to
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20 = 1+ ¢ A (14)

2 = 1-2c¢ (15)

reducing (11) to

+ —_
0 = (1+ N ) eO + (1 - cq ) e,
or e+ . -
_ 0 €0
c, = ¥ — (16)
o o



