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One Dimensional Noah's Deconvolution

Don C. Riley/se
January 14, 1974

Noah was a geophysicist, but he used a submarine

An ancient geophysicist by the name of Noah had an unusual method
of reflection profiling. Noah recognized that a large part of the problem
(at normal sea level) with multiple reflections was due to the presence
of the near-perfect reflector at the sea surface. Being the practical
man that he was and having knowledge of the latest weather forecast,
Noah proposed to collect his data in a submarine during the flood. The
very good result was that Noah's seismograms were free of sea floor

multiples and structure peglegs.

Fig. 1. Noah's recording geometry on the left, ours on the right.

While we cannot record data like Noah we can try to synthesize
Noah's seismograms from ours in the computer. To begin we will need to

make some simplyfying assumptions, and we'll start with the worst. It
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is easy to argue for a two dimensional model of the subsurface since most
data are shot along lines, usually "dip" lines, and most often interpreted
with zero cross—dips in mind. But a necessary step here is to next make
the layered media approximation; that our earth model is a function of
depth only. We don't believe in this assumption of course, but probably
neither do single channel deconvolution folks or even layered media theorists.
The idea is that it makes the problem immediately tractable and hopefully
we will gain insight into how we may do the two-dimensional problem.

In addition, we'll also neglect material dispersion, and attenuation
within the layers. It is also convenient to define a depth sampling such
that one sample interval in time is the two-way travel time within one

layer.

First-Order Algorithm

To synthesize Noah's seismogram from ours we place all receivers at
the same datum and equate the z-transfer function G(z) of the earth
beneath the free surface as deduced from our experiment and Noah's.

This follows from the assumption that the earth behaves as a one-
dimensional, time-invariant, linear system and as such is completely
described by G(z) = U(z)/D(z) . For our geometry we have upcoming
waves or - R(z) , the z-transform of the reflection seismogram, and
downgoing waves of the ideal impulsive source 1 and R(z) reflecting
off the free surface.

In our definition of the reflection seismogram, being only the upcoming
waves,we have excluded the possibility of recording the direct arrival of
the shot. 1In practice we record a direct arrival, but, because of
always finite offset, we receive the horizontally travelling source
waveform. We will later see how we may estimate the desired vertically

transmitted source waveform. Thus, we disregard as unmeasurable and
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unmodelled the early portion of the seismogram containing the shot

waveform.

Noah's upcoming waves are - c(z) and the downgoing wave is simply

the shot since the free surface is absent.

U(z)
6= L 53

surface

where U, D are the up and downgoing waves at the receivers. For the
same earth below and same datum above we may equate the transfer function

for both geometries.

U(z) | _ =C(z) _ =R(z) (1)
D(z) 1 1+R(z)

surface
C(z) = 1&1&2) @

In order to do the transformation (2) a necessary condition is that

1+ R(;) be physically realizable (since Ct; 0, t £0). In the ideal
case before us of a horizontally layered linear medium, this is guaranteed
since it may be shown that 1 + R(z) is positive-real. In considering
transforming field data with effectively unknown shot waveforms 1 + R(z)
is not measurable. This is due to the fact that even for very small
offsets we record the horizontal path shot rather than the vertical

path waveform transmitted into the earth.

If in (2) we identify and equate coefficients of like powers of

z we have
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Thus the recursion (3a) shows how to develop a new point in Noah's
seismogram from the convolution of the previously computed portion on

to the original reflection seismogram. In examining (3b), which is

the synthesis transformation, we note that the reflection seismogram

is the sum of an innovative part . and a predicted, deterministic
multiple part rt *Coo- Thus, like statistical deconvolution we are,
in (3a), attempting to subtract the predictable portion from the seismo-

gram. Unlike deconvolution, however, the "filter" is the deconvolved

seismogram itself.
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Fig. 2. Predictable energy is the convolution of the past
reflection seismogram with the past unpredictable portion of
the reflection seismogram.

Practical Considerations

Several problems arise in dealing with realistic cases, either
synthetic or field data. One is that of computational efficiency since
the number of operations for a trace n samples long is like n2 MADS
and quickly goes out of sight. The solution to this is careful gating
of the algorithmand is discussed under classes of multiples treated.

The other is that so far we haven't taken into account a realistic
source waveform of finite duration and bandwidth. We shall rewrite the

transfer function equation, this time taking into account a shot pulse S(z)

of duration & in which case our wave fields are now

- é(z) = - S(2) R(z)

_
D = S(z) + R(z) ,
and Noah's
U = - é(z) = - S(z) C(=z)
D = S(z)

where the prime denotes the reflected wave with the source waveform

included. Thus, we write again
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S(z) S(z) + R(z)

Now define an inverse of S to be U A S_l and dividing through (4)

by U we have
1]
R(z)

\}
C(z) ] (5)
1+ U(z) R(z)
And again equating coefficients of like powers of 2z results in a
similar recurrance pair
' ' t-1 ' 1
c = r —~ux . ¢, ¥ (6a)
t t k=] k Ttk
, ' t-1 , ,
r. = ¢, + u % El T Cek (6b)
We now need to choose the form of the source inverse U(z) . Since

1] 1
under the summation both ¢ and R have the source waveform, in the

process of convolving the two the source will not only spread out but
also its center of gravity will be delayed.
Therefore, in designing the inverse operator U it should not only

whiten S but advance it up to its original position as illustrated in

fig. 3.
source primary 1st multiple 2nd multiple
S P
Ml MZ

| ‘ i u g i l | ' rt
- t=N = P& P =
t=o 1 . t=N t N3

- W

' +PEM,

Eqn. (6b): M. =+ U@P@P r%=+U@MﬁQP

1

Fig. 3. U 4is taken to be that anticausal filter which is the
inverse of S such that U pushes P % P up to match Ml .
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Recall, though, that we have not allowed oursélves direct access to

the vertical path source waveform. However, we may consider the case
where the various multiples are separated in time as in fig. 3. Thus

(6b) allows us to estimate U either from the primary convolved on

itself and the 1lst multiple or the primary convolved on the jth multiple

and the j + lst multiple.

N2+ Q, ' Nl+ Q/ 1 '
UxP%P = M. : i -
1 Min § ( rt u % § rk rt—k )2
u t=N =N
2 1
or (7)
N+ 2 +
UXP#M o ! "1 ' 2
M = MZ' Min E ( ro-u % X T Tk )
u t—N3 k=Nl

Therefore having estimated U from the data for the inverse transforma-
tion, or directly for data synthesis for the known source waveform, U
\

]
may be applied to R and C , respectively. Thus moving U inside the

summation we have

c = r - I Cr rt—k r = ¢, + 2 TSk (8)

Classes of Multiples Treated

By careful gating of the summation in the recursion, a large amount
of control is possible over the type of multiple reflections we may
synthesize or remove. Running the recursion without any gates, as in
(8), will accommodate all types of multiples that were absent on Noah's

seismograms. The only multiples Noah was left with were interbed multiples.
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For our purposes, we choose to define interbed.multiples as those rays
which suffer a reflection on their upcoming path with the exception of
reflections at the free surface. Since the one-dimensional Noah transforma-
tion above does not model interbed energy it remains in the inverted data.
This we view as an acceptably small portion of the multiple energy
distribution. The important thing is that the disturbing amount of
seafloor and pegleg multiple energy is properly treated within the
framework of our simple model.

In the above approximation we assumed the usual situation where
structure reflection coefficients are small compared to the seafloor
reflectivity. Depending on the strength of this condition we may choose
to neglect another class of multiples, structure-structure multiples.
Although this is really a data dependent question we are often led to

consider it an economic one.

N ' N
- 2 {
deep struc%?re 2shallow structure :
_ (seafloor) 1
up 2 C 1
e o | e A
t-1
DOWN z R ( {
seafloor i %

deep structure
shallow structure

Region of Region of Region of
Post-Peg legs structure~ Pre-Peg legs pre Peg legs post
structure Seafloor
2
0( €16, ) 0( €, ) 0( €€, )

Fig. 4. 1Illustrated how the middle terms in the summation of
equation (8) may be gated out if structure-structure multiples
may be neglected. €, 1is reflection coeff. of seafloor, ¢

1 2
reflection coeff. of deep structure. For eg << g.e_. we gate
in the N, terms at each end. 12

2
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If 81

reflection coefficients, respectively, then the structure peglegs are

> €, are representative values for seafloor and structure

of the order of Structure-structure and interbed multiples are

€€,
0¢( 82 ) and 0¢( 63 ) , respectively. If we choose to neglect the

former the computations may be largely reduced. Referring to fig. 4 we

gate in the final N, terms off each end where the deep structure

2

peglegs are generated. Thus we may split (8) into

Ny

1] L \ 1

c. = T, - El ( C Tk + Cx Tp ) for t >2 N2 (9a)
: : N2 ,

r, = ¢ + kfl ( T + Tk %k ) for t >2 N2 (9b)

Thus the computations go as Zn*N2 MADS for a n length seismogram.

Figure 5 is an example of a synthesis-inverse experiment using the split

summation recursion (9). Note first the absence of the structure-structure
multiple expected near the bottom of the section. Also note the quality
of the reconstructed Noah on the left. This was surprising since only

one inverse U was estimated from the first trace and subsequently used

on all the others.
Possible Pitfalls

Perhaps the most obvious limitation with this, or for that matter
any single channel-technique is one-dimensional violations in the data.
Specifically, the presence of diffracted multiples is a likely source
of trouble. Secondly, we rely heavily on reasonable estimates of the
inverse shot waveform. Problems may be expected where the waveform

changes rapidly from trace-to-trace, is of excessive duration, or
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simply cannot be reliably estimated. This will most often occur on
very shallow water data.

Another source of difficulty may be due to selective path attenua-
tion. Our model assumes that all possible multiple paths corresponding
to a particular arrival time are identically attenuated. For physical
reasons some paths may be unexpectedly lossy . Finally, the influence of

typical field noise on this technique has not been evaluated.
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