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Two Techniques for Wave Equation Migration

by Jon F. Claerbout

In order to program the migration technique described in the Claerbout-
Doherty paper (1972) it is first necessary to master the manipulation of
tri-diagonal matrices as described in detail in the Claerbout (1970)
paper. Next it is necessary to be able to program the time dependent
method as described in some detail in the Claerbout-Johnson (1971) paper.

If you are still reading you will know that in simplest form migration

deals with the up-coming wave equation

Uiz = 7 Upx 1)

In this situation we are assuming the velocity to be independent of x

and the reflectors to be arranged in two dimensions to satisfy the Fresnel
Approximation. Equation (1) could of course be fourier transformed over
all three coordinates, but we will transform away only the x-coordinate
because we are interested in end-effect interactions on the t and z
coordinates. Using exp (i k x) horizontal dependence equation (1)
becomes

U = kU (2)

In practice we have always programmed (1) although there seems to be no
reason why migration could not be programmed in the spatial frequency
domain with (2) exactly as we will now describe it. First we re-express
equation (2) as a two dimensional convolution in the z - t plane. Letting
% denote two dimensional convolution the equation k2 U - Utz = 0 may

be written as
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Since k 1s positive the sum of the two operators always has lb! > |sf

in the form
i # U = 0 (2b)

Now we consider the task of using (2) to fill in U on a table

like

Z
N,
a

t \/

From equation (2b) we see that given the appropriate three values

of U a fourth may be determined by either of the two operations

or (4a,4b)
Ye
Because |b| > |s| the filling operationms implied by
<
4 or 7 (5)
L5
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if continued would quickly lead to divergence as does polynomial division
with a non-minimum phase filter. This is the mathematical manifestation
of the physical idea of causality. Usually we think of migration and

data synthesis on the following grid.
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On this grid Tgs rl, *tt» I, Trepresents the observed surface seismogram

and CO’ Cys "7 c4 represents the migrated section. The zeros in the
bottom row represent the notion that seismog;ams vanish at a sufficiently
late time. Notice that in filling in the table there is a lot more work
(diffraction) in going from r, to ¢

4 than in goihg from r, to ¢

4 2
This is because for fixed dip, deep events migrate farther than shallow
events. Letting k2 = 0 we are describing up going plane

waves. Then for Az =1 and At =1 we have b =+ 1 and s = -1,

Starting with surface data ro, rl, **+, and the bottom row of zeros

we can use (4a) to fill in the table (6) and it becomes
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Inspecting the table (7) we see that numbers remain absolutely constant

as we move in z-direction. If we had not taken kz = 0 but had instead
taken k2 to be small we would see the numbers in the table changing
gradually in the z-direction. From the point of view of solving hyperbolic
differential equations it is most economical if you can get roughly the
same number of points per wavelength (typically 8) on each coordinate

axis. This means that in the development till now we have drastically
over—-sampled the z-axis. The 15 degree limitation of the Fresnel Approxi-
mation implies that Az could always be taken five times or more

coarse than ¢ At . The subject of optimal selection of grid spacings

is somewhat involved. Suffice it to say here that some of the field

data ﬁigrated in the (1972) paper was done satisfactorily at an

Az/ cAt ratio as great as 200. Anyway for the purpose of illustrating

the point we will now redraw the up-coming wave table with twice as

coarse a sampling on the z-axis. Numbers in the two tables below indicate
two different possible orderings of use of (4a) for the migration
calculation. In either case the resdlting migrated section is intefpolated

(perhaps very crudely) off the diagonal.
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z~outer t-outer
To synthesize data frem a hypothetical depth section the calculation
proceeds in reverse numerical order using (4b). The migrations in the 1972
paper were done by the method of the table on the left, which we call
"z-outer" because the outer DO loop is on the z-coordinate and the
inner DO loop is on the t-coordinate.

Study of the two optional procedures (7a) and (7b) reveals that
the t-outer technique has an extraordinary advantage in the much smaller
compuﬁer meﬁory requirement.

Finally we will have a more rigorous and general development.

Equation (46) in the 1970 paper is

- i - - im + di2mz
- (em” p + Py + E p e

p, = om > ) (8)

i
1
2
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We assume homogeneous velocity by dropping € . Recall m = w/c

where ¢ 1is the velocity. Multiply through by - iw . Use U for

- +
P and D for p . We get

€

. . c z . i2zw/c
S U, = -5 U - =Z (i ) (e ) (9)
2c
Inverse Fourier transform.
c €, -
Uzt = ) UXX + —Z—E' Dt*ﬁ(t—Zz/c) (10)

This result is like (1) but the fact that the upcoming waves originate
from a coincidence of downgoing waves with a reflector (non-zero ez)
is explicitly included. Defining reflection coefficient as c¢(z) = —éz/ZE .

We get

Btz U (x,z,t) = -

Niol

axx U (x,2z,t) - c(z) Bt D (x,z,t-2z/c) (1)

A confusing aspect of (1l1) is that time t does not have the same time
origin at each depth. It is like describing ballistics in local solar
time rather than universal time. The time t seen in (11) represents

the arrival or departure time for energy at the earth's surface. Thus

a surface downgoing wave at time ¢t - 2z/c can interact with a reflector
c(z) = 6(z) at depth =z to create an up-coming wave which arrives at

the surface at time t. The downgoing wave D can be generated in a

- table with the diffraction equation. Specializing to down going

plane waves this gives a table in which waveforms don't change as the wave

goes in the z-direction



79

>
ol To| o | o
L IS B T
(12
T2 T2 T2y T2
L Ty r, r,
\/ t = leaving the surface time
Changing to a surface-arrival-time table we shift successive columns
down
>z
o
T T
1 0 Zeros (13)
r, |r; 1%,
Iy r, L
\/ t = surface arrival time g

To find the sources for up-coming waves at timé t each column
of (13) should be multiplied by the reflection coefficient for the
appropriate z.

Now assume that the downgoing wave has an impulsive wave form.
This excludes the possibility of multiple reflections. Then the table

for sources of upcoming waves is
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0 0 ¢y 0
0] 0 0 c3
\/ t
In tabular form equation (11) at zero dip ( i.e. k2 =0 ) for
Az =1 and At =1 becomes
U . - (-9 ) = source ]
zt : t
0 0 0 0 -1 1 0 0 0 0 ~1/2 { -1/2
% = %
c, {c. /210 0 1 4-1 0 c 0 0 1/2 1/2
1 1 1
(15b)
c, <, c2/2 0 0 0 <, 0
cy | ey |cg c3/3 0 0 0 Cq

The generalization to arbitrary horizontal wavenumbers k is obvious
and the generalization to spatial x-dependence is exactly as in the

1670 and 1971 papers.
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Oct. 31, 1973

First problem for Post-Doc:

The wave equation in 2-D Cartesian coordinates

The trial solution is

P = ex -igt + ik x + ik =z
Qq p ( -iw < 2 )
Putting trial solution in wave equation gives the equation of a circle
k
2 A\ z/w

2

w 2
5 = kx + kZ ///’“
c

SN

L/

Yor geophysical reasons we want an equation with top semi-circle only

k = 4+ ( w2/c2 - k2 ) 1/2
z X
The equation is
i 02 04
P = 21+ 3 4+ )P
z c 2 XX 4 XKXK
2w 8w

Presently we solve above by an initial value technique in =z, say Crank-
Nicolson, and a band matrix in x (usually truncate 9 xx and higher).

X
We believe infinite series approach to square root is much inferior to iterative

techniques. We haven't been able to develop a stable iterative technique.
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Noah's Method of Deconvolution by Flooding

Jon Claerbout
8 October 1973 : se

The idea here is that it is mainly the presence of the free surface

perfect reflector which causes a practical problem with multiples. We

wish to replace the seismogram A = 1 + 2R by the seismogram -C in

, oW
.| TELL. Y&, Sm T
THE BE

figure 1.

Fig. 1. Our waves on the left, Noah's on the right.

For us the down-going and up-going waves are
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The admittance A of the earth at ordinary sea level is given by

velocity _ D - U

Admittance =

pressure D+U 1+ 2R
Noah's seismogram in terms of ours is
c . -U _ R _ 2R __ _ A-1
D 1+R 2 (1+R) A+ 1

In terms of z-transforms this is

(A(z) + 1) C(=2) = A(z) -1
Now collect the coefficient of zt for t greater than zero.
t
. + 2 a k% T A
k=0
If ¢ is taken to be unknown but ¢ , ¢ , ++. are known then
t t-1 t-2
we can get ct by the recursion
t-/
(1 + aO) c, = a - ) a1 Sk (1)
k=0
Theoretically ay = 1 but there is an unknown scale factor, say 2 u in
a5y 5 eee A (among other problems). Thus (1) becomes
t-1
c, = u ( a_ - ) a1k ) (2)
k=0

, Note that ct immediately feeds back to the calculation of ¢

t+1
Because of the finite extent of the source wavelet it is proposed that (3)

will have the gecod features of (2) but will be safer.
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c., = u(a_- L a ,c ) , 3)

Figure 2 indicates possible choice of parameters N, , N, , and N

1 2 3°

Fig. 2. Our seismogram on the left and Noah's on the right.

Some economy can be achieved if it is desirable to eliminate only sea floor
multiples and sea floor peg-legs by limiting the sum in (3) to a maximum

1nqex of N2

c,= ula - % a_ c) 4

The propagation of the unknown u during the computation goes as indicated

in (5)

- k ) (5)
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Because of this propagation of u and our belief that u can be estimated
from the relative strength of the primary and first multiple we get u
by the minimization
N N
min I ( 72 2 6)
in a u a, ay )

u =N, t =N

To understand (6) define Yy the convolution of primary on itself by

vy, = E a a 7

The minimization (6) is trying to extinguish the multiple by means of the
primary convolved on itself. This works perfectly if the gate contains
no new structure primaries. Notice that u becomes 1 if the primary
has a magnitude equal the reflection coefficient. Finally, let us admit
that u is really a waveform, not a scalar. It should be the inverse

of the waveform actually transmitted into the earth. Figure 3 shows

why U, is taken to be an anti-causal filter.

> - M, Mo

o >-

’Fig. 3. Since P @ P comes later than Ml we use an anti-causal filter

to push it to an earlier time.
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Thus (6) with (7) becomes

N3 -(Nl or less)

. 2
5 - ) -
mt? t=N, ( % kEO "k Ye-k’ &)

Once uk has been estimated we generalize (4) to a convolution with uk .
Then (4) is run out to large values of time in a completely deterministic
fashion. No reflection coefficients are estimated. In generalizing this

to diffracting waves a rough guess is that letting 2z be the outward

diffraction operator then (4) becomes

F e (a0 9)

where the lettered operations have the following interpretation

migration of primaries

diffraction of downgoing Nth multiple

k

A
B
C: reflection at depth k with reflection coefficient ¢
D diffraction of upcoming wave to give N + ISt multiple
E

cancellation of multiples but not primaries

A more precise statement of (6) with more gating possibility is
® .

4 min(t-—l,Nz)
min t£N3 ( at - u ngl at—k ak ) (10)
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Defining the gate N4 - N3 to be larger than before we include the possibi-
. . . s th . st
lity of estimating u by fitting the N multiple to the N + 17,

Expanding the N2 - N1 gate includes the fitting of the first multiple

self convolved to the third multiple.

finis



