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A Tutorial on Monochromatic Waves

Raul Estevez

In the present study we shall review the application of a technique
of numerical extrapolation of monochromatic waves, to some theoretical
models. The already known technique, described in Claerbout (1970a), (1970b)
refers to the computation of vertical or quasi-vertical downgoing waves in
a lightly inhomogeneous medium by means of finite difference approximations
to the scalar acoustic wave equation. In our case, the technique was
applied to study the downward continuation of a plane wave through a
quasi-inhomogeneous medium with different two dimensional geometrical
bodies of slightly different velocity embedded within it.

Although we are going to consider space variations of velocity,
for simplicity let's assume that density is space independent and that
we do not haye conversions of pressure waves to shear waves (Actually,
the more general case of variable density can be handled without any

noticeable difficulty.). 1In this case, the equation for pressure waves

can be written as
VP ~-= P =0 (1-1)

where the velocity ¢ = vk/p , k - incompressibility, £ - densitv and

= 8250 42
Ptt = 9“p/at .

If ¢ were constant, we know that equation (1) would admit plane

wave solutions of the type

se

> >
P = PO exp ( 1kx X + 1ky v + 1kz z ~-ipgt ) = PO exp( ik r-diwt) . @-2)



By substituting (1-2) into (1-1) we easily find that PO is a
constant, provided that c2 = u)z/k2 , where k2 = X kiki = ki + ki + kﬁ .
Since in many situations of practical interest the waves do not propagate
at great angles from the vertical, for simplicity we are going to further
limit our discussion to a two-dimensional case (x,z-dependence only),

where the waves are traveling in the plus z-direction. In this case

k = ky = 0 and kz = w/c =m . The solution to (1-2) then becomes
P = PO exp(imz-dipt ) . (1-3)

In a more general case, c¢ may be an arbitrary function of space.
By analogy with (1-3) let us try, for the downgoing wave, a solution of
the type

P = Q+ (%,z ) exp(imz-iwt) , (1-4)

. + ,
where, as we see, the function Q ( X,z ) is no longer a constant, and
the "+" sign indicates that the wave is traveling in the plus z-direction.
The bar over m denotes that in this case we are considering a spatial

average of the spatial frequency m .

w - W
m=m and m = —
’ c(x,z)

Although function (1-4) may in éeneral vary rapidly with =z, if
the inhomogeneities are small, at some distance from the source, the
wave is going to behave as if it were approximately planar, which means
that Q+ will be a slowly variable function in z . This fact will be
used later on, while it is worth mentioning that this assumption allows
us to use a coarser grid to represent Q+ » in relation to the finer grid

that we may need to represent P .
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Since we suppose that there may be velocity inhomogeneities, besides
the downgoing wave, reflected waves will arise, and a more general solution

should rather be written as

P=(Q exp( iz ) + Q" exp( -imz )) exp( —iwt ) = ( Q  +Q exp( -i2mz ))

exp( imz - iwt )

P =Q( x,z ) exp( imz - iwt )

Here, Q becomes a rapidly varying function that would require a
finer grid. If we could handle both waves separately, we would be able
to describe them on coarser grids. This is one of the reasons why we do
not want to treat both solutions on the same grid and, therefore, why
we want to seek an equation describing only the transmitted waves and
another to describe only the reflected waves. As we shall see later,
discarding the second term in expression (1-5) can be justified on grounds
of the slowly varying character of ( and the fact that in usual geophysi-
cal situations, transmitted waves are of much greater strength than

reflected waves.

Computing Q:z ’ Q:t and replacing into the two dimensional wave
equation (1-1), we get
O+t r2imqg e (mny ot
2z e im Qz m m ) Q = 0 (1-6)

If, as we said, the amplitude modulation Q+ is a slowly varying
function with 2z , then obviously Q:z << 2 im Q: and we might drop

+ . . ;
the sz term for computational convenience. Then we get a first order,

and hence initial-value equation in z.
+ 2_ =2

Q +2im Q: (m’- 7)o" = o (1-7)
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Notice that for a homogeneous medium m = m » and therefore (1-7)
reduces to

+ - +
, = 0 (1-8)

. R R + \
The considered approximation sz ~ 0 , as we shall see later, in
particular suppresses the reflected waves in the equation.

If we define now

2 2
W
E(%,2) =5 —— - 1 = % _ 1, (1-9)
mc (x,2) m
equation (1-7) can be rewritten as
ME R EE R T ) m2gt 0 1-10
QXX m QZ X, 2 m Q = (1-10)

This new parameter E is quite important, since through it we are
going to introduce the inhomogeneities of the medium: in the case of
a homogeneous medium (m =m ) E =0, but in regions of space (grid)
where some inhomogeneity is present, then we choose m in such a way that
the spatial average of E is kept small, since our approximations only
hold for small departures from a homogeneous situation.

Let us finish the section by adding some additional remarks on the
character of the approximation Q:z = 0, since this assumption will be
responsible for the major limitations of this technique.

The first thing we would like to notice is the connection between
this term and the reflected wave solution. Once Q+ has been calculated,
in order to compute Q we insert the complete trial solution (1-5)
into the wave equation (1-1) and subtract equation (1-7), corresponding

to the transmitted waves. After dropping Q;Z again, we get

- 2

L= - -2 -+ - _
QXX -2im Qz +E(x,z2)m Q= sz exp(1i2mz) . (1-11)
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We notice that this equation is almost like equation (1-7) for transmitted
waves, but differs in the sign of the term containing i (which changes

if we consider the change of the sign of z ) , and in the presence of

a source—-like term, proportional to Q:z . From here we see that by
neglecting the Q:z term in equation (1-6), in practice we just suppressed
the reflections. It is not difficult to realize that, on the other hand,
the presence of the Q:z and Q;z terms, would give rise to higher order
reflections (multiples).

The second aspect that we would like to refer in relation with the
approximation is its meaning in the domain of the anti-transformed
variable P , since it would allow us to compare directly the approximated
equation (1-7) with the actual wave equation (1-1) . For simplicity,
let us consider the case of a homogeneous medium; then, if according to

(1-4) we now make
+ , .~
Q (x,z ) =P(x,z) exp( -imz ) , (1-12)
+ 4+ .
compute Qz , Qxx and replace into (1-8), we get
P _+2imP +2R p = i 2p -
XX m P P = P +t2im Pz +2m” P = 0 (1-13)
The wave equation (1-1) in two dimensional cartesian coordinates is
2
P +P ~-m P = 0 (1-14)
XX 22

Let us now try in both equations a plane wave-type solution of unit

magnitude and propagating in the k = ( kx’ kz ) - direction

P = exp(i kx x + i kz z ) (1-15)
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Inserting this trial solution into both (1-13) and (1-14) leads to two
algebraic equations for kX and kZ » usually known as dispersion

relations. They are respectively

K+2mk -2 = 0 (1-16)
X Z
and
2 2 2
Ko+ ko -n? = 0 (1-17)

The graphs, corresponding to these two relations, follows (Fig. 1).

g gy e g e o e

' ke

Fig. 1. Graph of the dispersion relations for the wave equation
(circle in solid l1ine)and for the one-way wave equation (parabola

in dotted line).

As we see, the dispersion relation for the wave equation corresponds

to the well known circle of radius m = w/ec or ( ki + ki )l/2 =m ,

while the relation for the one-way wave approximation corresponds to a
parabola, that fits the circle only for small values of the angle 0

This graph also shows how, in the case of the wave equation, that for any

value of kx » we get two values of kz » corresponding to waves travelling
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in two opposite directions, while in the considered approximation, we get
only one value for kz . For this reason, the approximation Q:z =0
is often called the parabolic approximation, and, from this point of view,
it limits the validity of our results to waves travelling within small
angles of the z-axis.

Actually, Claerbout (1970b) showed that this approximation is just

a special case of a more general and precise one.

2
4 m -(n+l)k
Kk = ( m2 _ k2 >l/2 ~

Z X

HONNH o
=]
1]

4 m?-(n-1)k

In the P domain, approximation (1-18) is equivalent to

2
4 m™+(n+l)?d

(m2+3 H2 4 . xx (1-19)
XX 4 m“+(n-1)9

XX

which for the case of n =1, originates the approximated equation

- i 2 2 _
Qz T2k [ Qxx + l+kz/m kz EQ] (1-20)

For a homogeneous medium, E = 0 and kz Sm=mn , thus (1-20)
becomes

(1-21)

which coincides with (1-8). For the more general case of a inhomogeneous
medium, (1-20) does not coincide with (1-10), but we may notice that if
E 1is small enough so that m= kz ~ m , equation (1-20) becomes

i =2 -
Q, = - [ Q. +m EQ] , (1-22)
m

1,2,3,... , (1-18)
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which exactly coincides with (1-10).

A more precise approximation corresponds to the case n =2

- 2 2

i m 4dm” m 1
Q=7a(l-57)lQ +———"——EQl-—5q_ . (1-23)
z 2 m 2 m XX (m+m) (2m-m) 4m2 XXZ

Nevertheless, we are going to restrict our further considerations to a
simpler and less precise approximation, close to (1-23). Other kinds of
approximations, and specifically, a hyperbolic type approximation will

be briefly discussed in the section corresponding to slant frames.

The Computer Algorithms. The explicit, implicit and mixed schemes.

In order to apply the finite difference technique, the usual

. ) +
procedure is to solve equation (1-7) for Qz

-+ i + -2 +
Q = T (Q +Em Q). (2-1)
z - XX
2 m

If now we want a better approximation to the actual wave equation,
we could compute Q:z from (2-1) and replace into (1-6). In the P-domain,
this would correspond to a better parabolic fit to the circle of Fig, 1,
allowing us to consider a wider range of angles 0 . 1In terms of the
general approximation (1-18), what we intend to do comes out to be close

to the case n =2 .

Calculating then Q:z from (2-1), dropping higher derivatives of

Q+ in relation to =z ( Q:zz ) and inserting in (1-6), we get
E, +_ i + im _2 4+, 1 _
(L+7)Q=—=10 +(E+I%g )& o") 0 (2-2)

2m 452 XXz
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In the concrete examples, where we will apply this equation, we are
going to consider E to be constant all throughout the regions of inhomo-

geneities, thus we are going to discard the term containing Ez

E + _ i + -2 _ _
(147)0Q = "= Lo +E& o 1-—50,, (2-3)
By applying the finite difference method to equations (2-1), (2-2)
or (2-3), we just try to get a recursive relationship such that, given
Q+ at some fixed value of 2z for all x , we could extrapolate downward
the solution to any other value of =z

. . + . .
Since we are going to represent 0O  in a grid, let's start by

defining the following difference notation

Q+(,x,z ) = ngﬁi; ( nym - integers ) , (2-4)

where n will account for the variation in z , and m for the variation
in x (Starting from now we will omit the '"+" superscript). According
to this notation, we then approximate the first derivative of 0 in the

( n,m )-point of the grid, through the difference

- -.Q
Qz = Q(‘X’Z+AZZ) Q( %,z ) _ Qm - m (2-5)

The approximation to the second derivative of 0O in x (QXX) , requires
a little more consideration. In effect, since the considered equations
deal with the first and second derivatives of 0 : Qz and QXX , in order
to evaluate them in the point ( n,m ) of the grid, we have to take into
consideration as well, the neighbor points: ( n,m-1 )

; (n,mtl )

(ntl,m-1 ); (n+tl, m) and ( n+tl,mtl ) (see Fig 2).
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Fig. 2. Representation of the Grid. We want to evaluate Qz

and QXX in the point ( n,m )

Thus, it seems that we have two different choices in order to define

Q . The most evident and used one is
XX

Q. - 207 + Q°
A x

which makes use of the neighbor points of ( n,m ) , along the nth row,

and the less common approximation,

n+1 n+1 n+1
(2) ~ Qm+l -2 Qm + Qm—l

QXX A XZ ’ (2-7)

which makes use of the corresponding points on the next row. The first
approximation gives rise to the so-called "explicit scheme", while the
second one gives rise to the so-called "implicit scheme". The idea of
also taking into consideration (2-7), besides (2-6), is connected with the

fact that the first derivative of Q in z , is centered at ( n+l/2,m ) s

between rows n and n + 1 With all these three approximated deriva-

tives (2-5),(2-6) and (2-7) centered at different locations on the grid,
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we might expect some troubles, especially when considering short wave-
. , . , n n ikm
lengths. In fact, if we introduce the trial solution Qm =0 e of
a plane wave propagating at small angle from the z-axis into equation
(2-1), it can easily be shown that, in the case of the explicit scheme,

the magnitude of Q incorrectly increases by a factor of ll + i B g Az’

for each step in the z-direction, while off-axis waves are amplified unless
Az is arbitrarily small. 1In the case of the implicit scheme, we get
opposite effects. ( decreases by the same factor in each step, while
off-axis waves are attenuated.

One could think of a solution to this problem being, centering the

first derivative Qz at (n,m ) , according to
+ —_—
Qz 1 n-1
n e, 2-8
Qz 2 Az i (
but it turns out to be even worse. It creates instability for any Ax ,
due to the fact that, by defining this derivative over two steps in z ,

we artificially convert our first order differential equation in 2z into

a second order equation.

The other possible solution is to center the second derivative

QXX also at ( n+l/2,m ) . This can be achieved by taking the average

between (2-6) and (2-7), or by computing the second derivative of
( Q; + Q;+l )/2 (both ideas lead to the same result):

M, @

Qxx XX
Qxx T2 (2-9)

It turns out that this last scheme, called the "mixed" or Crank-
Nicolson scheme, guarantees stability for any Ax and can also be applied
to similar situations in electromagnetics and elasticitv. Introducing a

parameter 6 , we can summarize all these three schemes in the relation
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(2-10)

. 1 n+1

1 n
zz 2(Ax)2 ( Qm+l -

n+1 n n
2007+ Q —=—( 00, - 200+ Q) )-8,
2(Ax)

-1 )6 +

where if 6 =1 , we have the implicit scheme; if 6 = 0 , we have
the explicit scheme; and if 6 = .5 we have the mixed scheme. Varving
6 , relation (2-10) can be used to filter the solution in case that for
any reason we wanted to amplify or to attenuate off-axis waves.

In order to simplify notation, we will introduce the second deriva-

tive operator in x , according to

(2-11)

In terms of this notation, the approximation (2-9) could be written as

1 n+1

n
QXX = TAX)? TXX( Q_m + Qm ) (2-12)

Better approximations to the second derivative, in terms of the TXX
operator, can be found. TFor example, if we make use of the Tavlor's

Series expansion for Q( x+Ax,z ) and 0( x-Ax,z ):

2

Q( xthx,z ) = Q( x,z ) + Ox QX( X,z ) + é§_0xx( X,2 ) + - (2-13)
and
A 2
Q( x-8x,z ) = Q( x,2 ) - Dx QX( X,z ) + —%— Qxx( XyZ ) + oo (2-14)

then, according to (2-11), we can write
(2-15)
2 Ax*
Ax Qxx( X,z )+ /O (x,z2)+ ...

X
12 'xxxx

e

T Q= QC x+Ax,z ) - 2Q( x,z )+Q( x-Dx,z )
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But since T __ Q = sz Q. , we can rewrite (2-15) as

= a2 1
Txx Q= A1+ 12 Txx ) Qxx
or
1 Txx
Ay = 5 Q (2-16)

Ax 1+(1/12)Txx

In terms of the mixed scheme, expression (2-16) would have to be

written as

1 T Cortl

n

)
2 m
2 Ax 1+(l/12)TXX

m

Q ~

x (2-17)

Q
The operator 1 +(l/12)Txx in the denominator has to be understood as a
factor that multiplies all the other elements of the equation, where

QXx appears. Approximation (2-17) improves the results and, in particular,
allows us to sample the data in bigger steps than stability usually

requires (approximately by a factor of 2 ) . Nevertheless, for

simplicity, we are going to use approximation (2-12) in the following

computations.

Applying the mixed scheme to equation (2-3), we then get

% - %
- _ o
(1 )2 = 2l I P 2y +Ea oo™ M) -

X

(2-18)
1 n+l n
- T - )
452(Ax)2Az xé m m

In order to see how we can get the n + 1 z-level from the n~level,

let's bring all the n + 1 terms to the left and the n terms to the right.
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2 2
al WEb (1pie ye 1 - By ) it
14c? XX 1402
(2-19)
2 2
= axp G (g seyen o B ohg )y f
14c XX 1+c m
where
b=mAX ; c=mAz ; a = L ( 1. i) and a* = conj(a) (2-20)
? ’ b Ax" ¢ J '

According to (2-11), this expression gives rise to the tri-diagonal set

of equations

A 1 0 0 «-- 0] [ A% 1 0 0 .- 07 o "
i
« *
1 A 1 0 0 Q, 1 A* 1 0 0 lq,
0 1 A 1 ...0 - 0 1 A% 1 . . 0
. . ¢ o . ? ¢ * . " ) . e . ’
N =§ ~ - . ,  (2-21)
o - « 1 A 1 . 0 1 A% 1
o - - 0 1 Al o 0. . . .0 1 A%
\_ _ K_inj L ‘] —QHLI
where
4(m Ax)> - 2 4(m Ax) (R Az)
A = — +E(mAx )" -2+ 1 > A* = conj(a), (222)
1+(m Az) 1+ (m Az)
and
a* 1 -(m Az )2 2(m Az )
- — 5 + i TRl (2-23)
1+(mAz ) 1+( m Az )

It is worth noticing that the first and the last rows of the matrices
in (2-16) have to be filled out separately and according to the chosen
bordering conditions. In our case we have chosen zero slope condition.

In a more general case, the upper and lower diagonals may not be equal.
A set of equations like (2-16) can be solved extremely easily, and a

fast method of solution is described in Claerbout (1970a) and (1973). The
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corresponding computer program (subroutine C TRI) is included as a part
of a more general example program in one of the appendices. The usual
procedure to follow is, that given an initial string of values (source)
corresponding to the first row (n =1 or z =0 ) , we use (2-16) to
extrapolate the solution up to any n ( or z )

The grid:

Let us spend a few words in the grid itself and some of the criteria
we must look at when choosing the intervals of sampling. When we approxi-
mate the derivatives in x, z or t through finite differences, it
happens that the short wavelengths tend to attenuate or amplify depending
on the sign of the numerical viscosity. One of the reasons for this
behavior is the fact that by doing these approximations, in practice,
we make use of the long wavelength approximations w At = 2 tan( wAt/2 )
and kX Ax = 2 sin( kx Ax/2 ) . For example, when we sample in time, we
first replace the time derivative by - iw , and then re-express w in

terms of the z-transform variable z = exp( i w At ):

z-1 . 1 ,2z-1 .3 z=1 _ . w At _
S t3 (53 toeeel v 250 =1 02 tan 5 (3-1)

iwAt = n z = 2[

The kind of approximation we make by retaining only the first term

of this expansion is shown in fig. 3.

: 'Az‘lim ('Q'?h)

SR ; e i

Yy f k 1 ‘

, L e o T wiakleadl
— . . ‘, . 1 B ... —

f

Fig. 3. =z~transform approximation to the time derivative.
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More or less a similar situation is found when approximating the

derivatives in x or <z through finite differences (in this case, as

we said before, the approximation is of the type kx Ax = 2 sin( kXAx/Z .
Since we can connect w At , kX Ax and kz Az with the number of

points per wavelength in time, Nt » or in either direction, NX and

NZ , through the relations

A _2mc | _ A§,= 2m . _ Az _ 27
Ne =3t oo 3 M K bx N2 TR Tk bz (3-2)

we then restrict the validity of our results to waves sampled moderately
densely. The relative error in terms of points per wavelengths is tabulated
in fig. 4. On the basis of this table and choosing an acceptable error, say
3% - 5% , one determines a minimum acceptable number of points per wave-
length which comes close to 8-10 points per wavelength. Now, since
ki + ki = wz/c2 , for freely propagating waves we have that kX , kz < wle .
Thus, the Fourier transform Q¢ kx w ) should vanish unless kX < w/e .
With the assumption of 10 points per wavelength, the useful bandwidth
- 27/10 < w At < + 27/10 1is then markedly less than the total bandwidth
available (the 2m  periodicity interval for transforms of sampled data),
being the ratio of useful bandwidth to total bandwidth equals 1/5
Fig. 5 shows the usable portion of ( w, kX ) space.

In the computations of the present study, a minimum value of 8

points per wavelength was chosen. Using then relation (3-2), this allows

us to choose a value for Az

(3-3)
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WAT or Points per , Relative Relative
k_AX, waveleng;h, error of error of
radians 2m/wAt 2 tan wAt/? 2 sin k Ax/2
2:107 mx10™ 107203 107%%/6
.31416 20 .87 A%
.3926 16 1.27 6%
.5235 12 2.3% 1.1%
.6283 v - 10 3.4% 1.6%
. 7853 -8 5.4% 2.5%
1,047 ' 6 10.0% 4,47
1.571 g 27.0% 9.0%

Figure 4. The relative €rror at short wavelengths often associated
with expressing differential equations in difference form.

%

Z
%?/

/ L. non - Propajaﬁhj \ raz\g
th ?-d(r‘ec'(‘/on \ <00 nesr

to horizontal

Figure 5, Useful (good) and non-useful portions of frequency-wave
number space. This figure depicts the usual case in obser-
vations; the inequality Ax>cAt usually arises because extra

points in time are often more cheaply obtained than extra
points in space.
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Another interesting parameter, connected with the dimensions of the
grid, is the total number of wavelengths that we will have in a given grid.
If we call NZ , the total number of points in the z-direction, LZ -
the total corresponding length and NA ~ the total number of wavelength in

LZ , then we have

_ Lz _ NZ +AZ _ NZ
NA‘A‘NZ*AZ"N > (3-4)

and we get the curious result that NA does not depend directly on the
chosen spacing, but rather on the total number of points NZ and the
chosen number of points per wavelength NZ

Although relation (3-3) gives us a criterion in order to choose the
spacing, it is worth noticing again that this criterion refers to the full
solution P and not to the amplitude modulation Q . So that, if the
inhomogeneities are not big ( E ~ is kept small enough), and therefore
Q 1is a slowly variable function, we may compute Q in a coarser grid
and then, through some kind of interpolation, we can make the much more
easy computation of P (we just have to multiply Q by a phase term)
on a finer grid, defined by relation (3-3).

In order to illustrate the whole procedure, a detailed program was
written and it is attached at the end. The program was used to compute
the propagation of plane and circular waves through different two-dimensional
bodies embedded within a homogeneous medium. At the end, a short
illustrative movie was made for the case of a prismatic body. In this
last case, several different frequencies were summed in an intent to

pick up some time-~dependent effects.



Figure 6. Plane waves of four different frequencies,
a right 45° prism. Due to the superposition of equa

frequencies, diffractions from the right upper corner can easl

seen (A). The movie was based on this figure.
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Plane waves impinging on a plano-convex lense of lower velocity.

Figure 9.

The lense changes the initially plane waves (A) into circular convergent

waves (B).
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THIS PROGRAM EXTRAPOLATES DOWMVARD A TWO DIMENSIOHNAL PLAMNE VAVE
P(X,Z), THROUGH A MEDIUM WITH DIFFERCNT GEOMETRICAL DODIES EMREDED
WITHIN 1T, IT ALLOWS ALSO TO SUPERIMPOSE SEVERAL DIFFERENT ERE=-
QUENCIES (K). THE QUTPUT OF THE COMPUTATION (WAVE FIELD P(X,Z))

CAN BE PLOTTED YWITH THE PRINTER PLOTTER (SUB., OUT), WITH THF VERSATEK
PLOTTER (SUB., VOUT) OR STORED OM A TAPE (SUR. TOUT). THE OUTPUT _

IS OF THE SIZE OF A 70 X 100 GRID BUT, IM THE COMPUTATION, LAPGER
GRIDS MAY BE USED AS WELL, MULTIPLYING THESE TWO MNUMREDPS RY ANY o
INTEGER. IM THE PRESENT EXAMPLE A GRID OF 220 X hng POINTS IS USED
AND ACTUALLY THE PROGRAM IMCORPORATES THE USE OF A TEMPOPARY DISK
(UNIT LO) THAT PERMITS TO HAMDLE LARGE GRIDS AND PANY DIFFEDNRENT
FREQUENCIES., "AMP" IS A TEMPORARY COMSTANT WHICH IS USED TO PEPUCE
THE OUTPUT TO THE SPECIFIED SIZE. IM THE OUTPUT SUBRROUTIMES, THE
DATA IS SCALED BY EQUATING THE BIGCEST VALUE MULTIPLIED BY THE PARAMET
"CLIP", TO THE CLIPPING VALUE OF THE PLOTTERS(1024.)."NP(K)" 1S THE
NUMBER OF SAMPLE POINTS PER VAVELENGTH CORRESPOMDINC TO EREQUENCY

K. "FREQ" IS THE NUMBER OF DIFFERE!'T FREQUENCIES TO BF SUPERIMPOSED
"DX™ , "RZ' ARE THE SAMPLE IMTERVALS IMN THE X AND Z DIRECTIONS

(AFTER THE INTERPOLATION), WHILE YDZIMTY IS THE INTERVAL BETWEEN
SUCCESSIVE COMPUTED VALUES OF Q (BEFORE THE INTERPOLATION). THE

LAST THREE VARIABLES ARE GENERATED BY THE PROGRAM AS A FUNCTIOMN OF
NP, M, VEP AND INT., "M" IS THE WAVE NUMBER 1IN THE Z-DIRECTION.

"EM ~ THE FUNCTION OF THE IMHOMOGEMEITIES. "F(K)"™ ARE THE CHOSEM
DIFFERENT FREQUENCIES(I!N CPS) TO BE SUPERIMPOSED. OMLY F(1) IS FIXED A!
THE PROGRAM GEMERATES "FREQ" EOUIDISTANT FREQUENCIES BETWFEN F(1)

AMD 0, "X, tyh  txgh  UXSSYM ARE CONSTANTS TO BE USED IM SUB, -
MEDIUM IN COMMECTION WITH THE COMPUTATION OF THE MEAN DIAGOMAL
"CDIAG" OF SUB. CTRI, "ZA"™ , "zs!" , Mgs! | MOSUBM™ |, PCOAMMAT AND
"CRETA" ARE COMSTANTS TO BE USED IN SUP, CTRI. "COIHP" AND “CoouT"
ARE THE INPUT AND OUTPUT ROWS IMN SUB, CTRI. "SLOPE" KEEPS THE SLOPES
BETWEE!M TWO SUCCESSIVE COMPUTED VALUES OF 0 (COINP AND COQUT) 1IN
ORDER TO LINEARLY INTERPOLATE M™INT" (TO BE FIXED) VALUES RETHUEEN .
THEM, PCE"™ , "cu" AND "CUA"™ ARE COMSTANTS TO BE USFD [N OPDEP TO

. TRAHNSFORM BACK Q INTO P, "VA" IS THE VELOCITY OF THE MEDIUN (TO |

BE FIXED) AND "VB" IS THE VELOCITY INSIDE THE IHHOMDGEMELITY (CONS-
TANT IN OUR CASE AND GEMERATED BY THE PROGRAM AS A FUICTION OF MMy,
"WLY IS THE YAVELENGTH. "WEP" IS THE VERTICAL EXAGERATIOM OF THE
PRINTER PLOT. "NX'" AND "HZ" ARC THE NUMBER OF POIMTS IM THE X AND

Z DIRECTIONS RESPECTIVELY., THE INTFGER "K"™ YWILL ALWAYS RE ASSOCIATED
WiTH THE NUMBER OF FREQUENHCIES TUAT ARE SUPEPIMPOSED. "M WiLL BE
ASSOCIATED WITH THE NUMBLR OF POINTS IN THE Z=DIRCCTION AMND MM

WITH THE HUMBER OF POINTS IM THE X=-DIRECTION. YHF" IS THE MNUMBRER
OF FRAMES, CORRESPONDING TO SUCCESSIVE INSTANTS OF TIME, STARTING
FROM T=0,"PARR(NX)" IS A TEMPORARY ARRAY USED TO WRITE AND READ ON°
THE DISK.,"DT" 1S THE PERIOD OF THE HIGHEST FRENUENCY (F(1)) AND ,
"TIMINT'- THE FRACTION OF THIS PEPRIOD THAT WE WAMT BETWEEN TWQ SucC-
CESSIVE FRAMES, IN CHANGING THE GRID SI1ZE OR THE MNUMREDR OF FPE-
QUENCIES, MOTICE THAT THE DIMEMNSIOHS OF THE USED APPAYS ARE: MP(K),
M(K),F(K),X(K),Y(K),XS(K),XSS(K),ZA(K),ZB(K),SLOPE(HXOUT,K), ‘
CQINP(HX,K),CQOUT(NX,K),P(HXOUT,NZ),CDIAG(NX),CSUB(&X),CE(K),
CGAMMA(NX) ,CBETA(NX),CS(K),CH{K),CHUA(K)Y; WHERE K 1S THE NUMBER

OF FREQUENCIES TO BE SUPERIMPOSED AMD NXOUT 1S THE NUMBER OF
COLUMNS(TRACES) IN THE OUTPUT (70 I4 OUR CASE),

PO U O
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IMPLICIT COMPLEX (C)

INTEGER NP(1),FREQ,AMP

INTEGER*2 [HW(LOD) |

REAL DX,DZ,M(1),E,P(70,400),F(1),X(1),Y(1),XS(1)
REAL XSS(1),ZA(1),ZB(1),SLOPE(70,1),CLIP. o
COMPLEX PARR(70)

COMPLEX CQINP(Z80,1),COOUT(ZSO,l),CDIAG(280),CSUB(?SO),CE(l)
COMPLEX CMPLX,CBETA(280),CGAHMA(ZSO),CS(I),CH(l),CNA(l)
NAMELIST /PLOT/NX,NZ,DX,DZ,VA,VB,F,1,DM,DT.E,DZ INT

NX=280
NZ=400
NXOUT=70
Ci=(0.,1.,)
VEP=10,/6.
AMP=NX/70
REWIND 40

" PARAMETERS TO BE DEFINED

CLIP=2,

FREQ=1

NP(1)=8 ‘

NF=1 — 7 e
INT=2

E=.3

F(1)=u40,

TIMINT=,2

VYA=3000.

THE FOLLOWING STATEMENTS ARE CONNECTED WITH THF COMPUTATION
OF DIFFERENT COMNSTANTS TO BE USED IN THE MAIN PROGRAM AND IN
SOME OF THE SUBROUTIMNES, '

VB=SQRT(VA**2/(1,+2 +E))

U=0.28%F(1)
DT=(1./F(1))*TIMINT
MO1)=W/VA

DM=M(1)/FREQ

HL=6.28/M(1)
DU/=VA+*DM

L DZ=6.28/(NP(1)*M(1))

DZINT=DZ=*INT

WHEN USING PRINTER PLOT (SUB. OUT) MAKE DX=DZ/VEP

DX=DZ

PARAMETERS CONNECTED WITH THE SUB. VOUT (VERSATEK)

VERTEX=DX/DZ
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VXOUT=1,/AMP

DO 8 K=1, FREQ
Kl=K~-1
“<K>MMS¥25K1*DM

CW(K)=CEXP(-CI*W*DT)
NP(K)=6,28/(DZ*M(K))
CE(K)=CEXP(CI*M(K)*DZ)
F(K)=W/6.28
X(K)Y=(h, *(H(K)*DX)**Z)/(I +(N(Y)*DZINT)**2)
Y(K)=X(K)*M(K)*DZINT
X(K)=X(K)=-2,
XS(K)=X(K)+E*(M(K)*DX)**2
XSS(KY=X(K)=E+(M(K)*DX)**2
ZACK)=(1,-(M(K)*DZINT)**2)/(1. +(F(K)*DZINT)*22)
ZB(K)=(2,*M(K)#*DZINT)/ (1. +(M(K)*DZINT) *%2)
CS(K)=CMPLX(ZA(K),ZB(K))
PRINTlO,M(K),HP(K),F(K) ’
FORMAT(' ',"M=",F6.4,4X, 'POINTS PER WAVELENGTH: ', 14,4X, "FREQUENCY?
1,F6.2,/) i
{=H- DN

NOW WE GEMERATE THE FIRST STRING OF VALUES OF Q (WAVEFORM:
LINEAR OR CIRCULAR)

CALL INPUT 1(NX, CQIHP(I 1))
DO 5 K=1, FREQ

DO 5 J=1,NX
CQINP(J,K)=CQINP(J,1)

- STARTS THE BIG LOOP TO COMPUTE SUCCESSIVE ROWS OF THE GRID

NZ1=NZ+1
DO 120 1=1,MZ1,INT

COMPUTE THE ZTH ROW, CORRESPONDING TO THE KTH FREOUENCY
Do 80 K=1,FREQ

DEFINE THE GEOMETRY OF THE INHOMOGEHEITY,

CALL MEDIUM 2(E,M(K),NX,DX,DZINT,1,CDIAG,X(K),Y(K),XS(K),XSSCK),
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1AMP) |
SOLVE THE TRIDIAGONAL SET OF EQUATIONS
CALL CTRI(NX,CDIAG,CQINP(1,K),CQOUT(1,K),CSUB,CS(K),CBETA,CGAMMA)

COMPUTE THE SLOPE BETWEEN TWO SUCCESSIVE ROWS OF 0 FOR DIF-
FERENT FREQUENCIES K IN ORDER TO MAKE A LIMEAR INTERPOLATION,

L=0
DO 80 J=AMP,NX,AMP

L=L+1
80 SLOPE(L,K)=(CQOUT(J,K)~COINP(J,K))/DZINT

INTERPOLATE INT-VALUES BETWEE! COINP AND COOUT AMD VRITE
THE COMPUTED AMD THE INTERPOLATED ROWS OM A TEMPORARY DISK,

DO 100 K1=1,INT
DO 100 K=1,FREQ
CONS=CE(K)**(|+K1-2)
L=0 =
DO 95 J=AMP,NX,AMP
L=L+1 . —— v.

95 PARR(L)=(COINP(J,K)+SLOPE(L,K)*DZ*(K1-1))*COMNS

100 WRITE(LD) PARR

DO 120 K=1,FREQ
D0 120 J=1,MX
120 CQINP(J,K)=CQOUT(J,K) -

TRANSFORM BACK TO P AMD COMPUTE NF DIFFERENT FRAMES, CORRES-
PONDING TO SUCCESSIVE TIME INSTANTS.

DO 250 M1=1,NF

DO 150 1=1,MZ

PO 150 J=1,70
150 P(J,1)=0.

REVMIND 40
H=H1-1
DO 300 1=1,NZ
DO 300 K=1,FREQ
CUACK)=CUH(K) #%N =

. READR(LO) PARR
DO 300 J=1,70

300 P(J, 1)=PARRCJ)*CHACK)+P(J, 1)
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PRINT30,VA,VB,E, WL ,NX,NZ,DX, D7, INT

FORMAT(® ', 'OUTER VEL:',F8.2,"MT/SEG',uX, ' INNER VEL:',FR2.2, 'MT/SEG
1' X, "E=",F5.2,L%, "WAVELENGTH: ' ,F8. 1, THT! /" BX=",14,4X, 'NZ=", 11,

25X, 'DX=",F6.4,"MT',uX,'DZ=" ,F6.4, "MT',LX, 'POINTS 1MT, 5", 14,//)
WRITE(G,PLOT) |

CALL THE WANTED OUTPUT : OUT, VOUT OR TOUT

CALL TOUT(CLIP,NXOUT,NZ, IH,P)
STOP 4
END - | :

THE FOLLOWING SUBROUTIMNE GENERATES A LINEAR HORIZONTAL PLANE
WAVE AT THE TOP OF THE GRID,

SUBROUTIMNE INPUT 1(HNX,PS)
COMPLEX PS(NX),CEXP

DO 20 J=1,NX
PS(J)=(1000,,0.)

RETURN -

THE FOLLOWING SUBROUTIME GEMNERATES A CIRCULAR CONVERGENT PLANE

MAVE AT THE TOP OF THE GRID., THE CENTER OF CURVATURE 1S LOCATED o

AT THE CENTER OF THE GRID,

SUBROUTINE IMPUT 2(NX,NZ,DX,DZ,M,PS)
REAL M

COMPLEX PS{MNX),CEXP,CI

ct=(0.,1.)

DO 20 J=1,MX . :
R=SQRT((NZ*DZ/2.)#%24+( (J=HX/2,)*DX)**2)
RS(J)=1000,*CEXP(Cl*(V*R+3,1416/4.))/R

ETURN

THE FOLLOWING SUBROUTIME GEMERATES A CIRCULAR DIVERGENT PLAME

- WAVE WITH ITS CENTER OF CURVATURE BEINC AT THE CEMTER OF THE

20 PS(J)=1000,*CEXP(CI*(H*R+3,1416/4.))/R

GRID,

SUBROUTINE INPUT 3(MX,}Z,DX,DZ,M,PS)
REAL M o ' - : :
COMPLEX PS(NX),CEXP,CI

Ci=(0.,-1.)

DO 20 J=1,NX
R=SORT((NZ*DZ/2,)%#*2+((J=NX/2.)*DX)*%2)



\ AR

[ EwA®]

SO0

[

15

35

25

30

RETURN

. END

36

NEXT SUBROUTINE GEMNERATES A!l INHOMOGEMEITY OF TRIAMGULAR

SHAPE VITH

Ji,d42,11

ITS BASE BEING HORIZONTAL AND ABOVE THE HYPOTEMUSA,
AND 12 ARE THE GRID COORDINATES OF THE TRIANGLE'S CORNERS,

SUBROUTINE MEDIUM 1([ M,HX,DX, DZ,I A,X,Y,XS,XSS,AMP)
INTEGER AMP
REAL M

COMPLEX A(NX),CMPLX

J1=15*AMP
J2=55%xAMP
11=15*AMP
12=55*AMP
F(1.GE,
PO 15 J=1,70

A(J)=CMPLX(XSS,Y)

GO TO 30
Do 25 J=1,70

IF(J.LE,

GO TO 25

A(J)=CHPLX(XSS,Y)

CONTINUE
RETURMN

END

FOLLOVING
SHAPE WITH

- SUB
INTEGER AMP
REAL M
COMPLEX A(NX) CHPLY
JI=15*AMP

55«AMP

11=215%AMP
12=55=AMP

20

35

Y
L

30

J2=

IF(I.GE

ROUT

11.AND,

.11,AND.

DO 15 J=1,MX

A(J)=CMPLX(XSS,Y)

GO TO 30
DO 25 J=1,NX
IF(J.LE, Jl OR,J.GE,J2,0R.1,LE.J) GO TO 35

A(J)=CMPLX(XS,Y)

GO TO 25

A(J)=CMPLX(XSS,Y)

CONTINUE
RETURN

END

I.LE.12) GO TO 20

J1.0R.J.GE.J2:0R.1.LE.J) GO TO 35
ACJ)=CHPLX(XS,Y) '

SUBROUTINE GEMERATES AN INHOMOGEHEITY OF TRIANGULAR
ITS BASE BEING HORIZONTAL AND BELOY THE HYPOTENUSA.

NE MEDIUM 2(E,M,NX,DX,DZ,1,A,X,Y,XS,%XSS,AMP)

.LE.12) GO TO 20
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INHOMOGEMEOUS REGION WITH THE SHAPE

OF A HORIZONTAL PLANOCONVEX LEMSE, J0O AMD 10 ARE THE COORDINATES
OF THE LENSE'S CENTER OF CURVATURE, R IS ITS RADIUS AND IL
Z-COORDINATE OF THE PLANE FACE.

SUBROUTINE MEDIUM 3(L,M,NX,DX,DZ,1,A,X,Y,XS,XSS,AMP)
INTEGER AMP,R
REAL M

COMPLEX A(NX),CMPLX

JO=35*AMP
10=55*AMP
IL=50*AMP
R=30*AMP
T=R**2-(1L~10)*x2
JL=SQRT(T)

IFCL.GE

DO 15 J=1,MNX

15 A(J)=CMPLX(XSS,Y) =~

-~ GO TO 30

20 DO 25 J=1,NX
SR**2=(J=J0) **2
lF(d LE.d0=JL.0R.J.GE:J0+JL. ON. I.LE.10-SQRT(S)) GO TO 35
A(J)=CMPLX(XS,Y)

GO TO 25

35 A(J)=CMPLX(XSS,Y)
25 CONTINUE
30 RETURN

END

SUBROUTINE CTRI(LX,

H

DO 10

1=2,LXM1

1 0-R,AND,

'CCAhMA(l) (0.,0.)

l.LE

.IL) GO TO 20

CDIAG,CRIGHT,CANS,CSUR,CS,CRETA, 0OAMMA)
COMPLEX CSUB(LX), CDIAC(LY) COIGlT(LX) CAll (LX)
COMPLEX CGAMMA(LX) CDEMN, COHJG,CS
LXMI=LX-1
csuB(1)= (CR!GHT(I)*LOMJG(CDIAG(l))+CRIG%T(?))*CS
CSUB(LX)= (CRIGHT(LXML)+CRIGHT(LX)*CONJG(CDIAG(LX)))*CS
DO 30 Ju=2,LXM1

30 CSUB(J)— (CRIhHT(d 1)+CR|GHT(J)*CONJG(CDIAF(J))+CPt LT (J+1))=CS

BETA(1)=(1.,,0,)

CDEN=CDIAG(1)+CBETA(I-1)
CBETA(!1)=-(1,,0.)/CDEN

10 CGAMMA(1)=(CSUB(1)~CCAMMA(1-1))/CDEN
CANS(LX)=CGAMMA(LXM1)/(1.~-CBETA(LXM1))
.DO 20 d=1,LXM1

I=LX~

20 CANS(I) CBCTA(I)*CAN§(|+1)+CGAPHA(I)
RETURN

END -

(”rl\(iﬂ)
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SUBROUTINE OUT(NX,NZ,P,DX,DZ,VEPP)
DIMENSION P(NX,NZ)
DIMENSION ICHAP(ZI),LINE(lZO)

DATA ICHAR/ "HHHH', 'GGGG', "FFFF',YEFEE!, 'DDDD','CCCC','BBBB';””'W"””
1TAAAATY ! ', Y,111111,'22220, '3333' "uunyt, 155551,

‘6666, 17777, 188831 ,7 190 100007, Tananty
YR=(DX/DZ)*VEPP
WRITE(6,66) VR

FORMAT('- 'VERTICAL EXAGE“ATION OF PPIkTER PLOT IS',FS.Z)

B=0,

DO 30 ID=1, NZ 3

DO 30 1X=1,NX,3
T=P(1X,1D)
IFCABS(T).GT.B) B=ABS(T)
NXDONE=0

HL=MINO(120,MX=MXDONE) T T ——

DO 20 ID=1,NZ

DO 10 1L=1,HL

{VAL=10, +P(lL+NXDONE ID)*«12,/8
LIhF(IL)’lCHAP(VINO(Zl MAXO(1,1VAL)))
YRITE(6,77) 1D, (LILE(IL) iL=1,NL)

FORMAT(14,120A1) e e e

WRITE(SG, 71)

FORMAT('I')
HXDONE=HXDONE+120
FFONXDONE.LT.HX) GO TO 40
RETURN

END -

SUBROUT INE VOUT(VERTEX,VXOUT,NX,ND, 10)
REAL*L [Q(NX,ND)

INTEGER* 4 IBITS(3°)

LOGICAL*L BITS(32),LINE(18),1MASKS(32), RASE,LIGHT(18)
EOUTVALENCE (BITS(l) IBlTo(l))

DATA BITS(1), L'GHT/ZOOOOOOOO 18+200000000/
DO 15 1=1,20

CALL VI!“E( ESTEVEZ,BIN 603',15)

BO 5 1=1,250

CALL WRITER(LIGHT,70)

DO 10 1=2,32

PBITS(1)=2%%(32~1)

ASHIFT=(NX+17.,499)/17. 5

MMAG=32/MSHIFT - | e

NDOT=AMAX1(1., ((NMAG+, 5)/VEPTEX)*VXOUT)'
YV=(VERTEX*NDOT)/HMAG -
VRITE(G,66) VV

F”PMAT(' VERTICAL EXAGERATIOh ON VERQATEC PLOT IS', F5.2)

BASE= LIF{T(l) T
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No 20 1=1,32

RASE=BASE.OR.BITS(1)

MASKS(1)=EASE

IF(HOD( 1, M1AG) . EQ.0) BASE=LICGHT(1)
SCALE=NIAG/BIGEST(NX,!'D, 10) /HNOT/2.
BIAS=0.5+*NMAG+, 499 ,
MDM1=ND=1

DO 70 1D=1,NDM1

DO 70 1D0T=1,NDOT

DO 40 1=1,18

LINE(I)=LIGHT(1)

MSHIFT=0
DO 60 ISHIFT=1,NSHIFT
fL=1 "

DO 50 IX=ISHIFT , NX,MSHIFT
VAL=IDOT*1QC1X, ID+1)+(NDOT=IDOT)*I0(1X,1D)
IMAG=BIAS+VAL*SCALE

IFCIMAG.LE.O) GO TO 50

THAG=MINO (NMAG, IMAG) -
LINECIL)=LINE(CIL).OR, HASKS(IFAG+MSHIFT)
HL=1L+1

MSHIFT=MSHIFT+NMAG

CALL WRITER(LINE,70).

DO 72 1=1,200

CALL WRITER(LIGHT,70) -

DO 25 I=1,20

CALL VLINE('ESTEVEZ,BIN 603',15)

RETURN

END

SUBROUTINE TOUT(CLIP,HXOUT,NZ, IHY,P)
REAL P(NX,NZ)

INTEGER*2 [HW(NZ)
SCALE=(1024,/BIGEST(MNXOUT ,NZ, P))*CLIP
DO 260 1=1,NXOUT

Do 270 J=1,NZ

IHH(J)=P(I,J)*SCALE

260 WRITE(8,800) (IHW(J),J=1,NZ)

FORMAT(M(ZSSAZ))
LND FILE 8- o
REWIND 8

RETURN

EMD

FUNCTION BIGEST(NX,ND,1Q)
REAL*L 1Q(NX,ND)
B=0,

bo 30 I1D=1,ND,3
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40

DO 30 IX=1,MX,3
T=1Q(!1X,I1D)

30 IF(ABS(T).GT.B) B=ABS(T)
BIGEST=B ’
RETURM
END
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