2-D Inhomogeneous Media Wave Calculations

by Jon Claerbout Lecture at Princeton University 3-3-73

The purpose of these few pages is to explain as simply
as possible how we extrapolate waves through 2-D inhomog-
eneous media. This is an extraction of bare essentials
from our earlier publications. Using subscripts for partial

derivatives we write the wave equation as

P + P = c(x,z) P (1)

and define a coordinate change

x' = X
z' = =z (2)
t' = t - z/C

Now we state that the 0ld coordinates contain the same wave

field as the new ones.

P(x,z,t) = P'(x',z',t") (3)



Using the chain rule for partial derivatives we obtain

P = P'
XX XX
PZ = P x' X 2 + P 2 z', + P'gr t e

— PI 'é‘~l PI

- z' t!

1 —1 1 "'2

PZZ = PZ'Z' - 2 C letl + Lo Ptltl

—_ 1
Ptt P tre! (4)

Now. insert all these into the wave equation (1) and define

a new notation by dropping all the primes.

- _-2 -2 _
PXx + Pzz - (2/c)Pzt + (€ -c(x,2) )Ptt = 0 (5)
Equation (5) is as exact as the wave equation for any constant
numerical value of ©T. It is convenient to pick ¥ about
equal to some sort of spatial average of c(x,2z) and define

- -2
s{x,z) = (¢ 2—c(x,z) Yc/2 . Thus we have exactly

PXx + Pzz - (2/c)(PZt - s(x,z)Ptt) = 0 (6)
A very useful approximation to (6) is found by dropping the
P,, term. This has little effect when P,u (actually P'Z,Z.)

turns out to be small which turns out to be the case for

combinations of rays propagating roughly in the direction of



the +z axis. When s=0 this approximation is properly
called the Fresnel approximation. The approximation is
commonly considered to be useful for waves propagating within
about 15 degrees of the z-axis. We have discovered that it
is also useful for small s(x,z) and have developed other
more accurate (though more complicated) approximations for
larger angles and larger s. The restriction of constant &
can also be relaxed but to do so would complicate the present-
ation. Dropping the P,, term and integrating once with

respect to t we obtain the basic eguation which must be

programmed.
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2 s(x,z)Pt + (&/2) v[. PXX dt (7)
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thin lens + diffraction

By computing the right two terms at 2z we have found the

left term dP/dz which we can use to get P at z+dz.
Continuing the process indefinately amounts to extrapolating

a wave field in space. Some practical simplifications occur
if the smoothly inhomogeneous medium is considered to be
broken up into many layers of thickness dz. Then the process
of extrapolating a wave field with (7) breaks down into two
separate processes, one for crossing interfaces and the other

for crossing layers, i.e. alternately



P = (x,2) Py (interfaces) (8)
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2 (c/2)‘J dt (layers) (9)

Equation (8) says that a time function measured on one side
of the interface is merely a time shifted version of the same
time function seen on the other side of the interface.
Computationally this is just a question of interpolating a
time function defined on a grid. You can do this in many
ways. Equation (9) performs the less obvious function of
carrying the waves across a region of free space. It too
would be simply a shift if P(x,z,t) were a plane wave, but
it is far more interesting because P(x,t) is generally a
superposition of many plane waves. Except for the integral,

equation (9) looks almost like the heat flow eguation

25 Fpe (10)
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Let us have a quick look at a numerical method of solution
to the heat flow equation because our task is very similar.
Using a superscript t to denote discretized time, a centered

difference arrangement is

H - H = At = =) (11)

From a computational point of view it is now convenient to



regard Ht as a column vector given for each time t where
the index running down the column points to the x~coordinate.
In this notation 379x2 becomes a big matrix which is empty
except for the second difference operator (l,—2,l)/dx2 along
the main diagonal. Letting the matrix with (l,——2,l)dt/2dx2

along the main diagonal be called T, the heat flow equation

becomes

PR SARE I (12)
solveing for the unknown column vector Ht+l we have

(1-T) BT = (1+7) B (13)

Don't be discouraged by seeing that (13) is a large set of
simultaneous equations for the unknown column vector Ht+l.
Actually the matrix of coefficients (I-T) is a sparse tri-
diagonal matrix and all the textbooks contain an excellant
algorithm which is nearly as quick as the matrix times vector
operation on the right side of (13). The centered difference
arrangement in (11) is called the Crank-Nicolson scheme and
while it is not the only practical means of solving the heat

flow equation it does seem to be the only practical scheme

for the diffraction egquation (9). Getting back to waves, now



let us differentiate (9) with respect to t

P, = (2/2) Pyy (14)
et time t = j dt and depth =z = n az . Let S denote a
first difference operator. Let P? be a vector at each
value of n and Jj . Entries in the vector represent values
of pressure along the x-axis. Let T denote a tri-diagonal
matrix with the negative of the second difference operator

-(1,/2,1) on the diagonal. With all these definitions and

conventions (14) becomes

il

n - n
g‘ é; P. - & dz dt T 4 P, (15)
Z ] J
8 dx

il

Let us define a & dz dt/s dx2 . Now we must decide moére
precisely how to set up a differenceing scheme. We will do
this entirely analogously to to Crank-Nicolson scheme. First

do centered time differenceing.

n n
s17P3) = -arT2 (pj+l+p?) (16)
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and then do centered space differenceing
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From the point of view of computation we assume that the

. n+l . . .
unknown is Pj+l and that all else is known. Bringing the
unknown to the left and the known to the right we have

n+l n+l n n n+l n
(I+aT) P. = P, + P. - a T(Pj + P.

j+1 3 Psy1 = Py J+1 i
For each n and j the right side collapses to a known
vector. The left side is the tri-diagonal matrix (I+aT)

n+l Th luti £
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multiplying the unknown vector P
these equations is extremely simple and may be done as with

the heat flow equation. Boundatry conditions in x are contained

on the ends of T. For 2z and t Dboundary conditions it
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is sufficient to give, at: all x, P8 for all n and P
for all j . Other boundary arrangements are possible. It
turns out that if you want to turn around and extrapolate
backwards in z, this is like changing the sign of dz which is
like changeing the sign of a . Actually (18) turns out to
be stable for increasing n and 3j only if a is positive.
Thus if it is desired to go backwards in the 2z direction

then it is also necessary to simultaneously take dt negative

so that increasing j corresponds to decreasing time.



