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Evaluating the Stolt stretch parameter

Sergey Fomél

ABSTRACT

The Stolt migration extension to a varying velocity case (Stolt stretch) implies describing
a vertical heterogeneity by a constant parameté). (This paper exploits the connectio
between modified dispersion relations and traveltime approximations to derive an explicit
expression foW. The expression provides theoretically the highest possible accuracy
within the Stolt stretch framework. Applications considered include optimal partitioning
of the velocity distribution for the cascaded migrations and extension of the Stolt stretch
method to transversally isotropic models.

INTRODUCTION

Stolt migration is regarded as the fastest post-stack migration method of all the known algo-
rithms. A known price for that speed is the constant velocity assumption. The time-stretching
trick proposed in Stolt’s classic paper (1978) provides an approximate extension of the method
to a variable velocity case. Stolt stretch implicitly transforms reflection traveltime curves to
fit an approximate constant velocity pattern (Levin, 1983, 1985; Claerbout, 1985). In other
words, the wave equation with variable velocity is transformed by a particular stretch of the
time axis to an approximate differential equation with constant coefficients. The two constant
coefficients are an arbitrarily chosen frame velocity and a specific nondimensional parameter
(W in Stolt’s original notation). In the constant velocity caskis equal to 1, and the trans-
formed equation coincides with the exact constant velocity wave equation. In variable velocity
media,W is generally assumed to lie between 0 and 1. As shown by Beasley et al. (1988),
the cascadefl-k migration approach can move the valué/ffor each migration in a cascade
closer to 1, thus increasing the accuracy of the Stolt stretch approximatioWV Taetor was
defined by Stolt (1978) as an approximate average of a complicated function. Stolt’s defini-
tion cannot be used directly for computation because it includes a combined dependence on
both time and space coordinates. Therefore, in practice, the estimation of this factor is always
replaced by a heuristic guess. That's why Levin (1983) called/hparameter “infamous”
(joking, of course), and Beasley et al. (1988) called it it “esoteric.” This paper develops a
method to evaluate the Stolt stretch parameter explicitly. The main idea is to constrain the
parameter by fitting the exact and approximated traveltime functions. In the case of isotropic
interpretation, th&V parameter is connected to the “parameter of heterogeneity” (Malovichko,
1978; Castle, 1988; de Bazelaire, 1988). In the case of anisotropic (transversally isotropic) in-
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terpretation, it can be related to the “parameter of anellipticity” (Muir and Dellinger, 1985;
Dellinger et al., 1993).

STOLT STRETCH THEORY

In order to simplify the references, | will begin with the textbook definitions of the Stolt
migration method. The reader familiar with Stolt stretch theory can skip this section and go
on to a new piece of theory in the next one. Post-stack seismic migration is theoretically
a two-stage process consisting of wavefield downward continuation in ddpbed on the
wave equation
2 2 2
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and the imaging conditiot = O (here the velocity is twice as small as the actual wave
velocity). Stolt time migration performs both stages in one step, applying the frequency-
domain operator

dw, (k a)O)
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where
B, (k) = / f P, (X, 1) €Xp(i uty — 1K) dt, dx |

Po (K, w0) = f/Po(x,to)exp(ia)oto—ikxx)dtvdx,

Po (X, tp) stands for the initial zero-offset (stacked) seismic section defined on the sugae
P, (x,t,) is the time-migrated section, ahdis the vertical traveltime

Z dz
t, = fo e 3)

The functionw, (K, wg) in (2) corresponds to the dispersion relation of the wave equation (1)
and in the constant velocity case has the explicit expression

wy (K, wg) = sign(wo) a) —v2k2 . (4)

The choice of the signin (4) is essential to distinguish between upgoing and downgoing waves.
It is the upgoing part of the wave field that is used in migration. For the case of a varying
velocity Stolt (1978) suggested the following change of the time variable (referred to in the

literature asStolt stretchy:
5 1/2
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whereuvg is an arbitrarily chosen constant velocity, and a function defined by the parametric
expressions

¢ dz
v(X,2)

¢
0 = /0 w(x,2)dz, 7(¢) = fo 6)

With the stretch (5), seismic time migration can be related to the transformed wave equation
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HereZ andf are the transformed depth and time coordinates that possess the following prop-
erty: if 2=0,{ =s(tp), and ift = 0, Z= vos(t,). W is a varying coefficient defined as

W =a’+2b(1l-a%, (8)

where

(2) s(t) vov(X,2) ¢ dz Z dz
N
0

= ——,a= = .
n(¢) n(¢) o v(x,2) v(X,2)
Stolt’s idea was to replace the slowly varying param#tewith its average value. Thus equa-

tion (7) is approximated by an equation with constant coefficients, which has the dispersion
relation

g —Wudk? . 9

. o
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Stolt's approximate method for migration in heterogeneous media consists of the following
steps:

1. stretching the time variable according to (5),

2. interpolating the stretched time to a regular grid,

3. double Fourier transform,

4. f—ktime migration by operator (2) with the dispersion relation (9),
5. inverse Fourier transform,

6. inverse stretching (shrinking) the vertical time variable on the migrated section.
The value ofW must be chosen prior to migration. According to Stolt’s original definition
(8), the depth variable gradually changes in the migration process from zero,tcausing

the coefficientb in (8) to change monotonically from 0 to 1. If the velocitymonotonically
increases with depth, theri(z) = 3—12’ > 0, and the average value lois

— 1 ¢ 1 ¢ z 1
b=%/o n(Z)dZS%/O (o) 7dz=3. (10)
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As follows from (8) and (10), in the case of monotonically increasing velocity, the average
value of W has to be less than W\ equals 1 in a constant velocity case). Analogously, in
the case of a monotonically decreasing velodityis always greater than 1. In practidd,is
included in migration routines as a user-defined parameter, and its value is usually chosen to
be somewhere in the range of 1/2 to 1.

In this paper | will describe a straightforward way to determine the most appropriate value
of W for a given velocity distribution. A useful tool for that purpose is Stewart Levin’s formula
for the traveltime curve. Levin (1985) applied the stationary phase technique to the dispersion
relation (9) to obtain an explicit formula for the summation curve of the integral migration
operator analogous to the Stolt stretch migration. The formula evaluates the summation path
in the stretched coordinate system, as follows:

S(to) = (1— _> S(t,)+ — \/ s2(t,)+w X=X XO)Z (11)
U

0

HereXg is the midpoint location on a zero-offset seismic section,yarstthe space coordinate

on the migrated section. Formula (11) shows that, with the stretch of the time coordinate,
the summation curve has the shape of a hyperbola with the adexsdt,)} and the center

(the intersection of the asymptotes){at (1 — 7) s(t,)}. In the case of homogeneous media,

W =1, s(t) =t, and (11) reduces to the well-known hyperbolic diffraction traveltime curve.

It is interesting to note that inverting formula (11) fft,) determines the impulse response

of the migration operator, which can be interpreted as the wavefront from a point source in the
{x,2,f} domain of equation (7):

2—io:(1—1)Rii\/R2—Q(x—xo)2, (12)
Q Q

whereR = vof, andQ = 2— W. According to equation (12), wavefronts from a point source
in the stretched coordinates faf < 2 have an elliptic shape, with the center of the ellipse at
{X,Z0+ (% — 1) R} and the semi-axes = J_% anda, = r@. The ellipses stretch differently

for W <1 andW > 1 (Figure 1). In the upper part that corresponds to the upgoing waves,

they look nearly spherical, since the radius of the front curvature at the top apex equals the
distance from the source.

EVALUATING THE W PARAMETER AND STOLT STRETCH ACCURACY

Formula (11) belongs to the three-parameter class of traveltime approximations. The key result
of this paper uses a remarkable formal similarity between (11) and Malovichko’s approxima-
tion for the reflection traveltime curve in vertically inhomogeneous media (Malovichko, 1978;
Castle, 1988; de Bazelaire, 1988) defined by

1 1 (X — X0)?
to = (1 S ))t + S \/t2+S(t )—rms(t) (13)
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Figure 1. Wavefronts from a point source in the stretched coordinate system. Left: velocity
decreases with depth (W=1.5). Right: velocity increases with depth (Wfr@dﬁgeyz-stofrﬁo
INR]

whereuv; s Stands for the effective (root mean square) velocity along the vertical ray

1 (v
nst) =22 =2 [Ty, 14)
tv tv 0
andSis theparameter of heterogeneity
1 b
S(t,) = — / vidt, . (15)
Urmslv Jo

In terms of theS parameter, the variance of the squared velocity distribution along the vertical
ray is

1 [
o’ = t, /0 v4dtv - vr4ms = vfms(s_ 1). (16)

As follows from equality (16)S > 1 for any type of velocity distribution§equals 1 in a con-

stant velocity case). For most of the distributions occurring in prac8aanges between 1

and 2. Malovichko’s formula (13) is known as the most accurate three-parameter approxima-
tion of the NMO curve in vertically inhomogeneous media. Since reflection from a horizontal
reflector in that class of media is kinematically equivalent to diffraction from a point, formula
(13) can be similarly regarded as an approximation of the summation path of the post-stack
Kirchhoff-type migration operator. In this case, it has the same meaning as formula (11). An
important difference between the two formulae is the fact that equation (13) is written in the
initial coordinate system and includes coefficients varying with depth, while equation (11)
applies the transformed coordinate system and constant coefficients. Using this fact, the rest
of this section compares the accuracy of the approximations and relates Btdtistor to
Malovichko’s parameter of heterogeneity. Equations (11) and (13) both approximate the trav-
eltime curve in the neighborhood of the vertical ray. Therefore, to compare their accuracy, it
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is appropriate to consider series expansion of the diffraction traveltime in the vicinity of the
vertical ray:

1 d?to

2 dI2

4
41 d|4 |

1=0

to(l) = tolj—o+ = - (17)

wherel = x — Xp. Expansion (17) contains only even powersl dfecause of the obvious
symmetry oftp as a function of. The special choice of parametéys v, and S allows
Malovichko’s formula (13) to provide correct values for the first three terms of expansion
a7):

tho = t; (18)
dzto 1

- = — 19
dlz |_o ty 026 (ty) (19)
d*to 3S(t,)

—_ 20
di4 1=0 t3 r4ms(tv) ( )

Considering Levin’s formula (11) as an implicit definition of the functig(t,), we can itera-
tively differentiate it following the rules of calculus:

ds dty
—| =9(tg) ——| =0;
dli—o (o dl o
d%s dio? AN v 1 .
.- ( (0 2+ ) (52 ) SO @
d3s _ % dto dzt0 /" dio : —
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oS 6s/”(t)<d_to)2d2t +3 ”(t><ﬂ>2 ”(t) d3t°
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vy (90|
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ooy [($0 2 d*to 3W
( o (G2) +30) dl4> et 22)

2Though a power series of the type (17) is not the best possible representation of the traveltime curve, it
is quite suitable for comparing different approximations in the vicinity of the vertical ray. In the post-stack
migration problem, those approximations imply that the reflector dips have zero mean value. If we assumed
that the mean dip value on a particular seismic section were different from zero, we could apply expansions
different from expansion (17). That curious option is beyond the scope of this paper.



SEP-84 Stolt stretch 7

Substituting the definition of Stolt stretch transform (5) into (21) produces an equality similar
to (19), which means that approximation (11) is theoretically accurate in depth-varying veloc-
ity media up to the second term in (17). It is this remarkable property that proves the validity
of the Stolt stretch method (Levin, 1983; Claerbout, 1985). Formula (11) will be accurate up
to the third term if the value of the fourth-order traveltime derivative in (22) coincides with
(20). Substituting equation (20) into (22) transforms the latter to the form

1-W  v2(t) — S(ty) v (t)
U(2) s2(ty) - vlflms(tv) tv2

It is now easy to derive from equation (23) the desired explicit expression for the Stolt stretch
parametelV, as follows:

woq._ USt) (UZ(tu) _S(tv)) | (24)

Vims (L) 12 \ vfins (t)

Expression (24) is derived so as to provide the best possible vale fofr a given depth
(vertical timet,). To get a constant value for a range of depths one should take an average
of the right hand side of (24) in that range. The error associated with Stolt stretch can be
approximately estimated from (17) as the difference between the fourth-order terms:

S W) -w
8,52 () vAns(ty) V3

(23)

(25)

whereW (t,) is the right-hand side of (24), anW is the constant value & chosen for Stolt
migration. To estimate the best possible accuracy that the Stolt stretch method can achieve, we
must take into account the sixth-order term in (17) related to the sixth-order derivative of the
traveltime curve. For the true traveltime curve, the expression for the sixth-order derivative in
the vicinity of the vertical ray is known from the literature (Bolshyh, 1956; Taner and Koehler,
1969) to be

d6t, 45 1 W
| _ 28 ()~ —5— f vt ) (26)
d|6 =0 t;‘;—’ UPmS tv UPms(tv) 0

First, let us estimate the error of Malovichko’s approximation (13). Differentiating (13) six
times and setting the offskto zero yields

dbt 453 (t
di® = tE’ vpms
The estimated error is proportional to the difference between (27) and (26):
181 45 1 W
M 6! |:t1?vr6ms <tvvr6ms(tv) /0 ’ ( )>] (8)

It is interesting to note that replacing the parameter of heterogeBdityits definition (15)
changes the expression in the round brackets to the following form:

1 ty 1 ty ty ty 2
- f vdt, - = / vzdtU/ detv—(/ v4dtv) . (29
tvvrms 0 tv Urms \/0O 0 0
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According to the Schwarz inequality from calculus ( also known as the Cauchy—Bunyakov-
ski inequality), the value of expression (29) can never be less than zero; &gned for

any velocity distribution. This conclusion indicates that Malovichko’s approximation tends to
increase the traveltime at large offsets beyond its true value. Differentiating (22) twice and
eliminating terms that vanish ht= 0 produces

dbs (A2t Lo dediy . dPi
anl_, © (155 (t) (d_l> sl g gt W ge )|
45\W?2
o (30)

Evaluating the sixth-order traveltime derivative from (30) and subtracting (26), we get a some-
what lengthy but explicit expression for the error associated with Stolt stretch approximation
in the case of the best possible choicé\af

L =3dm+

IG[ 45(1—W) <v2(tv> _tfvfms(tv)>_30v(tv)v'(tv)} (31)

_|__
6! | t3vfns(ty) S (1) vé Vans(t)  S2(ty) US tff v8hs(t)

ISOTROPIC HETEROGENEITY VERSUS ANELLIPTIC ANISOTROPY

A controversial issue associated with the topic of this paper is whether the non-hyperbolicity
of the traveltime curves is caused mainly by heterogeneity or by anisotropy. To find a con-
nection between the two different descriptions of media, we can consider an alternative three-
parameter traveltime approximation (the anelliptic anisotropic moveout formula), proposed by
Muir and Dellinger (1985) :
(4 (f 4+ 12 g g2 cxolt

rms rms . (32)

to = 5
24 f L0
Here f is theparameter of anellipticity Differentiating (32) four times, setting= x — xg to
zero, and equating the result with (20) results in the following formal relationship betiveen
and Malovichko’s parameter of heterogeneity:

S=1+4f—-4f2, (33)

Equation (33) clearly demonstrates the uncertainty between the anisotropic and heterogeneous
isotropic interpretations. Both of them can explain the cause of the nonhyperbolicity of trav-
eltime curves. An important difference is that the parameter of heterogeneity is uniquely
determined by the velocity distribution according to (15), while thparameter is assumed

to be an independent functional. The definition (15), applied in combination with (24), is suit-
able for calculating the Stolt stretch factor in an isotropic model for a given velocity function.
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If the correction parameter is measured experimentally by a non-hyperbolic velocity analysis
in the form of either equation (13) or equation (32), it accumulates both heterogeneous and
anisotropic factors and can be used for an explicit determinatiwv iof (24) independently of

the preferred explanation. In the case of the anisotropic moveout velocity analysis, we merely
need to substitute the connection formula (33) into (24) to ¥WMidAn alternative approach

to Stolt-type migration in transversally isotropic media was proposed recently by Ecker and
Muir (1993). However, Stolt stretch migration is superior to that method in its ability to cope
with varying rms velocities.

EXAMPLES

A simple analytic example of isotropic heterogeneity is the case of a constant velocity gradient.
In this case the velocity distribution can be described by the linear fune{ipn= v (0) (1 +
az). Stolt stretch transform is found from (5) as

. 1/2
) = (e&x OF —1—2av(0)t> |

2,2
20 V5

(34)

Let « be the logarithm of the velocity changéz)/v(0). Then an explicit expression faW
factor follows from (24):

2k v?(0)

W = = .
e —1 2 (k)

(35)

For « — 0 (a small depth or a small velocity gradienty, ~ 1 —«. Forx — oo (a large
positive change of velocity)V monotonically approaches zero. Formula (35) can be a useful
rule of thumb for a rough estimation . Numerical example of the Stolt stretch parameter
computation is illustrated in Figures 2 and 3. The left side of Figure 2 shows a smoothed
interval velocity curve from the Gulf of Mexico. The corresponding optimal values oWhe
factor as a function of vertical time (in the isotropic model) are shown on the right. Though
the velocity function is smooth, substantial change®roccur, making its mean value for

the timest, < 6 sec equal to 0.631. The theory of cascaded migrations (Larner and Beasley,
1987; Beasley et al., 1988) proves that Stolt-tifgenigration for a nonuniform velocity (t,)

can be performed as a cascaded process consisting of migrations with the smaller velocities
i (t,), i =1,2,...,n, such thaw? + v3+ .- +v2 = v2 . As shown by Larner and Beasley
(1987), it is important to partition the velocity so that for each partictjlall the velocities

in the cascade, except maybe the last one, are constant. The advantage of the dakcaded
migration method is based on the fact that each small velecitescribes a more homoge-
neous medium than the initial(t,) function. Therefore, th&V factor for each migration in a
cascade is closer to 1, and the Stolt stretch approximation is more accurate. This fact is illus-
trated in Figure 3, which shows an optimal partitioning of the velocity and the corresponding
values of theV factor. In accordance with the empirical conclusions of Beasley et al. (1988),

a cascade of only four migrations was sufficient to increase the valMétofmore than 0.8.

With a further increase of the number of cascaded migrations, the method becomes as accurate
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with respect to vertical velocity variations as phase-shift migration. Theoretically, this limit
corresponds to the velocity continuation concept (Fomel, 1994). Note that the theory of cas-
caded—k migration is strictly valid for isotropic models. The anisotropic interpretation does
not support it, since the intrinsic anisotropy factor is not supposed to change with the velocity
partitioning.

velocity (m/s) W factor

1800 2000 24
1

00 2800 3200 3600 4000 4400 0.2 0.4 0.8 0.8 1
1 1 1 1 1

(s) sy [earjaan
(s) swy [eor}a

v(t) W(t)

Figure 2: Smoothed interval velocity distribution from the Gulf of Mexico (left) and the cor-
respondingW factor as a function of vertical time (right). The mean valueNfis 0.631.
sergey2-stovwi{CR]
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Figure 3: Left: Optimal partitioning of the velocity function for the method of cascaded mi-
grations. Right: corresponding mean valued\of Top: four cascaded migrations. Bottom:
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CONCLUSIONS

The main result of this paper is an analytic explicit expression (24) that allows us to choose the
most appropriate value for the Stolt stretch factor. Possible applications include the optimal
design of interval velocities partitioning for the method of cascddkdigrations and exten-

sion of the Stolt stretch method to a transversally isotropic model. Nowadays the topic of this
paper seems to be out of fashion. When everyone is interested in prestack depth migration in
the time-space domain, it is difficult to attract any attention to post-stack time migration in the
frequency domain. Nevertheless, | believe the art of approximation demonstrated by Robert
Stolt in his famous paper to be a good example to follow when working on many different
problems, which was the main reason for this research.
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