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Short Note

Trace balancing with PEF plane annihilators

Sean Crawley1

INTRODUCTION

Land seismic data often shows large variations in energy from one trace to the next. Localized
noise bursts or changes in signal to noise ratio in a shot gather, for instance where the receiver
spread nears a road or machinery, are not uncommon problems. Also, geophones may be
poorly coupled in an area, because of surface conditions or simply having been kicked loose.
Claerbout (1994) points out in addition that local wavefields add amplitudes rather than energy.
This means that wave interference can result in anomalously high or low trace energy where
waves add or extinguish. Typically, traces are scaled to have equal energies or equal mean
absolute values. In situations such as those above this is not a perfect solution. In the case
of noisebursts or machinery, reflection events may be given variable amplitudes depending on
the amount of noise in individual traces when they should be constant along many traces. Or
where events have extinguished, the resulting drop in initial trace power will result in noise
being scaled up. Claerbout (1994) suggests that using a prediction error filter to destroy plane
waves is perhaps a better way to estimate scales. In other words, scale traces based on the
amplitudes along events rather than by total trace power or amplitude. When the proper filter
is known, power in the output from locally planar data is minimized when the magnitude along
events of a given dip is easily predictable, i.e. constant or smoothly increasing or decreasing.
Unfortunately, the scale anomalies we seek to solve for make the data less predictable, and the
correct filter cannot be estimated from the input. I use a nonlinear technique to simultaneously
solve for the scale factors and the filter. The inversion is unstable and conjugate gradient
solutions typically diverge, but in general this occurs after a good solution has been reached.
Below I describe first the formulation of the problem, and afterwards the patches that enable
the program to output good results despite divergence.

THEORY

Given locally monoplanar data, NMO corrected gathers for instance, a prediction error filter of
n+1 columns will completely extinguish planes atn dips. In the case where individual traces
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are incorrectly scaled, factors to rescale the traces may be estimated by solving the regression:

ADs≈ 0

where A is a prediction error filter,D is the data, ands is a vector of scale factors. The
matrix D can be thought of as a diagonal matrix, where each element is a trace, or perhaps
a three-dimensional matrix with the traces coming out of the page. A simpler, mechanistic
explanation is that every sample in a trace is multiplied by the scale factor corresponding to
that trace. Rescaling the data changes the degree to which it is predictable, so the filter must
be reestimated along with the scale factors. Thus the regression is rewritten:

(A+1A)D(s+1s) ≈ 0

or

ADs≈ −AD1s−1ADs

Calculating the residualr to beADs, the gradient directions forA ands are

1A = R′Ds

1s = D′ A′r

Getting1A requires getting into the space of filter coefficients, accomplished by the adjoint
convolution of the residual matrix and the scaled data. Getting back to the space of scale
factors, to determine1s, is tricky. The adjoint of trace scaling is taking the inner products of
corresponding traces in two matrices. This yields a scalar value for each trace proportional to
the scale factors. One important consideration is the shape of the filter. For this problem, the
shape of the filter is chosen to be (assuming one dip direction):

. a12

. a22
1 a32
. a42
. a52

There are no free coefficients in the first column, so that no prediction is done along the time
axis in a trace (Abma and Claerbout, 1993) . This is important because we want the method
to "see" only lateral variations. The regression has the trivial answers = 0. To avoid this, the
condition

6s = constant

is imposed on the scales. This has the weakness that dead traces have the potential to absorb
substantial energy. A better solution is to require the output to have the same total power as
the input, but for the simple examples I have prepared here the earlier condition suffices.
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Low frequency artifacts

Least squares inversions are effective at removing large singular errors. Low frequency trends,
however, are more difficult. Frequently this method produces outputs with spurious low fre-
quency amplitude variations along events. I have found that simply scaling the columns in the
filter will solve this problem, but this forces amplitudes to be constant along events, which is
a mistake if we wish to preserve any AVO effects which may be present in the data. Instead,
using the criterion that low frequency amplitude variations should come from the data and not
from the scale factors, and assuming that scale anomalies are randomly distributed in space,
we can filter the vector of scale factors with a filter of the form:

C = {ε,· · ·ε,−ε,· · ·− ε}

And add the regression:
Cs≈ 0

Whereε is a weighting parameter and the filterC is as long or nearly as long as the scale
vectors. This adds the condition that the scale vector should be rough, not vary slowly from
one end of the data to the other. I have used internal boundary conditions for the convolution,
so this new component of the residual is only a single value (if the filter is as long as the scale
vector). The two criteria are weighted by the choice of the parameterε. This formulation
of the problem is a straightforward extension of that presented above. The added regression
does a good job of supressing low frequency artifacts, though in some cases it does inhibit the
overall ability of the method to deal with single large scale anomalies. Because the code takes
very little time to run (seconds to a minute for the example presented below), I apply it two
or three times in succession with decreasing values ofε. This application of the method has
shown significantly reduced susceptibility to low frequency artifacts in the examples I have
tested.

Divergence

In every test I have run with this method on synthetics, the problem has eventually diverged.
This is not very surprising when one considers the degree to which the scale factors and filter
coefficients depend on one another, and the fact that both are found simultaneously. Several
minor adjustments to the conjugate gradient solver make it slightly more robust, and make
it possible to extract the best answer reached before divergence, rather than the final answer.
The first of these modifications is a change from our normal implementation of the conjugate
gradient approach to one thatresetswhen it runs into trouble. That is, in the event that after
any iteration the residual has increased rather than decreased, one iteration of steepest descent
is performed. This eliminates the contribution of the "bad" (meaning it resulted in increased
residual power) previous solution direction to subsequent iterations. Also, I have employed a
weighting parameter that factors the solution step length calculated by the conjugate gradient
solver. Using smaller step lengths than those calculated by the solver (which are based on
certain assumptions of linearity), increases slightly the stability of this nonlinear problem.
Together these two changes tend to result in an inversion that reaches a smaller residual, but
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do not manage to stabilize it completely. A better solution is reached, but the problem still
diverges at some time afterwards. The most important adjustment to the conjugate gradient
method is the addition of a buffer of a size to hold the solution and the value of the residual
power associated with it. At each iteration, the residual power is computed, and if it is lower
than that currently held in the buffer –the lowest value to that point in the inversion– the new
solution is copied into the buffer. At the end, it is the contents of this buffer that are used
to scale the input data. Finally, since repeated iterations of steepest descent means that the
problem is diverging, a flag is used to abort after a given number of steepest descent iterations
in a row.

RESULTS

To test the algorithm, I applied random weights between one and 100 to each trace in a plane
of data windowed from the Sigmoid synthetic data (Claerbout, 1994) . The input is displayed
Figure 1. After one pass through the inversion withε set to a value of one, the output is as seen
in Figure 2. A second pass through the inversion with smallerε = .3 yields the result shown
in Figure 3 .

Figure 1: Randomly scaled in-
put. Apparent missing traces are
actually scaled by a small number.
sean3-input[ER]

CONCLUSIONS

The results obtained on the synthetics are quite good. In addition, conversation with Bill
Harlan led me to consider the possibility that this method can be extended to simultaneously
solve for scale factors and static shifts, common problems with land seismic data. I plan to
pursue this new problem in the future.
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Figure 2: Output after inversion with
ε = 1. sean3-output1[ER]

Figure 3: Output after inversion with
ε = .3, using previous result as input.
sean3-output3[ER]
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